
Augmenting CASE Tools with Hypertext: Desired
Functionality and Implementation Issues

Janne Kaipala
University of Jyv~iskyl~

Department of Computer Science and Information Systems
P.O. Box 35, FIN-403351 Jyv~iskyl~i, Finland

Email: jka@jytko.jyu.fi

Abstract. Information systems have become bigger and more complex as their support has expanded
to cover larger business domains, communication and work. At the same time technical design options
such as client/server architectures and graphical user interfaces have increased the size and complexity of
applications. In addition, pressures to build better systems more quickly have motivated the use of
integrated design environments, such as CASE. Several integration approaches such as process modeling,
frameworks and hypertext technology have been proposed. Of these we consider the least analyzed,
hypertext technology, in this paper. Because of the novelty of hypertext in CASE there are several
unresolved issues related to this approach. Present hypertext technology has been mainly applied to non-
structured representations such as text, which is radically different from complex structured representations
such as the diagrams and matrices used in CASE. CASE tools also imply that a design object has both
representational and conceptual aspect, which has not been investigated in relation to hypertext. In this
paper we discuss how hypertext can be incorporated into a metaCASE tool which uses all the common
representation paradigms: diagrams, matrices and tables. We also report the implementation and
architecture of such an environment.

1. I n t r o d u c t i o n
Information systems have become bigger and more complex while their support

has expanded to cover larger business domains, communication and work. At the same
time technical design options such as client/server architectures and graphical user
interfaces have increased the size and complexity of applications. These changes have
been reflected in design practices. First, design methodologies have evolved from text
based ones to more complex ones containing multiple methods and representation
paradigms. Secondly, CASE (Computer Aided Software/Systems Engineering) tools
are being used more extensively by organizations to manage this design information.

A notable trend in CASE is the effort to integrate different types of design
information and tools, to better support the management of complex design
documentation. In current practice design is captured solely by semi- and non-
structured specifications. Semi-structured documents, such as entity-relationship
diagrams, follow the rules defined in the method, and they are generally represented
using diagrams and tables. While semi-structured specifications capture the critical
aspects of the system, non-structured information such as textual descriptions are still
used for commenting about and arguing over design.

Integration of this information has been approached using strategies such as
metamodeling and hypertext technology. The metamodeling approach aims at defining
methods and providing formal integration mechanisms such as decomposition
relationships between design objects. Hypertext functionality (Oinas-Kukkonen
1997b), in contrast, provides method-independent linkages between design objects
which can be either semi-structured or non-structured. Examples of such linkages are
links that support navigation between design diagrams, and links from design objects
to issues concerning them.

Several attempts to provide hypertext linkages between design objects have been
reported. Their basic features include attaching annotations to certain types of design
objects and providing navigation between them. The major defect in the previous
research is that the complexities of CASE information, such as the structure of design
information and their different representations, have not been considered. Yet, when

218

desiring hypertext functionality into CASE it has to be recognized that design
objects have both conceptual and representational aspects. This has been noted as
important since designers benefit from several representations of a concept, and
different kinds of users need different viewpoints on the same information. Another
issue is how to provide links into different types of representations forms used in
CASE. Previous research into hypertext functionality has not addressed other
representation forms than diagrams, although matrices and tables are also considered
as necessary in systems design (e.g. Kelly et al. 1996). In this paper we illustrate how
hypertext functionality can be implemented to provide consistent linkage between
different types of representations while also respecting the structure of design
information.

The fast research issue, to which aspects of design objects should links be
attached, arises from the division between conceptual and representational aspects of
design information. The second problem of this paper is to investigate how to
represent links in CASE. We have integrated a hypertext tool called Linking Ability
(LA, Oinas-Kukkonen 1997a) with the MetaEdit+ metaCASE tool (Kelly at al. 1996)
in order to systematically address the above research problems. Linking Ability is
based on the concept of an intermediary hypertext agent (Kerola and Oinas-Kukkonen
1992) and hypertext functionality as des by Oinas-Kukkonen (1997b). In this
paper we follow Oinas-Kukkonen's classification of link types for CASE into
annotation, argumentation, association and traceability links while considering the link
attachment issue.

The paper is organized as follows. First, in Section 2 we review related work.
Next, in Section 3 we introduce hypertext functionality in CASE. In Section 4 we
illustrate the MetaEdit+ environment and its LA hypertext model. In Section 5 we
discuss the link attachment, while in Section 6 we address link representation issues.
Finally, the architecture and the implementation of the environment are described in
Section 7.

