
The Story of the IDEA Methodology*

Stefano Ceri and Piero Fraternali

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci 32, 1-20133 Milano, Italy

ceri/fraterna @elet .polimi. it

A b s t r a c t . The IDEA Methodology is a comprehensive approach to the
design of information systems; its main focus is the use of innovative
features of database technology, in particular the object-oriented and
rule-based paradigms.
The development of the IDEA Methodology started three years ago, in
the framework of the IDEA Esprit project. The methodology was first
conceived in our university, then experienced by several industrial part-
ners of the IDEA Consortium, then consolidated. In the summer of 1997,
the IDEA Methodology is widely available through a variety of media
and sufficiently stable to permit us to attempt a critical evaluation of this
three-years story. Of course, this is a preliminary evaluation: the method-
ology will have its most significant assessment after its dissemination and
usage, which is cu~:rently taking place.
In order to set the context for the discussion, the paper introduces the
main features of the IDEA Methodology through a case study.

1 Introduction and Case Study

As most of the object-oriented methodologies, the IDEA Methodology includes
the three classical phases of Analysis, Design, and Implementation. In addition,
it includes Prototyping as an intermediate phase, placed between design and
implementat ion, and dedicated to the assessment of the output of design. To
introduce the features of the IDEA Methodology, we present a small-scale case
study, called the Job-shop Management System, through a description of its
requirements and of selected methodological documents.

1.1 Requirements

The Job-shop Management System (Job-shop, for short) is a simplified version
of an industrial application developed by one of the par tners of the IDEA Con-
sortium. For the purpose of illustrating the IDEA Methodology, we will consider
the following requirements:

The job-shop is made of a set of working centers, which are either mills or
lathes. The shop processes parts, which must be picked up from the inventory,
turned, milled, and deposited back to the inventory. Parts are moved around the

* Research presented in this paper is supported by Esprit project P6333 IDEA

shop by shuttles. A shuttle may be free, or occupied carrying a part. The shop
foreman may create a new working order, related to a specific part. Processing
the order requires picking up, turning, milling, and depositing the associated part.
To start an order there must be a free shuttle and the new order must not exceed
the maximum number of pending orders, which is set to 1.5 times the number of
working centers. A shuttle is assigned to an order for the entire duration of the
working process and waits for the order's part to finish each working phase. A
shop labourer may declare a working phase of an order (pick up, turning, milling,
deposit) completed. The completion of a phase makes the part available for the
next operation.

1.2 Analysis Documents

Analysis is devoted to the collection and specification of requirements at the
conceptual level. This phase aims at a natural and easy-to-understand repre-
sentation of the "universe of discourse", and uses conceptual models with an
associated graphical representation which are well established in the software
engineering practice, such as the Object Model [7] (a variation of the well-known
Entity-Relationship model) and Statecharts, a widely used visual language for
specifying finite state systems [6].

Figure 1 shows the Object Model of the Job-shop case study, which contains
six classes (part, order, workingCenter, lathe, mill, shuttle), one inheritance hier-
archy between class workingCenter and classes lathe and mill, two relationships
(ord-part, transport), and one integrity constraint (capacity) limiting the num-
ber of pending orders to avoid overflowing the job-shop capacity. Operations (or
methods, in the object oriented terminology) are specified as arrows pointing to
a class box, annotated by the operation's name and parameters.

The black triangle on the inheritance hierarchy denotes a total and exclusive
hierarchy (mills and lathes constitute a partition of the set of workcenters), and
the annotation STATIC DEFERRED in the constraint oval dictates the eval-
uation semantics of the constraint, which is a predicate on a single database
state (STATIC) and must be checked only at the end of the transaction (DE-
FERRED).

The dynamic behavior of the classes described in the Object Model is detailed
by the Dynamic Model, which includes the statechart illustrated in Figure 1.2.
Objects of class order may be in six different states (pending, pickup-op, lathe-op,
mill-op, deposit-op, and completed), which correspond to the various phases of
an order's production. Some states (pickup-op, lathe-op, mill-op, deposit-op) are
further decomposed into two OR-substates, to show that the respective phase
may be in process or terminated. The statechart also specifis the default state
for new orders (pending), and the transitions that make an order progress in the
production workcycle upon the occurrence of production events (for example,
event eompletePhase signals the completion of a working or transport operation).

