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Abstract .  In this paper, we report on the integration of informal, semi- 
formal and formal requirements specification techniques. We present a 
framework for requirements specification called TRADE, within which 
several well-known semiformal specification techniques are placed. TRADE 
is based on an analysis of structured and object-oriented requirements 
specification methods. In this paper, we combine TRADE with the logic- 
based specification language Albert II and show that this leads to a co- 
herent formal and semiformal requirements specification. We illustrate 
our approach with examples taken from a large distributed telecommu- 
nication application case study performed in the context of the Esprit 
project 2RARE. 

1 Introduct ion 

The field of requirements specification techniques has reached a state where it 
is not desirable to introduce yet another technique without indicating how this 
technique can be combined with other techniques in a coherent specification of 
software requirements. Each software product can be described from many dif- 
ferent perspectives and no technique can be used for the specification of software 
requirements from all these perspectives. Consequently, the utility of a require- 
ments specification technique depends for a considerable part on the way in 
which its relationship to other specification techniques is defined, used for the 
specification of requirements from other perspectives. 

In particular, it is important to define ways to integrate semiformal and for- 
real specification techniques. By semiformal  techniques  we mean diagram 
techniques and tabular techniques that present information in structured form. 
By formal  techniques  we mean mathematics, logic or algebra, in which the 

* Supported by Esprit Project 2RARE, contractnr. 20424. 
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syntax, semantics and manipulation rules for the specification language are ex- 
plicitly defined. By informal  techniques  we mean unrestricted natural lan- 
guage. The majority of specifications in practice will use a mix of these three 
techniques. For example, an informal requirements specification may be illus- 
trated by a number of semiformal diagrams and formal techniques may be used 
for critical or complex parts of the requirements, where the consequence of errors 
in the requirements will be severe. 

In the Esprit project 2RARE (Two Real Application of Requirements Engi- 
neering), requirements for three complex distributed critical applications are 
specified using a variety of specification techniques [1], including the formal 
specification language Albert II [3], the object-oriented specification language 
Oblog [18] and some semiformal, diagram-based techniques. In order to combine 
these specification techniques, we need a general framework that allows us to 
state which part of required w properties we specify by which technique, 
and what the relationships between the different parts of the specification are. In 
this paper, we present such a framework and show how it can be used to combine 
Albert II with a number of well-known semiformal requirements specification 
techniques. This result is not only relevant for Albert II but for any formal spec- 
ification technique that should be combined with semiformal techniques. The 
framework, called TRADE (Toolkit for Requirements And Design Engineering), 
is based upon an analysis of structured and object-oriented requirements speci- 
fication methods [22, 21, 23]. We use one of the systems specified at Belgacom, 
a VoD system, as a running example [24]. A VoD system consists of a set top 
box located in the home of a customer, connected to the television set of the 
customer. The set top box offers roughly the functionality of a video player. It 
is connected through a telephone network to a video server located at a service 
provider. Through the set top box, the consumer can request videos to be shown 
on his or her television. 

We start in section 2 with the methodological framework of TRADE. In sec- 
tion 3, we present some of the semiformal tools in TRADE, using the Belgacom 
VoD application as an example. In section 4 we present Albert II specifications 
of parts of this system and show how these are connected to the semiformal 
specification. 

Section 5 winds up the paper with a discussion of general results gathered in 
the 2RARE project and and some topics for further work. 

2 T h e  M e t h o d o l o g i c a l  F r a m e w o r k  o f  T R A D E  

In this section, we briefly sketch the major principles of TRADE. Because all 
elements of TRADE are borrowed (with minor adaptations) from the literature, 
sources and related approaches will be acknowledged as we go. 

2.1 Sys tem Environments  

The central methodological principle in TRADE is the principle of  environ- 
m e n t  model ing:  in order to model the requirements on a product, we must 
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model the desired situation in the environment of the product. The reason for 
this is that any product exists in order to provide a service to its environment. 
This service may be to make certain behavior in the environment possible or 
to enforce certain behavior in the environment. There are many environments 
of the product that may be relevant during a particular development process: 
examples are the physical, social, financial and normative environments. Four 
environments are singled out in TRADE as being important in every software 
product development. 