2. Related work
Several hypertext approaches to CASE have been reported, though the research

issues represented above are largely neglected in these works. Previous research has
not systematically considered link representation issues and largely underestimates the
complexities of CASE documents. In a nutshell, either the available functionality
provides only hypertext features, or the hypertext support functionality is limited to
some model areas. In Table 1 we compare our approach with related implementations.

Dynamic Design (Bigelow 1988) is a configuration management environment,
which uses hypertext links for specifying configurations, attaching annotations and
associating design objects and source code. Dynamic Design does not address
conceptual and representational aspects of design objects, but allows link attachment
to explicit coordinates. The I-IyperSoft (Cybulski & Reed 1992) environment offers
tools for constructing sotb~vare documents and creating navigable links among them at
the representation level. PRO-ART environment (Pohl et al. 1994) allows the addition
of design rationale and annotations to semi-structured design objects at the conceptual
level through a process model. Consequently, links are automatically activated by a
process model when design objects are manipulated instead of explict link traversal,
thus making link representation consideration unnecessary. Hyper Analysis Toolkit
(HAT, JingXiang and Griggs, 1994) connects description narratives to ER diagrams
and vice versa, but neither discusses the conceptual and representation levels, or link
representation.

Common to all implementations is that they link semi-structured information with
non-structured information by using ad-hoc solutions specially suitable for diagram
representations. In contrast, the approach suggested here implements hypertext

219

functionality into a CASE tool so that it allows multiple representation paradigms and
defmable methods.

Table 1: Hypertext features in CASE tools

HyperSofl PRO-ART MetaEdit+

Semi-structured objects
Non-structured objects (text
representations)
Concepts vs. Representation
problematics addressed
Links to a position
Types of semi-structured
representation paradigms
considered
Link representation in semi-
structured objects addressed
Definable methods

Yes
Yes

No

Yes
Yes

No

Yes
Yes

No

Yes Yes
Yes Yes

No Yes

Yes Yes No No No
Diagram Diagram Diagram Diagram (ER, Diagram,

(ER+) (ER) SA) Matrix,
Table

No No No No Yes

Object
types

No No No Yes

3. Hypertext functionality in CASE
Hypertext functionality (HTF) provides a hypertext-like user interface for linking

and navigation between design objects (Oinas-Kukkonen 1997b). A fundamental
difference from pure hypertext systems is that hypertext links are used as a value
adding feature. In addition to link creation and traversing, features such as bookmarks,
history list and queries are used to support navigation. Hypertext functionality should
enable linking any design objects independent of their structure and representation
form.

The need for linking different types of design information is evident. Non-
structured information such as annotations and argumentation components are needed
in design work and should consequently be allowed to be attached to any kind of
design document. Also links between non-structured pieces of information can be used
to organize them into a consistent whole (of. SGML/HTML documents). For example,
to-do lists can be divided into sub-lists and then linked to each other. In addition,
these non-structured to-do lists can contain links to semi-structured design documents.
Moreover, links between semi-stuctured information can be added to support
navigation. Consider for example how traceability mappings can be established
between design objects to support requirements tracing.

By using hypertext terms, links form mappings between anchors (design objects),
while a network of linked anchors is called a hyperspace. Link traversing is initiated
by activating a link representation such as an underlined text or an image. A link's
source is called a source-anchor and a link's endpoint is called a target-anchor,
respectively.

3.1 Conceptual and representat ional informat ion

While traditional hypertext systems are based on non-structured representations
such as text and pictures, semi-structured information in CASE benefits from the
differentiation between its representational and conceptual aspects. (e.g. Smolander
1991a, Tolvanen 1995, Wijers et al. 1990). This difference provides representation
independence which has the advantage that conceptual design objects can exist
independently of their alternative representations (Kelly at al. 1996). Therefore,
design documents can be represented in text, matrix and graphical forms and
moreover, the conceptual design objects used there can be shared. For example a
'Sales system' conceptual graph can have several representations (e.g. diagram,
matrix, table, see Figure 1) and different representations of an 'Order' concept are

220

possible . While the conceptual side of a design object stores information that is
representation independent such as the name of a Process in a Data Flow Diagram, the
representation side contains properties such as the objects' position and appearance.

The above characteristics of semi-structured design objects is employed during
design work which have to respect it when providing linking functionality. Consider a
situation where a user is working on a 'Sales system' table and annotates an 'Order'
by the statement 'Is this object needed?'. In this example we must consider whether
the annotation should be attached to the order in the table representation, or also in
other representations where the order appears. In other words, we have to decide
whether to attach the annotation to the conceptual or representational aspect of the
design object.

