
A Toolkit for Reuse in Conceptual Modelling

Raul Ruggia
Instituto de Computacidn
Universidad de la Reptlblica
Uruguay
ruggia @ring.edu.uy

Ana Paula Ambrosio
Departamento de Estat[sitca e lnformdtica
Universidade Federal de Goids
Brazil
apaula@dei.ufg.br

Abstract:

This paper proposes a toolkit for applying Reuse in Conceptual
Modelling. The main objective is to cope with the problems of complexity in
the Conceptual Modelling activity. In a long-term perspective this
proposition intends to settle the basis for a larger application of Reuse in
Information System development. While research in Software Reuse has
revealed that the application of Reuse in software development is extremely
difficult, Conceptual Modelling appears as a more promising area because
it manipulates simpler objects: conceptual schemas.

The proposed toolkit provides reuse-oriented services to KHEOPS
database design environment. These services include: quality validation of
reusable components, component selection from the Repository, and new
conceptual schema construction by customising and composing reusable
ones. Reusable components consist of an Extended Entity-Relationship
schema as well as other information like executable reuse guidelines.

1. Introduction.

Conceptual Modelling is a complex process highly driven by the designer and
involves capturing large amounts of problem and domain knowledge. In order to
cope with this complexity as well as to enhance the quality of the resulting
conceptual schemas different techniques have been proposed. Some of them are: the
acquisition of application knowledge from natural language [Kers 86][Mcta 93] and
form descriptions [Choo 88], and expert systems for guiding the construction of the
conceptual schema [Bouz 85]. These techniques improve productivity and quality
but they always begin the design from scratch with a very low profit from previous
design work.

A new emerging approach for enhancing productivity and quality in Conceptual
Modelling consists in reusing existing conceptual schemas in the development of
new ones. Reusing existing certified (i.e., with validated quality) conceptual
schemas would reduce the difficulties in acquiring and specifying real world
concepts in terms of a conceptual model as well as reduce the efforts of validating
the conceptual schema.

174

Reuse has been widely applied in other Computer Science domains where it has
been shown to contribute to the reduction of cost-effectiveness problems in software
development [Bigg 89a]. In the context of Conceptual Modelling, although it has
been recognised as a promising design strategy, Reuse has been little explored
[Louc 92a][Roll 92]. Existing knowledge in the area includes proposals for
constructing and reusing generic entity types through instanciation and
specialisation [Cast 92][Seo 94][Delc 96], and proposals of classification and
component recovery methods [Ambr 95] [Li 96].

A reuse-based technology needs to cope with different technical issues:
Component Representation, which concerns the specification of the component's
logical structure (i.e., what is represented in a reusable component) as well as the
storage support; Component Classification, which concerns the adequate
organisation of the components in the Repository with the aim of enabling an
effective component retrieval, Component Certification, which concerns the control
of quality properties to be satisfied by the reusable components in order to achieve
re-user's confidence, Component Selection, which enables the efficient and flexible
retrieval of components from the Repository. Component Customisation, which
enables to adapt retrieved components to the new application. Component
Composition, which enables to integrate reusable components to form the new
application by connecting them.

This paper proposes a toolkit that provides reuse-oriented services to the
KHEOPS database design environment [Bouz 91][Dela 95]. KHEOPS is a database
design environment that provides different types of interfaces for specifying
Extended Entity-Relationship (EER) schemas: graphical, natural language, and
declarative interfaces. KHEOPS also provides view integration functionalities,
generating the logical schema and DBMS code (C-SQL, C++, CO2) from the
conceptual schema specification. By applying the reuse-oriented services, the
designer develops new conceptual schemas by reusing other existing ones.

The main contributions of this work concern the specification of a toolkit which
enables to apply a reuse-based methodology in Conceptual Modelling as well as
technical aspects concerned with the proposed mechanisms for component
certification, selection, customisation and composition. More concretely, this work
proposes an unified framework for conceptual schema quality validation, it proposes
a component Selection mechanism based on semantic query modification
techniques, and an operators-based approach to schema manipulationt. The tools
which provide selection, customisation and composition functionalities have been
implemented, and a first version of the Quality Control Tool is currently being
implemented.

In this paper we focus on three main technical issues treated by the toolkit: (i)
the quality validation mechanism applied to certify the reusable components; (ii) the
component selection mechanism, which enables to retrieve schemas through vague
queries; and (iii) the component customisation and composition operations, which
enable to assemble the reusable schemas in order to build a new one.