The Application Model collects a number of application sheets, one of which
is shown in Figure 1.2. The sheet describes application Production Progress Man-
agement by illustrating its data dependencies, preconditions, postconditions, and

1 / ~,'c~tat~as : sirdar
/

/"

�9 f" r 1 r s J] mlr~ ~'~ .I.~ "

I::: J:: 1

Fig. 1. The Object Model of the Job-Shop Case Study

produced events, without including the algorithmic details, which are not the
focus of the IDEA Methodology and can be specified with the techniques offered
by existing object-oriented methodologies.

1.3 Des ign D o c u m e n t s

Des ign is the process of translating requirements expressed by the Object
Model, Dynamic Model, and Application Model into documents written in Chimera
that provide a precise, unambiguous specification of the application. The process
is divided into schema design, concerned mostly with types, classes, relationships,
and operations; and on rule design, further subdivided into deductive rule design
and active rule design.

We start by showing in Figure 4 the Chimera code corresponding to the Ob-
ject Model of Figure 1. Each class of the Object Model is mapped into a Chimera
class; the inheritance hierarchy is represented by the superclasses clause in the
definition of class lathe and mill; relationships are transformed into object-valued
attributes in the involved classes (e.g., the relationship transport associating a
part and its shuttle yields an attribute shuttlePart in class shuttle); the signa-
tures of operations are introduced in the class definitions. Note that additional
attributes have been added (for example orderStatus and completionStatus in
class order) to provide a design structure to the dynamic states of classes de-
scribed in the statecharts.

The capacity constraint in the Object Model is mapped into a Chimera untar-
geted constraint, i.e., a view with an implicit meaning: if the view is non-empty

order

I inProcess [pickup_op
,eo ,o,j r completePhase

done [

I completePhase / lathe.load

[' inProcess [lathe_op

completePhase

completePhase/ shuttle.putPart]
completePhase~ lathe.unload, mill.load

deposit_op v . milLo

~ cornpletePhase]completeehase/mi]l[unload ~ completePhase

Fig. 2. The Dynamic Model of the Job-Shop Case Study

Application: Production Progress Management
Description: Declares a production phase completed.
Reads: The order that has completed the phase.
Changes: The order's status, the status of the resources working the order

and the allocation of a part to a resource.
Event completePhase is raised Sends:

Ass'~TTI, es:

"Result:
The order is not finished and its current working phase is in progress.
The current working phase is declared terminated.

Fig. 3. Examples of Application Sheet

define object class part
attributes partCode: integer,

partOrder: order~
partStatus: string~
partWC: gorkingCenter

end;

define object class order
attributes orderCode: integer,

orderPart: part,
orderStatus: string,
completionStatus: string

operations newDrder(in #ordpart:part),
completePhaseO

end;

define object class shuttle define object class workingCenter
attributes shuttleCode: integer, attributes wCcode: integer,

shuttleStatus: string, wCstatus: string
shuttlePart: part end;

operations putPartO
getPart(in #shuttlePart:part),

end;

define object class lathe
superclasses workingCenter
attributes latheCode: integer
end;

define object class mill
superclasses workingCenter
attributes millCode: integer
end;

Fig. 4. The Chimera schema of the Job-shop case study

in some database state, then that state violates integrity and the view tuples
identify the objects responsible of the violation. The definition of constraint
capacity is an example of a Chimera deductive rule:

define deferred constraint capacity(orderNum:integer,centerNum:integer)
capacity ([I, L]) <-integer (I), I=card (W where workingCenter (W)),

integer(L) ,L=card(O where order(O),
D. status=' 'pending' '),

L>1.5*I
end;

The constraint consists of a signature and an implementation: the signature
defines the constraint type as a record with two integer fields, and the constraint
evaluation mode as deferred; the implementation is a deductive rule, whose head
introduces a predicate with the same signature as the constraint, and whose body
is a declarative formula binding the logical variables in the head to the number of
orders and working centers that produce the violation. The constraint predicate
can be used in the course of the transaction to retrieve constraint violations and
possibly repair them, e.g., by deleting an appropriate number of pending orders;
if violations remain at transaction commit, the transaction is rolled back.