3.2 Link representation
In CASE semi-structured information is often represented in the form of

diagrams, matrices and tables, and the need for all these representation forms is
undisputable. Diagrams are the most common representation as they are favoured by
structured graphical methods, such as ISAC (Lundberg et al. 1981) and SA (Yourdon
1989), or object-oriented methodologies such as OMT (Rumbaugh et al. 1991),
OOA/OOD (Coad and Yourdon 1990) and Fusion (Coleman et al. 1994). Matrix
representations are useful for supplementing graphical diagrams, but are also used as
the sole representation in methods like IBM's Business Systems Planning method
(IBM 1975). The third main representation paradigm used by CASE tools is a table
representation which is used in methods like Critical Success Factors (Rockart 1989)
and Use Cases (Jacobson et al. 1992).

From a link representation point of view these three representation paradigms are
not that new as they have been used e.g. in WWW pages defined in a HTML
language. However, these hyperdocuments differ from systems design documents in
that they are static, representation oriented and links form an essential part in
constituting the documentation. Therefore, link representations in them can and need
to be carefully designed. In contrast, CASE tools operate on "concepts" and their
different representations, while links are secondary to the design objects which can
change all the time. For these reasons we should not bother designers with link
representation issues but instead should provide users with an automatic and
consistent link representation scheme in three representation forms used in CASE.

4. Hypertext functionality in MetaEdit+
We use the MetaEdit+ CASE tool and a hypertext subsystem (LA) as a vehicle to

demonstrate how we approach the above research questions. In the following we will
review underlying representation paradigms (diagram, matrix, table) and
corresponding tools. We also describe the underlying data model of MetaEdit+ and
show how LA is used to link different types of information managed.

4.1 MetaEdit+ environment
MetaEdit+ is a multi-method, multi-user, multi-tool environment for computer

aided software engineering. It establishes a versatile environment for creation,
maintenance, manipulation, retrieval and representation of design objects
(information) structured and created according to a method (Kelly et al. 1996).

The kernel of the MetaEdit+ functionality and architecture is determined by the
underlying conceptual data model called GOPRR. MetaEdit+ uses the GOPRR
conceptual data model as a universal and generic meta-metamodel i.e. as a sole
language to specify methods (Kelly et al. 1996). The fixed conceptual meta-
metamodel (see Table 2) forms the basis on which varied representations of data,
including not only the usual graphic diagrams, but also text and matrices can be built.

221

The GOPRR data model makes a distinction between the representational and the
conceptual aspects of a method, thus providing a suitable platform for studying
hypertext support for different representations of CASE.

Table 2: GOPRR concepts

Graphs
Properties

Objects

Relationships

Roles

Containers for Objects, Relationships and Roles.
Appear as textual labels in diagrams, contain single data

entries such as a name~ text field or number.
Appear as shapes in diagrams, contain properties and

model concepts such as Entity in an Entity Relationship
Diagram.

Appear as lines between shapes in diagrams, contain
properties, and model concepts such as Data Flow.

Appear as the end points of Relationships (e.g. an
arrowhead), contain properties, and model the part an Object
plays in a Relationship.

4.2 Model editing tools in MetaEdit+
Model editing tools form MetaEdit+'s key functionality from the users' point of

view as these tools are used to create, modify and delete models and their instances.
Moreover, hypertext links between conceptual and representational design objects are
created and represented in these tools. All model editing tools are similar in sense that
their main purpose is manipulating and creating models, but differ in terms of their
focus and representational paradigm supported (Kelly at al. 1996).

4.2.1 Diagram Editor
The Diagram Editor offers the necessary functionality to create, modify and

represent models graphically. An example of using the tool in creating a DFD diagram
is shown in Figure 1.

Fdit View Types J~ls Cell Format Analysis Help
01 O~ Oa C

• G r DFD: itales system, [21 June 1995 11:13:31 am) ~ J
aph Edit Vic-w Format Help

�9
D ~ Ooc,.Ineme~.o.

MWrl[lkl cu~. recmds
V~tlf./oeders Each oeaW rmm be ~dl1~ by Or, ec~g t~ ioaymert I

Figure 1: MetaEdit+ modeling tools

4.2.2 Matrix Editor
Matrix editor allows the user to adopt a different representational perspective on

his graphical models. The user interface of the matrix editor is visually similar to that
of a spreadsheet, with the axes containing objects, and the cells containing information
about the relationships between those objects (Kelly at al. 1996).