175

Due to limits in paper extension, technical descriptions are not so detailed as
desired. More detailed specifications can be found in [Ambr 95.a] and [Rugg 96].

This paper is structured as follows: Section 2 presents the general aspects of the
adopted approach to Reuse in Conceptual Modelling. Section 3 presents the tools in
the toolkit. Section 4 presents the conclusion.

2. The approach to Reuse in Conceptual Modelling.

The application of Reuse techniques in software development has been widely
studied [Bigg 89][Krue 92][Mili 95][Thun 92]ICons 95]. In this work we reused
much of this knowledge to apply Reuse in the context of Conceptual Modelling.

In this work we adopted a compositional reuse approach (where software
development is performed through the composition of existing software
components). In this approach, the reusable components are mainly based on
Extended Entity-Relationship (EER) schemas [Bouz 94].

The development with reuse process (the development of new applications by
reusing existing components) begins with the selection of reusable components
which EER schema represent certain real world concepts. After this, the EER
schemas in the retrieved components are customised, so as to adapt them to the new
requirements, and composed to build a new conceptual schema. The development
for reuse (the development of new reusable components) consists of the construction
of the reusable components, followed by a quality validation step and their insertion
in the Repository.

The reuse-oriented services provided by the proposed toolkit to KHEOPS
include: Certification of reusable components, Insertion of new components in a
Repository, Selection of components through a flexible query mechanism,
Customisation and Composition of the retrieved components through schema
operators, and Assistance to users through reuse-guidelines and automatic schema
transformations. From a methodological point of view, Reuse is integrated with
KHEOPS methodology as a source of conceptual schemas (Figure 1).

r

DLclarative) ff Natural) (Graphic ~'~
anguage | Language ~.~ Interface

Interface k,Jnterface

Conceptual Modeling

schema 1 Conceptual components (EER) Schema
I Logical Schema Design

Relational Object Oriented
Schema Schema

J

1

I

Figure 1. Integrating Reuse into KHEOPS methodology.

176

The Reuse Environment.

The different objects and resources involved in the proposed toolkit constitute
the so-called Reuse Environment. Briefly, the Reuse Environment consists of: a
Linguistic Knowledge Base (LKB) which stores the Domain Models [Pile 91]; the
Repository which includes the reusable components and the Faceted Index; and the
Certification Framework which contains the quality properties, property classes and
certification instances to be applied to the components.

The LKB provides linguistic information to different modelling operations in
KHEOPS: the natural language interface, the schema paraphrasing and the view
integration operations [Ambr 95]. It is intended to be either specific to applications,
to application domains or a general purpose semantic dictionary.

In the proposed Reuse Environment, the unit of reusable knowledge is the
reusable schema component. A reusable schema component includes not only real
world objects but also additional information about how to exploit these
representations. The knowledge concerning the real world concepts are represented
using an Entity-Relationship schema, references to Domain Model objects and
textual documentation. The references to the Domain Model enable to fill the gap
between the software artefact and the real world concepts. The textual
documentation provides context information about the represented real world
situation. Other parts of the reusable knowledge consist of information about the
EER schema to he reused: a summary of the quality properties satisfied by the
schema and statements about the ways of reusing the schema (i.e., reuse guidelines).

The references from components to Domain Model objects are stated in the
Semantic Descriptors. A Semantic Descriptor is a triple <Key-Concepts, Setting,
Functional.Area> which describes the meaning of the reusable component in terms
of Domain Model concepts. Using these three descriptors, a reusable component is
interpreted as used in the Setting to represent the Key.Concepts for the purpose of
offering the functionalities in the Functional-Area. The Semantic Descriptors also
serve as basis to define a Faceted Index [Prie 87] on the set of components. The
Faceted Index is a component classification mechanism which enables to retrieve
the selected components efficiently.

Example: A reusable schema component.

This example shows a component named Personal-Administration
intended to be used in a University context. This component represents the
Employee and Works real world concepts to perform Employee Administration
functions (Figure 2). More precisely, the k e y - c o n c e p t Employee is connected
with the LKB semantic entry Employee-Person, and it is represented in the schema
through the entity type EMPLOYEE.