Active rule design is mainly concerned with developing Chimera triggers im-
plementing the busisness rules that lay behind the applications documented by
the Application Sheets. For example, the Production Progress Management ap-

actions modify
modify
modify
modify

end;

plication admits several business rules which govern the evolution of the produc-
tion process after an operation is completed. We illustrate a rule implementing
a pull production policy, where the availability of a lathe "pulls" the next or-
der to be produced, selected as the one having the oldest order-code, and starts
its production on a lathe. A similar rule manages the completion of a milling
operation.

when a lathe changes its availablity status

if it becomes free and there are pending orders
then assign the earliest order to the lathe and

update the status of the lathe, order, and part.

More sophisticated policies can be added to tackle urgent orders, failures
of various resources, and so on. We now show how the business rule for lathe
assignement can be written in Chimera.

define immediate trigger assignLathe for lathe
events modify (wCstatus)
condition occurred (modify(wCstatus), Self),Self.wCstatus= "free",

order(O), part(P), P=O.orderPart,
O.orderCode=min(PO.orderCode ,here order(PO),

PO. orderSt atus="pickup_op",
PO. completionStatus= "done",
PO.orderPart.partStatus= "raw")

(lathe.wCstatus, Self, "working"),
(order.orderStatus, 0, "lathe_op"),
(order.completionStatus, 0, "in_process"),
(part.partWC, P, Self)

The trigger is defined as immediate, which means that it is considered for
execution during the course of the transaction. The event part lists all the events
which may trigger the rule (in this case, the modification of an existing lathe's
working status). The condition contains a declarative formula which must be
satisfied for the rule to be executable; conditions are limited to conjunctions of
atomic formulas, positive or negated. The first subformula in the condition of rule
assignLathe is a so called event formula, built from the special predicate occurred,
which binds to the logical variable Self ranging over class lathe only those objects
which have been modified since the last rule execution; next the condition tests
that the modified lathe is free, retrieves and binds to the logical variable 0 the
order with the minimum value of orderCode that is in the pickup_op status, has
completed the transport phase, and is associated to a raw part, and binds the
part associated to that order to variable P. Variables Self, 0, and P are then
used in the action in order to modify the status of the lathe, modify the status
attributes of order 0, and link part P to the lathe that is working it.

1.4 Prototyping Documents

R a p i d P r o t o t y p i n g is the process of testing, at a conceptual level, the ade-
quacy of design results with respect to the actual user needs. A variety of formal

transformation methods can be applied to improve the quality of the design,
verify its formal properties, or transform design specifications into equivalent
specifications which exhibit different features. The IDEA tools, discussed in Sec-
tion 5, assist the automatic generation and analysis of active rules, and enable
the prototyping of applications written in Chimera.

In particular, we focus on termination analysis of active rules, performed
by a tool named Arachne (Active Rule Analyzer for Chimera). Arachne builds
the triggering graph of a rule set, that is a graph representing rules as nodes,
and potential rule interactions as arcs: there is an arc from rule A to rule B
if A's execution can trigger B. A cycle in the triggering graph denotes the risk
of nontermination. Two levels of analysis are supported: syntactic, where only
the event and action part of rules are considered, and semantic, where greater
accuracy is obtained by considering also rule conditions.

Termination analysis, performed on the case study with Arachne, produces
the following results: 21 cycles are discovered by syntactic analysis, of which only
three are retained after semantic analysis. By focusing on these, termination
is easily checked manually. Figure 5 shows the remaining cycles after semantic
analysis.

Fig. 5. The Triggering Graph after Semantic Rule Analysis

1.5 I m p l e m e n t a t i o n D o c u m e n t s

Implementation is the process of mapping conceptual specifications into schemas,
objects, and rules of existing database platforms; the process is influenced by the
features of the specific target environments. To exemplify the needed implemen-
tation techniques, the IDEA methodology uses five different systems: Oracle ,
I l lustra, and DB2, three classic relational products supporting triggers; ODE,
an object-oriented database available on the Internet to universities and research
institutes; and Validity, the first deductive and object-oriented database system
that will be soon brought to the market. The mapping to Oracle is presently
assisted by Pandora, a tool (described in Section 5), producing Oracle 7 code
from Chimera.