222

In the example in Figure 1, the user has opened a Matrix Editor on a Data Flow
Diagram of a Sales System (represented in the same figure). He has decided to show
all the Processes (1-4) on the horizontal axis, and the Externals and Stores on the
vertical axis, with symbols displayed for both. For example, the framed element 'Cust.
details' on the left shows that there is a flow of customer details between the Customer
Store and Process 1 (Kelly at al. 1996).

4.2.3 Table Editor
Table representation complements the matrix and diagram representations and it

has two useful features. First, in the Table Editor design objects are represented as
rows, and properties of the objects form columns. This provides a natural and
economic way to view design information concerning multiple objects in a compact
form. Thus, whereas matrix and diagrams represent the overall structure of the IS
models and show connections between model components, Table Editor allows
detailed browsing through individual model elements. A second useful feature is to
support methods that are not graphical nor matrix based. Figure 1 shows an example
of a model instance as seen through Table Editor. The underlying conceptual graph is
the same that is shown as diagram and matrix, but it is represented differently. (Kelly
at al. 1996).

4.3 Nodes and anchors
Generally, a hypertext network is constructed by linking either whole nodes or

parts of them. For example, in HTML documents nodes can be structured using tags
which define the linkable positions in documents. Similarly, in CASE tools one can
manage design documents which are structured according to the methods used. In
MetaEdit+ they are defined using the GOPRR meta-model. This implies that each
design object of the used method is based on some GOPRR construct (of. Table 2).
Therefore, we have used the GOPRR data model as a basis to define the (meta-)
structure of the hyperspace.

We consider representation graphs (diagrams, matrices and tables) as nodes in
hyperspace. Furthermore, we consider Graphs, Objects and Relationships as anchors,
setting the granularity of the hypertext nodes to a reasonable level but yet not limiting
the usability. We do not consider Properties and Roles as anchors, but instead
encourage designers to use objects that are associated with them. For example, if a
user considers the issue "Should this class be named as a manager or a controller?",
he will in all likelihood attach the question to the class object instead of the name-
property (name is a property o f the class). Similarly, if a user is considering a role he
can use the relationship of which the role is a part.

In summary, in Table 3 we describe how GOPRR elements are represented by
different tools. In the table "Representation" means that there is a representation for an
element (and a concept behind it) and "Concept" means that only a concept is used for
the representation. Stroked-through elements indicate non-linkable design objects.

Table 3: Anchors and nodes in GOPRR

Nodes/anchors
~J Anchors
Graph
Object
Relationship
a t . t l ~ |

Matrix

Representation
Representation

Concept
Concept

Concept, partially

Table

Representation
Representation
Not represented
Not represented

Concept

Diagram

Representation
Representation
Representation
Representation

Concept, partially

223

4.4 Linking Ability -hypertext model
LA (Linking Ability) is a stand-alone hypertext system with annotation,

argumentation and model linking capability (Oinas-Kukkonen, 1997a). It supports
linking of semi-structured information (GOPRR data model concepts) and non-
structured information (annotations and design rationale nodes). The basic features of
the LA implementation include creation, deleting, navigation and querying of links.
The design rationale system of the environment is described in Oinas-Kukkonen
(1996).

The design objects (i.e. semi-structured and non-stuctured information) are linked
using four types of links, namely annotation-, debate-, association- and traceability
links. Annotation and debate links lead to non-structured design objects, while
association and traceability links lead to semi-structured design objects managed by
MetaEdit+ tools (see Table 4). All the links can start from any design object, such as a
piece of text in an annotation or a Process in a DFD diagram.

Annotation link
Debate Link
Association link
Traceability Bnk

Table 4: LA links and node types

Source node
Any design obiect
Any design object
Any design obiect
Any design object

Target node
Annotation
Debate node
GOPRR design objects
GOPRR design objects

In addition to links, LA offers bookmarks and landmarks for information location.
They enable users to "mark" locations that are visited often or are otherwise
meaningful (Oinas-Kukkonen 1997a). Landmarks mark central places in the design,
whereas a designer can embed a bookmark to a diagram while he interrupts his work,
to support fast refocusing to his unfinished design.

Landmark and bookmark lists provide quick jumps to these marks. For this reason
they are considered as links from anywhere to the source-anchor. Consequently, we
include them in our discussion of link attachment.

5. Linking considerations
As noted, linking of semi-structured information presents a problem due to its

conceptual and representational distinction. In our environment semi-structured
information can form both source and target anchors of links. For example, all links
have semi-structured design objects as their sources and also targets of association
and traceability links are semi-structured objects. In the following we will demonstrate
that links are useful both at the conceptual and representational levels of semi-
structured information managed in CASE. Thereby, for each link type the question "Is
a meaningful (source/targeO anchor for this link type a concept, a representation or
both?" will be answered.