177

name: Personal-Administration
semantic -descriptor:

({ (Employee,
Employee-Person,
entity(EMPLOYEE)),

(Works,
Work-Labour,
rel(WORKS_IN)) },

University,Employee-Administration)
construction-expression: { };.

;4 Age

Name
ADMINISTRATIVE Functions *:

Function
Type_contrac ~ : ~

r e u s e - h i s t o r y : {(Ana, 16/03/95, CS-Dept, "OK")};
c e r t i f i c a t i o n - r e s u l t : (University-Apps-CI,[<res-pl> <res-pn>]);

reuse-guidelines:
{
IF (Task-Assignment) THEN

REQUIRED:
S=Ut~(this.schema,University-Tasks.schema);

OPTIONAL:
$1 = CHOOSE IN SELECT schema

WITH key-concept = Projects;
S = U~(S, Sl.schema);

END

IF (Course-Administration) THEN
REQUIRED
S=Ur chema);

END
}

/* guidelines for developing a
Task-Assignment application */
/* integrate the current schema
(this) with the one in the
University-Tasks component */
/* retrieve a component
representing Projects concept */
/* integrate the schema S with
the one in S 1 */

/* guidelines for developing a
Course-Administration
application */
/* integrate the current schema
with the one in Course-Lecturing
component */

Figure 2. The Personal-Administration reusable schema component.

The certification-result states that the applied certification profile
(called certification instance) is the University-Apps-Cl, and includes the results for
each validated quality property (< r e s - p i >).

The reuse-guidelines provide assistance to reuse the component in the
development of two specific applications: Task-Assignment and Course-
Administration. When the designer selects the component, he can choose one of the
reuse-guideline blocks. These blocks consist of operations processed by the
Construction and Selection Tools.

All the objects in the Reuse Environment have been formally specified in an
abstract model [Rugg 96]. This model is used to specify the quality properties of the
reusable schema components as well as the semantics of the

178

customisation/composition operators. Schema components are implemented in
Prolog (including the reuse guidelines). As schema operators are also implemented
in Prolog reuse guidelines execution is straightforward.

3. The Conceptual Schema Reuse toolkit.

The Conceptual Schema Reuse (CSR) toolkit implements the above described
Reuse Environment, and consists of the following components (Figure 3):

�9 A Reposi tory of certified reusable schema components. The Repository is
organised using a Faceted Classification mechanism.

�9 T h e Insert ion Tool that enables the insertion of new reusable components in
the Repository

�9 The Quali ty Validation Tool that enables to certify the quality of the reusable
schema components through an enumerative Certification Framework.

�9 The Select ion Tool that provides two types of query facilities: (i) a flexible
query language based on the Faceted Index and on Domain Models and (ii) a
schema-pattern query mechanism.

�9 T h e Construct ion Tool that provides a set of operators that enable to build
new EER schemas by Customising and Composing the reusable schema
components. It also provides mechanisms to assist users, easing the schema
construction with reuse tasks.

Schemas developed with reuse are treated in KHEOPS similarly to other
schemas developed through other techniques.

Quality
Validation
Tool

I I
new components query criteria

V I

, o I L . d ,o o to I I �9 .J, Construction TOOl I
=

TOOl 11 Tool reusable [I
I I J I Icomponents i , .

I ' �9 ,~ conceptuat schemas
~ ~ I developedWlTnReuse

o, ,oo,s I
Schema Components :: i n KHEOPS L s & s j

Figure 3. A global view of the CSR Toolkit.

Unlike other proposals of reuse-base development environment, the Conceptual
Schema Reuse (CSR) toolkit is not an isolated development environment but it is
integrated to an existing development environment (KHEOPS). The CSR toolkit not
only provides reuse-oriented services to KHEOPS but also re-uses various resources
from KHEOPS. More concretely, the CSR toolkit re-uses: the graphic editor to
visualise EER schemas [Levr 95], the schema integration primitives [Keda 95], the

179

Lexical Knowledge Base for Domain Model representation [Ambr 95], the schema
comparison primitives and the associated schema similarity editor [Bena 93].

3.1. The Quality Validation Tool.

After the Insertion Tool has proceeded to the construction 1 of the reusable
components, they must be validated by the Quality Validation Tool. Only after
validation will they be inserted into the repository, creating the corresponding links
from the Faceted Index.