After this short presentation of the Idea Methodology, we turn to the critical
assessment of its applicability.

2 Suitability of applications

The first discussion concerns the identification of the class of applications to
which the IDEA Methodology should be applied. IDEA is an object oriented ap-
proach (one of the second-generation object-oriented methodologies) but its ap-
plicability is restricted to data-intensive applications, i.e., applications in which
data management is the main focus and database management systems are used
as implementation vehicles. Specifically, the IDEA Methodology aims at giving
to databases an object-oriented organization and a reactive behavior. Thus, it
brings to database technology the richness of two neighbour software discipline:

- The structuring of database entities as classes, with attributes and oper-
ations, organized into class hierarchies, which is typical of object-oriented
languages.

- The structuring of computation in the form of a data-driven, reactive be-
havior, which is typical of expert systems.

Of course, both paradigms were adapted to the needs of data-intensive ap-
plications. In particular, we note the following main differences:

- The "programming language" used in the IDEA methodology for defining
class operations offers powerful declarative expressions, but rather limited
procedural expressions, which are restricted to sequences of actions (no con-
trol statements).

- The "reactive knowledge'! supported by the IDEA Methodology is rather
simple, especially for what concerns knowledge acquisition from experts and
explanation of the reactive behavior.

These limitations are quite acceptable in the context of the IDEA Methodology;
in particular, absence of control structures in the programming language eases
the mapping to database query languages. Operations of objects are normally

rather simple (they are mainly constructors, accessors, and transformers), while
more complex computations are encoded within applications.

For what concerns rules, the absence of an explanation facility is consistent
with current limitations of database technology, where active rules are executed
together with applications and cannot be easily traced. We expect that active
rules are not too many and not too strongly interacting, while an expert sys-
tem can easily grow to hundreds or thousands of rules. Obviously, we expect
instead that the size of the database is significant, and that requirements such
as reliability, availability, and efficiency of access are dominant factors.

3 S u i t a b i l i t y o f m o d e l s a n d t a r g e t s

In this section, we critically revise our choices about the models of the IDEA
Methodology, distinguishing the analysis phase and the design phase. We also
present the rationale for the choice of exemplifying implementation through cer-
tain target systems.

3.1 Analys is M o d e l s

The main choice is the lack of features: object interaction diagrams ~ la Booch
Method, and informal specifications of reactive behavior were considered but
eventually have been omitted from the set of analysis models.

Object interaction diagrams have been omitted because we expect that an-
alysts use the IDEA Methodology to give a high level specification of the de-
pendencies and interactions of their applications with the database objects, suf-
ficient to design the shared objects and knowledge. For the specification of the
computational aspects of an application (for example, the user interface or com-
plex elaborations), the IDEA Methodology may be integrated to "traditional"
object-oriented methodologies, whose models can be used to specify the interac-
tion between main memory application objects and database shared objects.

In retrospective, the weakest choice in the analysis models concerns the lack of
a model for specifying general business rules in an informal way during analysis.
After some experience, we verified that structured-text annotations similar to
those introduced in Sectionl.3 are a valuable addition to the analysis models
and a good basis for writing business rules in Chimera.

3.2 Des ign M o d e l

Chimera is a complex language, which includes selected features from deduc-
tive languages (declarative expressions), object-oriented languages (inheritance,
methods, path expressions), and procedural languages (data manipulation prim-
itives, sequence iterator). It has also a number of innovative features, like, the
uniform binding passing mechanisms from conditions to actions of operations,
active rules, and transactions.

1 0

The design of Chimera was mainly inspired by our desire of expressing a
large amount of knowledge in the database, instead of keeping such knowledge
procedurally encoded within applications. This feature can be regarded as an
additional level of independence for applications, called knowledge indepen-
dence, achieved by factoring knowledge out of the applications and expressing it
in the schema, in particular within objects and rules. We recall that traditionally
databases provide physical independence (from the actual storage implementa-
tion) and logical independence (from the structure of the schema).