Before we judge whether links are needed on both the conceptual and the
representational level we have to be aware of link representation and traversing
conventions. Since a conceptual object forms the foundation of all its representations,
links whose source is a concept are displayed in the context of their representations.
For example, if a link is attached to the Order concept in Figure 1, the link will appear
in matrix, table and diagram representations of the Sales System. The link traversing is
affected, too, since when a user follows a link whose target is a concept, the system
has to request which representation he prefers.

The user's decision whether to link to concepts or representations depends on the
desired link semantics and the desired impact on user interface. The semantic aspect is
considered when we want to explicitly indicate that a link anchor is a certain
representation or a plain concept, while the user interface criteria is used when users

224

want to limit the scope of a link for some reason. For example, when designers are
considering particular representations' during the design activity they benefit from
links explicitly attached to those representations. This makes navigation easy as the
link whose anchor is a representation leads directly to the representation without
asking the user to choose between all possible representations.

5.1 Debate and annotation links
Debate links connect mostly to the conceptual level design objects. For example,

there can be questions concerning properties of a design object, or the implementation
responsibility of an object. These questions can rarely be considered as attached to a
particular representation. However, a question concerning a particular representation
graph (diagram, man-ix, table) will be attached to its representation. Consider for
example a debate link: "Who should review this diagram?" (see Table 5).

In a similar vein, uses for annotation at the representation and conceptual levels
are easy to fred, as we often make notices, comments and suggestions about design
objects. For example, we can provide information that is useful in the implementation
of a concept (see Table 5). Although annotations are mostly attached to concepts, a
general example of an annotation link at a representation is a comment on the quality
of a diagram.

Table 5: Examples of use of debate and annotation links

Link type
Source
Concept

Representation

Debate link

"Who should
implement the
Customer browser?"

"Who should review
this (Sales System
Architecture)
diagram?"

Annotation Bnk

"We need an efficient sorting
algorithm here. A review on
algorithms can be found in
http://alg.orit.hms
"This diagram needs
restructuring

5.2 Association and traceability links
Designers benefit from associative connections while engaged in design activity,

which demands visiting a set of design objects. Consequently, a designer will
reference these objects more often than other objects. Association links provide fast
navigation between these objects, since navigation can be initiated by activating a link
symbol instead of looking for design objects in a browser.

Association links are useful in both representational and conceptual levels. As
discussed before, a link leading to the representation level of a design object provides
direct access to the target representation while a link to the conceptual level provides a
user with a possibility to choose between alternative representations that a concept
has. Associations between tightly related concepts are essential in providing easy
navigation between all different representations, but they are useful also when used
from a concept onto itself. A link from a concept onto itself constitutes a linkage
between all representations of a user's problem related concept, enabling easy
navigation between its representations (enabled by the link representation strategy
presented earlier).

Association links are useful also at the representation level. A user can create a
network of representations that are needed to carry out a design task, or he can create
an "index" annotation where links exist to the problem related representations.
Association links from concepts to representations and vice versa are needed. A link
from a concept to a certain representation is useful when a designer prefers a

225

representation that is central to his own current problem (and also his design problems
in general). Therefore, designers must be allowed to use explicit links to
representations that he prefers. The analysis of association links is summarized in
Table 6.

Source
Concept

Representation

Table 6: Examples of uses for association link

Target Concept

"To Order" (a link
between related
concepts)
"To order" (the user
does not prefer any
representation)

Representation

"To Order" (in my own
purchase diagram)

"To Customer in this diagram
(that is currently not visible)"

A traceability link differs from an association link in that there is certain
semantics behind it, although they are used for navigation. A common usage for a
traceability link is "forward" tracing between requirements and a design to ensure that
a certain requirement has been met. For example, consider the requirement statement
(concept) "Credit will be given only to regular customers" that is linked to a customer
class in an object diagram where the method 'Check for credibility' is introduced.
There can also be backward traceability links from design objects to requirements,
which allows tracing all requirements related to a certain design concept. This implies
creating traceability links from a design concept to a requirement concept (see Table
7).

Whether to link 'customer' concepts or representations depends on the preferred
granularity. On the one hand, a requirement should be logically linked to the
conceptual "instance" of a design object to indicate that a requirement is related to
that concept and all its representations. On the other hand, we can benefit from a more
f'me-grained traceability relationship to a representation to indicate that the
requirement is met by a certain representation of an object.