The quality of reusable components has a great impact on the reuse
effectiveness. Components known to be of low or unknown quality will not be
reused by developers. On the contrary, high quality reusable software can further
help the goals of software reuse by increasing user's confidence in reusable software
and by facilitating the application of reuse operations. Moreover, high quality
reusable components serve as a basis for developing-with-reuse new good quality
software.

The Quality Validation tool validates that the reusable components satisfy
certain quality conditions required to be member a the Repository. This process is
called component certification and it is achieved by using an enumerative
Certification Framework. This framework combines a general enumerative
certification framework structure [Dunn 92] with specific quality properties of
Extended Entity-Relationship schemas. Certification Frameworks consist of a set of
quality properties, which are predicates on components. Each property has an
associated validation method which checks if the property holds in a component.
The validation methods state how to check the specified property (i.e., the algorithm
to validate the property). They can be of different types: static analysis, formal
inspection and formal verification.

The proposed Certification Framework enables the designer to define different
component quality profiles by specifying Certification Instances. These play an
important role in the Reuse Environment because they serve to state specific
qualitative characteristics of the components within the different application
domains. In this way, the Certification Framework permits the validation of a set of
quality properties in a systematic manner.

A key feature of the framework is flexibility. The idea is not to create a
monolithic universal set of validation criteria but rather an extensible framework
that can be adapted to different application domains by stating new Certification
Instances (i.e., lists of quality properties).

We defined a Certification framework of reusable EER schemas based on the
property classes stated in Figure 4.

1 In this context, the term construction is used as in ADTs theory and Object-Oriented
programming: the constructor is a function that builds an object of a type.

180

Property Global m e a n i n g (and objective) o f the property class

Classes

Syntactic
correctness.
Syntactic
completeness.

Semantic
completeness.

Consistency.

Adequate EER
structures

Minimality.

Explicit
declarations.

Standardisation

Complexity.

Normalisation

- A reusable schema component is syntactically correct if it has
the structure stated in the abstract model of KHEOPS.
- A reusable schema component is syntactically complete if it
includes certain characteristics that were not required for
syntactic correctness (e.g., cardinalities, reuse-guidelines).
- An EER schema is semantically complete if it represents all
the concepts and associations among them in the real world
situation.
- An EER schema is consistent if it is possible to assign a no
empty instance to each entity and relationship type.
- An EER schema is defined with the adequate EER structures
if each real world concept is represented with EER structures
according to the semantics of the latter.
- An EER schema is minimal if it uses the minimal set of EER
struetures to represent adequately the real world situation.
- Certain EER structures require explicit declarations about
their semantics. For example, reflexive relationship types and
aggregated entity types.
- An EER is standardised if its terms as well as its EER
structures representing the real world concepts have a
correspondence to a Domain Model.
- An EER schema has a bounded complexity if the values of
certain metrics are included in stated intervals. Some of these
metrics are: size (the quantity of EER objects), the connection
degree of the objects, and the maximum deeps of the
specialisation and aggregation hierarchies.
- An EER schema is normalised if it satisfies normal forms as
defined in [Bati 92].

Figure 4. The property classes in the proposed Certification Framework.

As stated before, the Certification Framework includes not only properties that
can be automatically validated (with static analysis validation method) but also
properties that need human interaction to be validated (e.g., properties with formal
inspection validation methods).

The Quality Validation tool implements the validation methods for the properties
with static analysis ones. This enables an automatic validation of this kind of
properties. Concerning the properties that require human interaction, the Quality
Validation tool implements a dialogue mechanism which presents the inspector a
sequence of steps that he should follow to validate the property and also offers a
battery of implemented tests that aids the inspector to evaluate the property and
decide if the property holds or not.

181

3.2. The Selection Tool.

The Selection Tool [Ambr 95a] provides three complementary functions: (i) a
Semantic Query function that permits the search for reusable components according
to the value of their Semantic Descriptor, (ii) a Structure Querying function that
permits to recover components whose EER schema is included in a certain schema
pattern and (iii) a Browsing function that permits the user to navigate in the
Repository. Figure 5 shows the architecture of the Selection Tool.

Figure 5. The architecture of the Selection Tool.

The Semantic Query Interface is a graphic interface to the F-SQL query
language. In F-SQL, the query conditions concern real world concepts represented
in the reusable schema components. The Structural Query Interface permits the user
to state a skeleton EER schema that defines a (schema) pattern to find in the
reusable schemas. This interface is based on the KHEOPS Schema Editor [Dela
95] [Leer 95].

