
Nuprl{Light: An Implementation Framework for

Higher-Order Logics

Jason J. Hickey?

Cornell University, Ithaca, NY 14853, USA.
jyh@cs.cornell.edu.

1 Introduction

Recent developments in higher-order logics and theorem prover design have led to
an explosion in the amount of mathematics and programming that has been for-
malized, and the theorem proving community is a faced with a new challenge|
sharing and categorizing formalized mathematics from diverse systems. This
mathematics is valuable|in many case many man-months, or even man-years,
have been devoted to the development of these mathematical libraries. There
is potential for more rapid advance if theorem provers of the future provide a
means to relate logics formally, while providing adequate protection between
logics with di�ering assumptions.

In this paper we describe Nuprl-Light, a descendent of the Nuprl [2] theorem
prover, that addresses the issues of diversity and sharing by providing a modular,
object-oriented framework for specifying, relating, and developing type theories
and mathematical domains. The framework itself assumes (and provides) no type
theory or logic, as in LF [4], which is why we call it an implementation frame-
work. Instead, Nuprl-Light provides a meta-framework where logical frameworks
such as LF, Nuprl, set theory, and other theories can be de�ned and developed.
Since proof automation is such a critical part of theorem proving in these log-
ics, the implementation framework is tied closely to a programming language
(in this case Caml-Light) and the formal module system is tied closely to the
programming language modules.

Like the Isabelle [9] generic theorem prover, Nuprl-Light uses generalized
Horn clauses for logical speci�cation. Indeed, speci�cations in Nuprl-Light ap-
pear quite similar to those in Isabelle. However, where Isabelle uses higher or-
der uni�cation and resolution, Nuprl-Light retains a tactic{tree [3] of LCF [8]
style reasoning based on tactics and tacticals, and Nuprl-Light also allows theo-
ries to contain speci�cations of rewrites, using the computational congruence of
Howe [7]. Like LF, the Nuprl-Light meta-logic also relies on the judgments{as{
types principle (an extension of propositions{as{type), where proofs are terms
that inhabit the clauses.

? Support for this research was provided by the O�ce of Naval Research through
grant N00014-92-J-1764, from the National Science Foundation through grant CCR-
9244739, from DARPA through grant 93-11-271, and from AASERT through grant
N00014-95-1-0985.



The main departure from Isabelle and LF is in the module system. In Nuprl-

Light modules have formal �rst-class signatures and implementations, provid-
ing the ability not only to specify multiple logics, but to relate them (using
functors). In addition, modules in Nuprl-Light are object{oriented, providing
the ability to extend type theories and their reasoning strategies incrementally.
Taken together, these abilities provide a view of \theories{as{objects," encour-
aging incremental and modular speci�cation of theories.

These are the results we address with this system:

{ An implementation framework for specifying and relating type theories, and
their rules, theorems, and proofs.

{ A method for constructing formal types from module signatures, and formal
object for module implementations, based on recent theoretical work with
very{dependent function types [6].

{ An architecture for incrementally implementing algorithms for automated
reasoning.

{ A mechanism for generic shared tactics and derived rules.

2 The Framework

The formal system uses a term language to de�ne formal objects such as numbers
(0; 1; 2; : : :), functions (�x:b), dependent function spaces (�x:A:B), as well as
sequents (� ` �). The framework itself attaches no meaning to these terms|
that is the duty of the logic, not the framework, and so, for instance, the operator
+ does not \perform" addition until that meaning is attached to it.

signature ::= theory sig name = sig stmts end

sig stmt ::= axiom name p1 : : : pn : judgement

j rewrite name t1 () t2
j include name

j declare term

j dform term = dform

j signature

j ML declaration

implementation ::= theory name = thy stmts end

thy stmt ::= axiom name p1 : : : pn : judgement

j prim name p0 : : : pn : (v1: t1) � � � (vm�1: tm�1) = t : tm
j thm name p0 : : : pn : t1 : : : tm�1 = tactic : tm
j include name

j primrw name t1 () t2
j rwthm name t1 () t2 = tactic

j ML implementation

Mathematical theories are formulated as theories, which are an extension of
the ML module system. Each theory has a signature, which speci�es the rules
and types of the theory, and an implementation, which contains proofs for the
rules. The syntax for theories is shown in the Figure above.

A rule is declared in a theory signature with an axiom form. The declaration

axiom name p1 : : : pn : t1 ) � � � ) tm



speci�es that the term tm is true, if the antecedents t1; : : : ; tm�1 are true. The
prim form is used to implement the rules that are primitive in the type theory,
and for constructive logics, it also speci�es the proof extract term. For instance,
the and-introduction rule might be \implemented" as follows.

prim and elim : (a:� ` A) (b:� ` B) = (ha; bi : � ` A ^ B)

include A include A

include B
include C

A

B C

D

•••
The theories are object-oriented, in the sense that a
theory speci�es a class that can inherit rules and imple-
mentations from other classes. All rules and theorems
that are valid in a superclass remain valid in the sub-
class. Operationally, an include directive treats the
included theory is if it were inlined in the module, with
one exception: modules are inlined at most once (an
implicit sharing constraint). In the diagram above, we
describe a scenario where modules B and C both include module A, and mod-
ule D includes both B and C. Only one copy of A is inlined, and the modules
B and share the common implementation.

The rewrite form de�nes computational rewriting. For instance, the decla-
ration,

rewrite beta : (�x:M [x]) N ()M [N ];

de�nes beta equivalence. The primrw and rwthm correspond to the prim and
thm forms, except that rewrites are assigned no proof extract, so the justi�cation
omits it.