Table 7: Examples of uses for a traceability link

Source
Concept

Target

Representation

Concept

Trace where a
requirement is
implemented
Trace to any version
o f ' Order'

Representation

Trace the exact representation that
implements a requirement

Go up/down the evolution trace of
the dialog of 'Order'

Traceability links between representations can establish evolution traces of design
objects through different design phases. For example, different representations of a
customer object can be linked into a chain that can be traversed through links.

5.3 Landmarks and bookmarks
Landmarks can support marking of either concepts or representations. For

example, an architecture diagram (representation) can easily be located when a
landmark is attached to it (see Table 8), while a landmark attached to a concept
provides the user a possibility to choose between alternative representations.

226

Table 8: Examples of the use of landmark and bookmark

Link type Landmark Bookmark
Source~Target
Concept A guide to the system "Sales system"

architecture (diagram,
matrix or table)

Representation A guide to the system "In the morning, start here"
architecture diagram

Bookmarks are used similarly to landmarks but are temporary in their nature.
Table 8 illustrates examples of use on both conceptual and representational level. We
can attach a bookmark to a Sales System's conceptual or representational graph if they
are frequently visited. A user might also embed a bookmark to a graph (concept) while
he interrupts his work, to help fast refocusing to his unfinished design.

5.4 Default link attachments
One fundamental contribution of our solution to hypertext functionality is that for

all LA link types we can simultaneously link concepts and representations. This
affects the link creation procedure, since we have to ask a user for detailed
information whether he wants to link to a concept or its representation. For example, a
user may activate an 'Order' in an ER-diagram to indicate a link anchor which
however does not indicate whether he "means" the concept or its particular
representation. This problem can be partly overcome by automatically creating a link
either to the concept or its representation. This suggests that we have to consider
which one alternative should be a default in each link type.

Debate and annotation links seem to be mostly attached to conceptual anchors,
though attachments to a representation are sometimes handy, especially when
considering graph representations. Yet, we suggest that a default attachment type for a
debate and an annotation link is a concept. In case of association and traceability links
it seems that the default attachment type can be either a concept or a representation.
There is no evidence that landmarks and bookmarks are more often used in either
concepts or representations. Intuitively, they are used to mark a certain place (i.e.
representation) that a designer intends, which suggest a default attachment to be a
representation.

Overall, the most successful way to determine a default attachment is to
empirically study how users apply these links in different contexts. It is possible that a
link attachment is a personal and method-related issue and therefore a user should be
allowed to tailor the default source and target types. In addition, a user should be able
to change the source and target type of a link on demand.

6. Interface

6.1 Link representation considerations
A link marker indicates visually that there is a link connected to an anchor. If

there are several links attached to a single anchor there are two representation
alternatives. We can either use one link marker in conjunction with a separate list that
provides the links or we can show each link's marker separately besides its anchor.
Separate markers are advantageous since a user perceives them immediately and also
a descriptive text for a link can be shown. However, this approach is deficient in the
case of compact structured representations such as a matrix and a table, where
possibilities for tailoring the representation are more limited. Therefore, we use one
link marker to indicate the existence of links. In addition, we suggest that if there is

227

only one link a symbol indicating the link type should be shown. In the current
implementation we use a figure to indicate the number of links, although in future we
plan to use symbols.

6.2 Link placement
Link markers need to be positioned in different representation formats of

MetaEdit+. The main principle is to show a link marker near the link's anchor (a
graph, an object or a relationship). Therefore, we first have to consider anchors'
representation in different types of representations (see Table 9). Another issue is to
analyze what alternatives there are for positioning their links.

Table 9: User interface elements that contain GOPRR constructs

Graph
Object
Relationship

Matrix editor Table editor
Top left comer
Row/Col Label

Cell

Top left comer
Row Label

Diagram editor
Top left comer
Spatial symbol
Spatial Symbol

Although graphs are represented in different formats such as matrices, diagrams
and tables, we strive for consistency in representing links. Therefore, we suggest that a
link marker is shown in a separate area in each tool. Accordingly, we display the link
marker on the top right comer of matrix, table and diagram windows.

In a diagram editor !ink markers can be represented easily. Because of the
relatively low density of the representation, we can choose to represent the link marker
on the top of anchors (a design GOPRR object or relationship). This solution is
adequate although it must be noted that the link marker may collide with other
representations such as relationship lines. An example link is illustrated in Figure 2(1)
where two links ('2') have been attached to the 'Link' object.