The Semantic Query Processor processes the F-SQL queries (for syntax see
[Ambr 95a]). It retrieves the reusable components that satisfy the query conditions
or that are within a certain semantic distance from these conditions. For this, it
performs modifications on query conditions.

The Structural Schema Comparison Processor retrieves components with EER
schemas included in a certain schema-pattern. For this it computes schema
comparisons between the schema-pattern stated by the re-user and the components'
EER schema. This comparison is computed using similarity vectors [Corny 92]
adapted to treat schema inclusion as to provide structure retrieval.

The Semantic Query Processor performs two types of query modifications: (i)
Relaxations, which consist in modifications to the Semantic Descriptor values stated
in the query condition and which are based on the Linguistic Knowledge Base
(LKB) conceptual graph, and (ii) Reductions, which consist in removing atomic
conditions from the query condition. Table 1 resumes these strategies.

]Exact I �9 No query modification is applied.
Strategy �9 A result is returned only if an exact match is found.

182

Relaxation

Strategy

Deferred
Modification

Forced
Modification

Reduction (eliminate
Strategy query

conditions)

�9 Query modification is applied one step at a time,
based on the modification criteria, until a result is
obtained or all permitted modifications are applied,
then it stops.

�9 Query modification is applied to the query
conditions based on the criteria specified by the user.
�9 Condition reduction is applied one step at a time
until a result is obtained, the mink is attained, or there
i s only one condition left, then it stops.

Table 1. The query modification strategies in the Selection Tool.

The traces of the query modifications are re-used in the Construction Tool to
approach the schemas to the original query conditions as well as to derive inter-
schema correspondence assertions applicable in the merging-composition
operations.

3.3. The Construction Tool.

The Construction Tool enables the designer to customise and to compose the
selected schemas to build a new one. To achieve this, the Construction Tool supplies
the designer with a set of operators, as well as with assistance mechanisms..

The operators supplied by the Construction Tool are classified in two families:
the intra-schema and the inter-schema (or whole-schema) operators. The intra-
schema operators enable to customise the structure of an EER schema by modifying
its entity and relationship types. The inter-schema operators enable to operate on
schemas as a whole to achieve schema Union, Subtraction, Intersection and
subschema Extraction. Both intra and inter schema operators return EER schemas
as their result.

The whole-schema operators enable to achieve schema merging operations. To
achieve this, they include the classic Schema Integration (Union operator) as well as
other operators that operate on schemas as a whole. Table 2 presents the set of
whole-schema operators.

UNION

Union

Asymmetric
Union

Performs the integration of two EER schemas.

A-Uo: The asymmetric .union-object of two

EER schemas is a new one with the no

corresponding structures 2 of each source
schemas, and with the corresponding entity and
relationship types as in the first schema.

2 By corresponding structures we mean the ones (attributes, entity and relantionship types) tha
represent the same real world concept.

183

SUBTRACTION

INIERSF_L~ON

EXTRACTION

Subtraction-o

Sub~acfion-d

Intersection-d

Intersection-u

Extraction-
object

Extraction-
hierarchy

A-Ud: The asymmetric-union-deep of two

EER schemas is a new one with the
corresponding and no corresponding structures
of each source schemas, and with the
corresponding attributes (in corresponding
entity and relationship types) as in the first
schema.

The subtraction-object of two EER schemas is
a new one with the entities and relationships in
the first schema that are not in the second one.

The subtraction-deep of two EER schemas is a
new one with the entities and relationships as in
the first schema, but without the attributes that
are in corresponding structures of the second
schema.

The intersection-deep of two EER schemas is a
new one with the entities and relationships that
are in both schemas. Their attributes are also
the ones in both source schemas.

The intersection-union of two EER schemas is
a new one with the merge of entities and
relationships that are in both schemas.

The extraction-object of an entity or
relationship type from an EER schema is a new
EER schema with this object (entity or
relationship type).

The extraction-hierarchy creates a new
schema with a specialisation or an aggregation
hierarchy of a specified entity type in a source
schema.

The extraction-cluster creates a new schema
Extraction- with a cluster of a specified entity (or
cluster relationship) type in a source schema. Two

types of clusters are applied: a dependency-
based and a relationship-grouping.

Table 2. The Whole-schema operators.