The design language had to respond to other requirements: we wanted it to
be formal, executable, easy to use for the designer, and easy to map into concrete
program and data structures.

In the following, we analyze several technical features of the language and
discuss our most controversial choices.

- We originally included into the language value types which, similarly to ob-
ject types, could be organized into hierarchies and have cardinality con-
straints. Then, we simplified this notion which users found difficult to dis-
tinguish from that of object class.

- Similarly, we initially allowed constraint and view predicates to be typed
arbitrarily, and then constrained them to be records of atomic types, because
references to parameters of arbitrary structure in views or constraints are
syntactically quite difficult.

- We originally included class properties (attributes, operations, and con-
straints); for instance, we could model the cardinaiity of a class as a class
attribute, and have an accessor operation for this piece of information, as
well as a constraint on the maximum number of instances of the class. Then
we decided to remove them, because users were confused by expressions
mixing variables ranging on class attributes and "regular" attributes, and
also because integrity constraints referring to class properties could be easily
represented using the aggregate operators of the Chimera language.

While we introduced several simplifications in the object-oriented model, we
retained a good deal of complexity in the active rule language, which is the most
innovative feature of Chimera. In retrospective, not all the advanced features of
triggers were equally understood and used by designers:

- The most difficult feature is the difference between event-consuming and
event-preserving rules. In the former case, each "event" (e.g., the update to
an object) is processed by each rule only once, at the first consideration of the
rule after the event's occurrence. In the latter case, all occurred events are
seen by a rule at each consideration. The consumption mode also influence
the semantics of the old function, used to evaluate terms on past database
states. We observed that the second option is very rarely required and typ-
ically remains unused; luckily, the first option is also the default one, but
in retrospective we could simplify the language and omit event-preserving
triggers.

1]

- Another advanced feature of the language is the use of event predicates, by
means of which the objects affected by an event are selected in the condition
and used in the action part of the rule. There are two variants of an event
predicate: with the first one, an object is selected regardless of its evolution
after the event; with the latter, called net-effect variant, the object is selected
only if the event affecting it is not invalidated by a subsequent event (e.g.,
the object is created and not subsequently deleted). We experienced that
the use of event predicates is quite natural, however the distinction between
the two cases is most often neglected by users, who always use one version.
Moreover, net effect is not easily supported by commercial implementation
targets, so this feature, although useful, could be simplified as well.

- A final consideration concerns the execution semantics of rules and opera-
tions in Chimera, which is inherently set-oriented, in spite of the prevalence
of tuple-oriented semantics in commercial systems. We found that the set-
oriented execution of Chimera triggers and the notion of rule action atom-
icity, whereby cascading rule triggering is enabled only at the end of action
execution, greatly enhances the understandability of large rule sets, because
rule interactions are more apparent and the designer can reason on the effect
of a rule execution without worring about side-effects and nondeterminism
caused by recursive activation of other rules during the processing of the
action.

3 . 3 S e l e c t i o n o f t h e I m p l e m e n t a t i o n T a r g e t

In the implementation part, the IDEA Methodology is quite different from clas-
sical database design methodologies, as it goes deep in the mapping from design
documents down to specific database systems. The choice of mapping to systems
rather than to more abstract descriptions, such as the current standards, was
quite controversial. For instance, in the methodology of [3], the mapping process
included a model-independent logical design followed by a model-specific (but
not product-specific) logical design, tailored to the relational, hierarchical, and
network models. Our decision was imposed either by the deficiencies of the stan-
dards in the description of advanced database features (e.g., of SQL3 for active
rules), or by the discrepancies between the standards and the products (e.g.,
between ODL and OQL and most object oriented database products).

Another trade-off concerned the selection of the products and prototypes to
use; we were influenced by the desire to cover a variety of different concrete
situations with as few mapping schemes as possible. We selected 3 relational
systems: Oracle, Illustra, and DB2. Oracle and DB2 represent rather classical
systems and thus demonstrate that the IDEA technology can be implemented
on the most established platforms, while Illustra is particularly strong in the
support of objects and rules. Next we chose one object-oriented system (ODE),
which is a research prototype available on the Internet to academic and research-
oriented institutions. Finally we included Validity, the first industrial-strenght
product featuring deductive and object-oriented technology, developed by BULL,
the main contractor of the IDEA Project.