Table and matrix representations differ from diagram representations in that their
layout is more dense and structured. Design objects are laid on rows and cells,
enabling the link placement only on the right or left side of design objects. In tables
the anchors (GOPRR objects) consist of a whole row each, thus we display the link
marker on the left side of an anchor. An example is illustrated in Figure 2 where the
'Link' object in the table has two links. Similarly, in matrices link markers are
represented on the left side of their GOPRR object-anchors residing in rows and
columns. An example of this is illustrated in Figure 2, where e.g. the 'Node' object
has one link.

In contrast to these "easy" cases, displaying relationships' link markers in a
matrix is problematic. In a matrix representation cells are used to display relationships
between objects within corresponding rows and columns. The problem arises when the
number of relationships is so high that relationships do not fit into the cell. In a tool
implementation this can be alleviated by providing an additional 'cell browser' that
displays any number relationships. We chose to display the link markers on the left
side of the relationships on a cell or in a browser.

6.3 An overview on the user interface
The user interface implemented is illustrated in Figure 2, which depicts a typical

design scenario. In the case a designer has developed a hypertext system, and uses
diagram (1), matrix (2) and table representations (3) to describe its node-link model.
During the design he documents design problems (4) and has developed a 'Guide for
visitors' (5) for accessing central aspects of the design. In addition, he has left two
landmarks in his design, one in the guide and another in the node-link model graph.

Now, consider a situation where another designer is interested in the design. He
examines a landmark list (6) where by clicking the 'Guide for visitors' link he opens

228

the guide containing further links. In the guide he clicks the 'See the node-link model'
link and a dialog requests him to choose whether to open a diagram, a matrix or a
table representation (dialog not visible in the figure). He chooses the diagram
representation and observes that two links are attached to the 'Link' object. He opens
the link list (7) by clicking the link marker ('2 ~ from where he navigates to a
question: 'How to represent links?' (8), and adds his own contribution to the ongoing
discussion.

In this scenario the idea of linking both the conceptual and representational
aspects of objects can be seen as follows. The link to the node-link model has been
attached to the conceptual graph, and thus a dialog asks the user to choose between
representations instead of opening a particular representation (e.g. the matrix).
Similarly the debate links (see the link list) have been attached to the conceptual level
of the 'Link', thus these links (their marker) are visible beside the 'Link' in matrices
and tables also. In contrast, one link is attached to a particular 'Node' object
representation in a matrix and thus it does not appear in the diagram and table
representations.

Figure 2." MetaEdit + user interface

7. Architecture
Both MetaEdit+ and LA have been implemented using VisualWorks T M Smalltalk

and object persistency added using the ArtBASE T M repository. The design has been
carried out using an object oriented approach and prototyping.

229

Tool

L ink
Engine

get links

can a concept be linked

GOPRR
Model
eonceot

Figure 3: Message relationships between the system's components

The linking is carded out by LA objects (Link Engine in Figure 3), while the link
representation is handled by each MetaEdit+ tool whose concept instances have links.
The generic architecture is illustrated in Figure 3, where the boxes denote objects and
the arrows denote messages between them. Links to and from the GOPRR concepts
are created by the Link Engine. It communicates with the GOPRR data model
concepts by confurming linking requests and by adding and removing links from them.

8. Conclusions
In this paper we have shown how the use of a hypertext functionality can be

extended to deal fully with normal CASE tools. A metaCASE tool called MetaEdit+
was enhanced to allow the representation of links provided by the Linking Ability
hypertext system.

Traditional hypertext systems operate only on one level: there are no concepts
behind the representations the user sees. In CASE, design diagrams use several semi-
structured representation paradi~s , and the design objects have both representational
and conceptual aspects. In this paper we suggested how to represent links in
representation paradigms such as a diagram, matrix and table. To achieve a uniform
link representation in all tools, a single link marker was applied to indicate the
existence of a link. In matrix representations link representation is problematic since
due to space problems, some anchors may not be visible.

Our study also shows that it is necessary to attach links to both concepts and
representations. To relieve the user from selecting the type attachment, we suggested
default strategies for debate and annotation links. This, however, is a rough solution
and more empirical evidence is needed.

Ideas presented in this paper can be generalized into most CASE tools, since the
underlying GOPRR meta-metamodel is expressive enough to cover most methods
supported by CASE tools. Moreover, three representation paradigms and the division
between the conceptual and representational aspects are central issues in considering
any hypertext support for a CASE tool. The results can also be utilized in any task
area, where diagrams, matrices and tables are used simultaneously. For example,
drawing tools and spreadsheets would benefit from a similar approach.

In future default link attachment to concepts versus representations should be
investigated empirically. There is also a need to examine multi-user functionality and
concurrency control with the hypertext func t iona l i t y - an issue which is rarely
touched on in hypertext research.