Equally to Schema Integration, the whole-schema operators need to identify the
EER structures in source schemas that correspond to the same real world concepts.
We address this issue in two levels: at high-level we define the whole-schema

operators as accepting a Boolean function (called ~) as a parameter. This function
states whether two EER structures in two source schemas correspond to the same
concept. At low-level we re-use schema similarity vector techniques for

implementing the ~ function.

184

The Construction Tool provides two types of assistance mechanisms: (i)
automatic schema transformations that approach retrieved schemas to the original
query specification, and (ii) the execution of the reuse guidelines stated in the
components. The components obtained from a selection can differ from the really
searched ones because the Selection Tool transforms the query conditions in order to
retrieve potentially reusable components. The differences between the desired and
retrieved components may be syntactic (synonyms) or semantic (the retrieved
components represent other concepts than the originally searched ones). In order to
enhance the understandability of the retrieved components by providing a result
closer to the original query conditions, the Construction Tool applies a set of
Automatic Transformations that approach the retrieved schemas to the original
query specification. These transformations modify the retrieved schemas according
to the query modifications performed by the Selection Tool.

Implementation Issues.

The CSR toolkit is implemented in a Unix environment, executing in Sun-Spare
Workstations, and using X 11R5/Motif window managers.

All the modules concerning EER schema management (also the Repository) are
implemented in Eclipse Prolog, while user-interface parts are implemented in C and
C++ using X11/Motif libraries~ The tools communicate with the Repository via rpc
and pipe mechanisms, and they communicate each other via files. For example, the
Selection tool sends the query results to the Construction tool as files with an EER
schema each one.

4. Conclusion.

Reuse is recognised as a fundamental technique in Software Engineering. It is
also accepted that it is more successfully applied in well-defined application
domains which should also have clearly specified models and languages. Other
success factors are the facility of obtaining the implementation from the
specification, the possibility of reasoning by the use of specifications and the
popularity of the specification language. In the Conceptual Modelling domain all
these conditions hold. Conceptual Modelling also benefits from the object-oriented
paradigm by including its characteristics (e.g. encapsulation, inheritance) in the
conceptual models.

Furthermore, in Conceptual Modelling the reusable objects (based On conceptual
schemas) are simpler than programs or systems. And some important base
techniques needed in the specification of reuse operations have been largely studied
in Conceptual Modelling and Databases areas (e.g., schema evolution and
integration). These arguments lead us to suppose a successful perspective for a
Reuse-Based Conceptual Modelling approach which can be exploited, later on, in a
Reuse-based Information System development technology.

185

In spite of the promising panorama for the application of Reuse in Conceptual
Modelling, several technical problems remain to be solved. Although object
oriented languages and models provide an important part of the needed capabilities,
they do not solve problems related to component certification, classification,
selection from a repository, customisation and composition. In addition,
Component acquisition remains a hard problem: automated proposals for
component acquisition are not developed enough and this activity remains in the
hands of domain specialist designers.

This paper deals with some of these topics and proposes a Conceptual Schema
Reuse toolkit to apply Reuse techniques in KHEOPS database design environment.
The techniques applied in this proposition are inherited from both Software Reuse
and Databases areas.

On going research work include the analysis of the interaction between
component quality and selection-customisation-composition operations. The
objective is to define a notion of schema component reusability based on the
measurement of the impact that component quality has on operation costs.

5. Bibliography.

[Ambr 95]

[Ambr 95a]

[Bati 92]

[Bena 93]

[Bigg 89a]

[Bigg 89]

[Bouz 85]

[B ouz 91]

[Bouz 94]

[Cast 92]

[Choo 88]