12

On the positive side of our choice, the mapping to products is more valuable
to users than the mapping to standards or to abstract models: users find guide-
lines which are sufficiently precise to let them produce DDL and DML code that
can be executed by the selected database kernels. On the negative side, the IDEA
Methodology becomes bound not only to products, but also to their versions as
of the beginning of 1997, and thus will need a constant revision.

4 Suitabi l i ty of the process

We next discuss the process of designing applications with the IDEA Methodol-
ogy, and the main alternatives we had to face.

4.1 Analysis

The most important task of analysis is the production of the Object Model,
which is a classical Entity-Relationship diagram, with a greater emphasis on the
specification of the declarative properties of the application domain, expressed
as integrity constraints.

As already mentioned, the IDEA Methodology introduces reactive properties
only during design. The rationale for this choice is that rules express "procedural
knowledge" (reactions) and as such they should be produced by starting from
higher level specifications, like declarative integrity constraints, or statecharts.
In this way, the analyst is free to concentrate on semantics, rather than being
forced to consider the intricacies of reactive behavior.

This approach is certainly adequate for the so-called internal and extended
applications of active rules, that is, those situations where active rules are used
as implementation devices for a functionality that should be supported by an
advanced DBMS (e.g., integrity), or by a DBMS extended to support a specific
database-intensive application (e.g., workflow management).

However, in this way rules expressing the business policies of the enterprise
remain unexpressed for the entire duration of analysis, and are postponed until
design. In retrospective, this choice increases the risk of overlooking or "forget-
ting" important business rules, which developers may later be forced to encode
into applications, thus losing the benefits of knowledge independence. To reduce
this danger, we suggest a more flexible development process where business rules
are gathered during application or business process analysis.

4.2 Design

The IDEA Methodology approaches schema design first, followed by deductive
rule design, and by active rule design. The rationale for this sequence is to
give priority to the structural and behavioral knowledge associated to objects
and classes; next, declarative knowledge is defined by means of deductive rules;
finally, procedural knowledge is defined by means of active rules.

]3

Schema design is a sequence of transformations that progressively consider
the features of the Object Model and express them by means of Chimera. The
main schema design activity is the transformation of relationships into object-
valued attributes that serve as references between objects. This transformation
is required because Chimera does not support relationships explicitly. In object-
oriented models, relationships are turned into object-valued attributes; in the
relational model, relationships are modeled as pairs of attributes on the same
domain, enabling join operations connecting the related tables. Our solution
meets the requirements of object-oriented models and can be considered as a
first step towards a relational solution; however, it also forces the designer to a
decision which may influence and constrain the implementation, and as such it
was criticised by some of our users.

Deductive rule design is driven by the specifications collected during analysis,
i.e., fixed-format constraints and annotations for data derivations and generic
integrity constraints. During design, we suggest that the designer express all
the available declarative knowledge; when the design is consolidated, prior to
implementation, data derivations and integrity constraints can be reviewed to
discard features that are redundant or that are too costly to implement.

During active rule design, three sources of specifications are considered for ac-
tive rules: integrity constraints, business process specifications, and the dynamic
behavior of objects.

In the IDEA process, active rules for integrity maintenance are considered
an evolution of deductiv6 rules for specifying database integrity, in which the
designer adds a procedural description of the actions that repair an integrity
violation. Reactive integrity maintenance enables the correction of erroneous
actions performed by transactions; however, the declarative nature of the con-
straint specification is lost. The iter from declarative to precedural integrity
maintenance has been initially criticised by IDEA users, who found it redun-
dant and possibly confusing. However, for sizeable applications and non trivial
integrity constraints, it soon became clear that a declarative specification of in-
tegrity constraints is a necessary prerequisite for the subsequent formulation of
reactive maintenance rules, since declarative constraints are easier to manage
and understand, and provide a clear roadmap to identify all the maintenance
rules needed to enforce integrity.