- The p r o b l e m  e n v i r o n m e n t  is the place and time of the world in which the 
problem exists to which the product must provide a solution. 

- The so lu t ion  e n v i r o n m e n t  is the place and time of the world in which 
the product exists and contributes to a solution of the identified problems. 
Synonyms used in TRADE are operating environment and usage environ- 
ment. The elements of the solution environment needed to understand the 
behavior of the product are called ex te rna l  entit ies.  

- The i m p l e m e n t a t i o n  p l a t fo rm is the technical infrastructure on top of 
which the product is to be built. It includes the operating system, database 
management systems, software libraries and legacy components on top of 
which the desired software product is to be built. It does not include compo~ 
nents that have to be built specially to satisfy required product properties. 

- The s u b j e c t  doma in  of a software product is the part of the world that 
is represented in the software product. Synonyms are subject environment 
and Universe of Discourse (UoD). The elements of the subject domain repre- 
sented by the product are called subjec ts .  In TRADE we use the hypothesis 
of sub jec t -o r i en t a t i on ,  which says that the state of a software product al- 
ways contains a representation of the state of the subject domain. 

It is important to distinguish a specification of properties of the environment of 
the product and the product specification itself. The former expresses how the 
environment will behave in presence of the product [14] while the latter focusses 
on the description of the behavior of the product. Similar distinctions are made 
in the Esprit project Nature [16]. The concept of external entity is well-known 
from structured analysis [9]. The importance of subject-orientation for modeling 
data-intensive system requirements was pointed out by Chen [6]. Jackson [13] 
showed that subject-orientation is useful for a significant number of control- 
intensive systems as well. We Should note that the operating environment and 
subject domain a software system may overlap. 

2.2 S y s t e m  P r o p e r t i e s  

A second methodological principle in TRADE is the logical independence of 
the decomposition of a system into subsystems and the refinement of system 
functions into subfunctions. This principle originates from general systems the- 
ory and is used elsewhere as the basis for a framework for system development 
methods [22]. Harel and Pnueli [12] represent this by what they call the magic 
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square ,  which sets off a behavior refinement dimension against a system de- 
composition dimension. In general, a development process advances by reduc- 
ing uncertainty about the required decomposition and required behavior of the 
product simultaneously. In this process, we may meander in any way through 
the square and we may use other decomposition principles besides the principle 
of functional decomposition. 

At any point in the development process, we have reached a level of certainty 
about two sets of desired system properties: requirements on external system 
behavior (the horizontal dimension of the magic square) and constraints on sys- 
tem decomposition (the vertical dimension). Properties of external behavior can 
be classified as either properties of observable states or properties of observ- 
able state transitions. This leads us to a classification of three kinds of system 
properties: properties of states, properties state evolution and properties of de- 
composition. Each subsystem 'in turn may be characterized in the same way by 
specifying its states, state changes and internal decomposition. 

We now apply this classification of system properties to the product as well 
as to its environments. 

2.3 E n v i r o n m e n t  P roper t i e s  

Subject domain properties. The subject domain can be modeled by representing 
its decomposition into subjects and their connections. If there are many subjects, 
as in the case of data-intensive systems, we usually do this by identifying subject 
types and connection types and we use one of the many variants of the entity- 
relationship notation to represent this. If there are a few subjects, as in many 
control-intensive systems, we can do this at the instance level by drawing a graph 
whose nodes represent subjects and whose edges represent connections. 

Operating environment specification. The operating environment can be modeled 
by a graph in which one node represents the product and in which the other nodes 
represent external entities. Figure 1 shows such a graph, discussed in more detail 
later. The edges represent connections through which the nodes communicate. 
We then get an e x t e n d e d  context  d iagram as defined by Jackson [14], which 
is a generalization of the convention used in structured analysis. 