A.P. Ambrosio, E. Metais, J.N. Meunier, The Linguistic Level of the
Kheops Case Tool, NLDB'95, Versailles, June 1995.
A.P. Ambrosio A Semantic Query Mechanism for Conceptual Schema
Reuse, PhD thesis, University of Paris VI, France, June 1995.
C. Batini, S. Ceri and S. Navathe, Conceptual Database Design: An ER
Approach, The Benjamin-Cummings Publishing Company, 1992.
E. Benazet, H. Guehl. Integration de vues. Rapport de Stage DEA,
PRISM Laboratory, Versailles, 1993.
Biggerstaff, Richter. Reusability: Framework, Assessment and
Directions, in [Bigg 89]
Biggerstaff and Perlis (Editors). Software Reusability (vol 1 and 2),
Addison-Wesley Publishing Company, 1989.
Bouzeghoub M, Gardarin G, M&ais E. Database Design Tools: An
Expert System Approach., Proc. of the VLDB Conf., Stockholm 1985.
M.Bouzeghoub and E.Metais, Semantic Modelling of Object Oriented
Databases, Proceed. VLDB Conference, Barcelona Spain, Sep 1991.
M. Bouzeghoub, G Gardarin and P. Valduriez, Du C++ ~ Merise Objet
- OBJETS, Ed. Eyrolles, 1994.
Castano, DeAntonelis, Zonta. Classifying and Reusing Conceptual
Schemas. In Proceedings International Conf. on E/R Approach, 1992.
Choobineh, Mannino, Numamaker, Konsynski. An Expert Database
Design System Based on Analysis of Forms. IEEE Transactions on
Software Engineering, vol 14, no. 2, 1988.

186

[Comy 92]

[Cons 95]

[Dela 95}

[Delc 96}

[Dunn 92]

[Keda 95]

[Kers 86]

[Krue 92]

[Levr 95]

ILl 96]

[Louc 92]

[Louc 92a]
[Meta 931

[Mili 95]

[Prie 87]
[Prie 91]

[Roll 92]

[Rugg 96]

[Seo 94]

[Thun 92]

I. Comyn-Wattiau and M. Bouzeghoub. Constraint Confrontation: An
Important Step in View Integration. CAISE'92 Manchester, May 1992.
Constantopoulos, Jarke, Mylopoulos, Vassiliou. The Software
Information Base: A Server for Reuse. VLDB Journal, 4, 1-43, 1995.
E. Delassus, Conception et Implementation d'une Interface pour
Kheops, Rapport de Stage DEA, Lab. PRISM, Versailles, 1995.
Delcambre, Langston. Reusing (Shrink Wrap) Schemas by Modifying
Concept Schemas. Proc. of Int. Conf. on Data Engineering 1996.
Dunn, Knight. Certification of Reusable Software Parts. Technical
Report, Department of Computer Science, University of Virginia.
Z. Kedad, Aspects Linguistiques dans l'Intggration de Vue de Kheops,
Rapport de Stage DEA, PRISM- Universit6 de Versailles, 1995.
Kersten, Weigand, Dignum, Boom. A Conceptual Modelling Expret
System. Proc. 5th International Conf. on E/R Approach. Dijon 1986.
C.W. Krueger, Software Reuse, ACM Computing Surveys, Vol. 24, No.
2, June 1992.
G. Levreau Un Environnement :i,, Conception, de Documentation et de
Maintenance de Schemas de Bases de Donn~es. PhD thesis, University
of Paris VI, 1995.
Wen-Syan Li, Richard D. Holowczak. Constructing Information
Systems Based on Schema Reuse. Procs. of the CIKM'96 Conf. 1996.
P. Loucopoulos and R. Zicari eds., Conceptual Modelling, Databases,
and Case - An Integrated View of Information Systems Development,
John Wiley and Sons, Inc., 1992.
P. Loucopoulos. Conceptual Modelling. in [Louc 92].
M6tais, Meunier, Levreau, Database Schema Design: A Perspective
from Natural Language Techniques to Validation and View Integration,
XII International Conf. on E/R Approach, Dallas, Dec 1993.
Mili, Mili, Mili. Reusing Software: Issues and Research Directions.
IEEE Transactions on Software Engineering, 21(6), June 1995.
R. Prieto-Diaz, Classification of Reusable Modules, in [Bigg 89].
Prieto-Diaz, Arango. Domain Analysis and Software System Modelling.
IEEE Computer Society Press. Los Alamos - California, 1991.
C. Rolland and C. Cauvet, Trends and Perspectives in Conceptual
Modelling, in [Louc 92].
Ruggia. Applying Reuse in Conceptual Modeling: a toolkit approach.
Phd thesis, University Paris 6 - France. April 1996.
Seo, Loucopoulos. Formalisation of Data and Process Model Reuse
Using Hierarchic Data Types. Proc. of CAiSE 1994.
Thunheim, Development with and for Reuse: Guidelines from the
REBOOT Project, In ERCIM Workshop Report: Methods and Tools for
Software Reuse, Heraklion, October 1992.