Business rule design is surely the feature of the IDEA Methodology that was
accepted with most favor by IDEA users. Without business rules, "enterprise
policies" must be encoded within applications, with the risk of replications and
inconsistencies; this increases during system evolution because business rules
change quite rapidly. We believe that this positive result is mostly due to the
"conceptual level" in which active rule design occurs in the IDEA process; al-
though designers must implement their applications on relational platforms sup-
porting triggers, they do not use them to specify business rules.

The transformation of statechart into a design structure was a less problem-
atic issue. We proposed two alternative strategies for mapping statecharts, one
more "object-oriented', the other more "rule based". We observed that most

14

often designers started with the former option, in which state transitions are
mapped into class operations, and migrated to the latter, in which the finite
state machine is implemented by triggers, when they got more acquainted with
active rules. In any case, the presence of a standard method for mapping an
event-driven model into objects and rules in the database was generally con-
sidered an improvement with respect to implementing ad hoc solutions in the
application programs.

4.3 Prototyping

Prototyping is a methodological phase in which design results are implemented
on a small scale, typically with rapid prototyping software, and their adequacy
and conformity with respect to requirements are evaluated by designers and by
users. For this purpose, we provide a set of tools for rapid prototyping, described
in Section 5. In the IDEA Methodology, prototyping has an additional uncon-
ventional meaning: we want to analize complex rule sets in order to assess their
interaction. This task is the most challenging, since in rule-based systems the
difficult problem is not designing rules which individually behave well, but de-
signing collections of rules which alltogether have a correct behavior and that
can be easily debugged, maintained, and evolved. This aspect of prototyping is
called knowledge design in the large.

Prototyping of deductive rules is focused on achieving the two properties of
stratification and satisfiabiIity. Stratification is concerned with determining the
evaluation order of deductive rules in the presence of negation and sets; satisfi-
ability is concerned with the absence of contradictory integrity specifications.

Similarly, prototyping of active rules is focused on achieving the two proper-
ties of termination and confluence. The former guarantees the termination of rule
processing after any input transaction, and the latter guarantees that the final
state computed by active rules is the same regardless of their evaluation order.
We consider termination as the most important property, and provide analysis
and rule modularization techniques which enable a designer to decompose a large
rule set and prove its termination.

Our experience with rule prototyping has shown that this phase is essential
for acquiring greater familiarity with the rule based style of computation. Playing
with rules on small scale examples, and reasoning on collective rule behavior in
an organized way are fundamental activities which give the necessary insight to
designers on the behavior of their rules.

4.4 Implementation

Although the IDEA book addresses implementation on five distinct database
systems, the mapping processes have certain common features, because in all
cases we need to map the schema, integrity constraints, operations, deductive,
and active rules.

1 5

Schema mapping depends on whether the target supports generalization hi-
erarchies; if not two mapping schemes are possible (called the horizontal and ver-
tical mapping), which implement generalization hierarchies by means of several,
related tables. Fixed-format integrity constraints typically map into integrity
checking clauses available in most relational systems and in some nonrelational
system. Some relational systems and most object-oriented systems do not sup-
port referential integrity and generic integrity constraints, and in such case we
model these features by means of active rules.

Declarative expressions are typically well supported by relational query lan-
guages, and conversely procedural operations are well supported by object-
oriented methods.

Deductive rules can be mapped easily only in those systems (DB2, partially,
and Validity) which support them directly; in other cases, relational views and
object-oriented methods can be used to provide an acceptable approximation.
Alternatively, materialization of derived attributes and views can be supported
by active rules which are syntactically derived from deductive rules; this transla-
tion is a platform-independent technique, especially valuable for systems strong
in active rule support and weak in deductive rule support.

The mapping of active rules is the most difficult and problematic, because of
the operational nature of active rule semantics, which is quite different in each
system, and also because of the heavy limitations that each product imposes
with respect to Chimera active rules. In the end, two approaches have emerged.

- With meta-triggering, we use the native active rule engine in order to de-
tect events, but then extend it to support the semantics of conceptual rules;
in this way, we can reproduce all the conceptual features of Chimera trig-
gers. Typically, we program the extensions to the active engine by using
stored procedures and imperative language attachments; this solution is
application-independent and fully defined in the IDEA Methodology.

- With macro-triggering, we use instead the native rule engine available on
each target system; conceptual triggers are possibly aggregated to constitute
macro-triggers which respect priorities defined in Chimera; these aggregates
in some situations do not have the same semantics as the original Chimera
active rules, but are simpler to obtain.