A theory may also extend the formal language by declaring a new term. For
instance, a module that de�nes number theory would extend the term language
with a term that speci�es addition using the declare form:

declare addfg(v1; v2):

Terms that are declared are associated with the module in which they are de-
clared.

One of the key features of the framework is that theories and their signatures
are �rst class. The framework provides a means to extract a formal type from
a theory signature, and a formal object from its implementation. The general
idea is to translate a module signature to a dependent record type, and translate
its implementation to a record inhabiting that type. As usual, the framework
does not assign meaning to a record and its type|that job is left to the type
theory designer. However, in logics that are expressive enough to reason about
dependent record types, it is expected that the normal record subtyping will
be derivable. In the Nuprl type theory, record types are interpreted as very-
dependent function types, where the functions range over the set of labels in the
record, and the expected subtyping holds since a function with a larger domain
can simulate a function with a smaller domain. A more complete description is
given in Hickey [6].



3 Example

theory sig ipl implies sig =
include sequent sig
include ipl false sig
declare A) B

declare �x:b[x]
declare M N (* application *)

declare :A
rewrite neg rw : :A() (A) ?)

axiom imp intro a : (�; a:A ` B)) (� ` A) B)
axiom imp elim : (�;� ` A)) (�; x:B;� ` C)) (�; x:A) B;� ` C)

end

For an example, we de�ne a fragment intuitionistic propositional logic. In the
Figure above, we show the fragment of the logic that de�nes implication. The
fragment depends on the de�nition of false to de�ne negation, as well as the def-
inition of sequents, so it includes the theories ipl false sig and sequent sig.
This fragment declares the new term for implication, as well as a de�nition of
negation, and then it speci�es the rules for implication introduction and elimi-
nation.

Although we can provide a primitive implementation, it is also possible to
derive an implementation by relating the logic to another|in other words, by
giving a model in terms of another existing logic. In this example, shown in the
Figure below, we show how to derive an implementation for ipl implies sig

from the Nuprl type theory ITT. The Nuprl type theory contains IPL as a proper
sub-theory, and the justi�cation is quite straightforward. We interpret the IPL
implication as the ITT implication (written implies(A; B) in the example),
which allows the IPL rules to be justi�ed from the ITT rules by unfolding the
de�nition of the implication. Although this justi�cation is technically trivial, the
pattern for more complex justi�cations is similar{although the interpretations
of the rules and symbols may be more complex.

theory ipl implies =
include ITT
rewrite imp def : (A) B)() implies(A;B)
rewrite lam def : �x:b[x]() lambda(x:b[x])
rewrite apply def : (M N)() apply(M ;N)

thm imp intro a (�; a:A ` B) =
(unfold imp def andthen itt imp intro) : (� ` A) B)

thm imp elim (�;� ` A) (�; x:B;� ` C) =
(unfold imp def andthen itt imp elim) : (�; x:A) B;� ` C)

end

4 Implementation

Nuprl-Light is implemented in Caml-Light, with a total of about 25,000 lines of
source code to implement the theorem prover, and an additional 10,000 to specify



the Nuprl type theory and implement the tactics. The heart of the implementa-
tion is a rewriting engine that is used both for computational rewrites, and proof
re�nements. Care was taken to make term rewriting e�cient, and Nuprl-Light

pre-compiles rewrite speci�cations to an intermediate language. This rewriting
engine, together with abstract operations on terms, count for about 20% of the
code. The rest of the code is devoted to algorithms for proof search, display
printing, and �le processing.

The Nuprl type theory is implemented as a collection of modules, one for
each type constructor. One unexpected bene�t of this coding is that with the
use of derived rules the number of primitive inference rules needed to de�ne
the type theory and its type constructors has dropped by about a factor of
�ve, since most of the standard type constructors can be derived from the very-
dependent function type. Our plans for the future include further development
of the tactic collection and improvements to proof search algorithms. The im-
plementation and further information are available at the author's home page
http://www.cs.cornell.edu/home/jyh.

References

1. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken. The
semantics of reected proof. In Proceedings of the Fifth Conference on Logic in

Computer Science, pages 195{197, June 1987.
2. R.L. Constable et.al. Implementing Mathematics in the NuPRL Proof Development

System. Prentice{Hall, 1986.
3. Timothy G. Gri�n. Notational De�nition and Top-Down Re�nement for Interac-

tive Proof Development Systems. PhD thesis, Cornell University, 1988.
4. Rober Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.

Journal of the ACM, 40(1), January 1993.
5. Robert Harper and Mark Lillibridge. A type{theoretic approach to higher{order

modules with sharing. In 21st Annual ACM Symposium on Principles of Program-

ming Languages, pages 123{137. ACM, January 1994.
6. Jason J. Hickey. Formal objects in type theory using very dependent types. In

Foundations of Object Oriented Languages 3, 1996. Available electronically through
the FOOL 3 home page at Williams College.

7. Douglas J. Howe. Equality in Lazy Computation Systems. In Fourth Annual Sym-

posium on Logic in Computer Science, pages 198{203. IEEE Computer Society
Press, 1989.

8. Lawrence C. Paulson. Logic and Computation: Interactive proof with Cambridge

LCF. Cambridge Univ. Press, 1987.
9. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS 828,

1994.

This article was processed using the LATEX macro package with LLNCS style