Acknowledgements
I want to express my thanks to the members of the MetaPHOR project for their

essential comments.

230

9. References
Bigelow, J. (1988), Hypertext and CASE. In IEEE Software, March 1988. pp. 23-27.
Coad, P., E. Yourdon (1990), Object-Oriented Analysis, Englewood Cliffs, New Jersey (1990).
Coleman, D., P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes (1994).

"Object-Oriented Development The Fusion Method," Prentice Hall, Englewood Cliffs (1994).
Cybulski, J. L., Reed, C. (1992), A Hypertext Based Software Engineering Environment. In IEEE

Soft'ware, March 1992.
Gane, C., T. Sarson (1979), "Structured Systems Analysis: Tools and Techniques," Prentice Hall,

Englewood Cliffs, NJ (1979).
IBM (1975), IBM Corporation, "Business Systems Planning - - Information Systems Planning

Guide," Publication #GE20-0527-4, IBM (1975)...
Jacobson, I., M. Christeson, P. Jonsson and G. Overgaard (1992), "Object-Oriented Software

Engineering-- A Use Case Driven Approach," Addison-Wesley, Reading, USA (1992).
JingXiang, Griggs (1994), A Tool for Hypertext-based Systems Analysis and Dynamic Evaluation.

Proceedings &the 27th Annual Hawaii International Conference on System Sciences 1994.
Kelly, S., Lyytinen, K and Rossi, M. (1996), MetaEdit+: A Fully Configurable Multi-User and

Multi-Tool CASE and CAME Environment. In: Proceedings of the 8th international conference
on advanced information systems engineering, CAiSE'96. Heraklion, Crete, Greece, May 1996.

Kerola, P. and Oinas-Kukkonen, H. (1992), Hypertext system as an intermediary agent in CASE
environments. IFIP WG 8.2 Confrence on The Impact of Computer Supported Technologies on
Information Systems Development, Minneapolis June 15-17, 1992,

Lundeberg, M., G. Goldktthl and A. Nilsson (1981), "Information Systems Development: a
systematic approach," Prentice-Hall (1981).

Oinas-Kukkonen, H. (1997a), Towards Greater Flexibility in Software Design Systems through
Hypermedia Functionality, Information & Software Technology (forthcoming), 1997.

Oinas-Kukkonen, H. (1997b) Embedding Hypermedia into Information Systems, Proceedings of the
Thirtieth Hawaii International Conference on Systems Sciences (HICSS 97), January 1997.

Oinas-Kukkonen, H. (1996) Debate Browser - an Argumentation Tool for MetaEdit+ environment.
Proceedings of the Seventh European Workshop on next generation of CASE tools (NGCT'96),
Creta, Creece, May 1996

Pohl, K., R. Drmges and M. Jarke (1994), PRO-ART: PROcess based Approach to Requirements
Traceability, in Poster Outlines: 6th Conference on Advanced Information Systems Engineering,
Utrecht, Netherlands, June 1994 (1994).

Rockart, J (1979), "Chief Executives Define Their Own Data Needs," Harward Business Review
57(2) (1979).

Rnmbangh, J., M. Blaha, W. Premedani, F. Eddy and W. Lorensen (1991), "Object-Oriented
Modeling and Design," Prentice--Hall, Englewood Cliffs, N J, USA (1991).

Smolander, K., Lyytinen, J., Tahvanainen V-P., Marttiin P. (1991a), MetaEdit - - A Flexible
Graphical Enivnronment for Methodology Modelling. In advanced information systems
engineering, Proceedings of the third international conference CAiSE'91. Trondheim~ Norway,
May 1991. Springer-Verlag, Berlin 1991.

Smolander, K. (1991b), OPRR: A models for modeling systems development methods. Liceneiate
Thesis WP-20, Univ. of Jyv~iskyl~i, Finland. 1991.

Tolvanen (1995), Flexible method adaptation in C A S E - the metamodeling approach. Licentiate
Thesis, Computer science and information systems report, TR-5. Univ. of Jyv~iskyl~, Finland.
1995.

Welke, R, J. (1992), The CASE repository: More than an Another Database Application. Cotterman,
W and Senn, J.A. (eds.). Challenges and strategies for research in systems development. Wiley
1992.

Wijers, G. M, Hofstede, A. H. M., van Oosterom N. E (1990), Representation of Information
Modelling Knowledge. SOCRATES. Report 90/09, November 1990. Software Engineering
Research Centre 1990, Utrecht.

Yourdon, E (1989), Modern Structured Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA (1989).