Vertical schema mapping, operation mapping, deductive rule mapping or
their transformation into active rules, meta-triggering and macro-triggering con-
stitute a collection of techniques which, although defined on our five representa-
tive targets, can be adapted for reuse on any other database platform.

5 T o o l s

In our experience with IDEA users we observed that the lack of tools for rule gen-
eration, analysis, and run-time monitoring is the main obstacle to the widespread-
ing of active database applications.

16

At the end of the IDEA Project, an integrated tool environment is avail-
able, which supports the various phases of the IDEA Methodology, provided by
Politecnico di Milano and Bonn University; we focus on the management of ac-
tive rules, the specific research interest of Politecnico within the IDEA Project.
The IDEA environment comprises tools for schema design, active rule genera-
tion, analysis, prototyping, debugging, browsing, and for mapping Chimera into
Oracle.

I a d e is a classical CASE Tool used during analysis, enabling the graphic
editing and annotation of Object Model diagrams, which are semi-automatically
mapped into schema declarations, constraints, and triggers written in Chimera.

Arachne supports the compile-time termination analysis of a set of Chimera
triggers, determining the potential causes of infinite executions due to the mu-
tual interaction of active rules. Arachne supports also rule modularization and
termination analysis at the module level.

Algres T e s t b e d is an execution environment which permits the rapid pro-
totyping of the design specifications. It is based on Algres, a system developed at
Politecnico di Milano which provides complex objects and an extended relational
algebra. The testbed supports the full Chimera language (with the exception of
deductive rules) and can be used for monitoring the execution of transactions
and active rules.

Pandora automatically translates Chimera applications into Oracle, by ex-
ploiting the mapping techniques described in Section 4.4, and in particular by
using meta-triggering to implement Chimera triggers.

Building these tools gave us the opportunity of getting a deep insight into
both the theoretic and technological aspects of rule based technology, with posi-
tive feedbacks on the methodology itself. From the making of Arachne we learnt
the importance of mastering rule interactions at design time, which inspired the
notion of active rule stratification, which is at the basis of the IDEA approach to
active rule design in the large. Two different implementations of Chimera (the
first tightly coupled to the Algres systems, the second loosely coupled to Oracle)
challenged our language design choices and inspired general-purpose, target-
independent implementation techniques, like meta-triggering, that can be used
to extend the capabilities of any existing active database system.

At present, the effort to support the IDEA Methodology has taken a novel
direction: we are porting the IDEA Tools on the Internet, to allow perspective
users to directly experiment the IDEA Methodology by creating their own ap-
plications, from the editing of Object Model diagrams to the production of the
final Oracle code. To this end, Iade, Arachne, Pandora, and the Algres Testbed
are being reimplemented in Java and will available in the so-called IDEA Web
Lab by April 1997.

6 O u t l o o k a n d C o n c l u s i o n s

In this paper, we have discussed a number of issues and problems that have
characterized the birth and development of the IDEA Methodology. Some solu-

17

tions to these problems appear satisfactory, while other are controversial. With
the full dissemination of the IDEA Methodology, fostered by the availability of
a number of IDEA-related resources on the Internet, we expect to collect more
substantial answers and feedbacks.

References

1. E. Baralis, S. Ceri, and S. Paraboschi. Improved rule analysis by means of triggering
and activation graphs. In T. Sellis, editor, Proc. of the Second Workshop on Rules
in Databases Systems, LNCS 985, pages 165-181, Athens, Greece, Sept. 1995.

2. E. Baralis, S. Ceri, and S. Paraboschi. Modularization techniques for active rules
design. ACM Transactions on Database Systems, March 1996. (to appear).

3. C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin Cummings, 1993.

4. S. Ceri and P. Fraternali. Designing Applications with Objects and Rules: the IDEA
Methodology. Addison Wesley Longman, Great Britain, 1997.

5. S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Active rule management in
Chimera. In J. Widom and S. Ceri, editors, Active Database Systems. Morgan-
Kaufmann, San Mateo, California, 1995.

6. D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

7. J. Rambaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, 1991.