Implementation platform properties In a software requirements specification, the 
implemtation platform plays a role in as far as this imposes constraints on the 
physical decomposition of the product. Constraints may also follow from the 
properties of the external entities. In a distributed system, an important con- 
straint is that the system is implemented on a distributed collection of physical 
nodes. This network is embedded in the decomposition of the operating environ- 
ment into external entities. For example, the VoD system must be implemented 
in a network consisting of a collection of set top boxes, the telephone network, 
a gateway and a video server. 
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2.4 P r o d u c t  Specif icat ion 

The models of the subject environment and operating environment have a simple 
relationship with a model of the desired properties of the product along each of 
the two dimensions of the magic square. Briefly, the model of the operating 
environment can be used to specify desired system functions, and the model of 
the subject domain can be used to represent a conceptual system decomposition. 

- Because each interaction between an external entity and the product is a 
desired product function, the context diagram of the operating environment 
gives us a model of desired system behavior. This is usually given by a list of 
desired p r o d u c t  funct ions,  where each function is a useful piece of exter- 
nal product behavior. Product transactions are atomic product functions. 
The list of desired product functions, possibly documented by a function 
refinement tree and data flow diagrams to specify the effect of a function, is 
usually called the funct ion  view of the system. A specification of tempo- 
ral properties of these functions is usually called the behav io r  v iew of the 
system. 

- According to the principle of subject-orientation, the state of a software 
product contains a representation of the subject domain. This means that 
the software state between different product transactions contains a set of 
su r roga te s  that represents the set of currently existing subjects. Following 
JSD [13], we use the subject domain model as a guideline to find a concep- 
tual decomposition of the software product into surrogates, which we call 
the concep tua l  m o d e l  of the product. The conceptual model may indicate 
other relevant components of the product, that have no counterpart in the 
subject domain, such as function objects in a JSD model of the product, or 
control- and interface objects in an Objectory/OOSE model of the prod- 
uct [15, 17]. In data-intensive systems, a conceptual model of the surrogates 
in the software product is often called the da t a  v iew of the product, be- 
cause it defines the meaning of the surrogates (data) in terms of the subject 
domain. 

There is a relationship between the functions of the product and its conceptual 
decomposition: Every function must be realized by the collaboration of its con- 
ceptual components. This can be represented by the well-known t raceab i l i ty  
tables  of systems engineering, which set off the product functions against prod- 
uct components. An entry in this table shows the role that the component plays 
in the realization of this function [8, page 192], [20]. Such a table shows in basic 
tabular format what the collaboration diagrams of object-oriented analysis show 
in more detail in graph format. 4 

Note that the conceptual model mentioned above is independent of the phys-  
ical d e c o m p o s i t i o n  of the system into processors and processor connections 

4 The term collaboration diagram comes from Wirfs-Brock [25]. Booch calls them ob- 
ject diagrams [4, page 208] and in Fusion they are called object interaction graphs [7, 
page 63]. In the UML they are called collaboration diagrams [5]. 
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or pre-existing software components in the implementation environment. The 
components of the conceptual decomposition must be allocated to the compo- 
nents of the physical decomposition. This can be represented by a second kind of 
traceability table, in which conceptual components are linked to physical com- 
ponents. 

In the next two sections, we illustrate the use of semiformal techniques to 
specify the operating environment and subject domain and show how the prod- 
uct requirements can be specified formally using Albert in a way that yields a 
coherent formal-semiformal specification. 

3 S e m i f o r m a l  S p e c i f i c a t i o n  T e c h n i q u e s  

In this section, we present some of the semiformal specification techniques in 
TRADE, using the VoD system as an example. All names introduced in TRADE 
diagrams can be documented informally in a specification dictionary. This is not 
illustrated here. The reader is warned that the TRADE techniques contain no 
surprises. An effort has been made to stay in the middle of the road. Simplicity 
and familiarity have been preferred above complexity and novelty. 

3.1 The  O p e r a t i n g  E n v i r o n m e n t  

The operating environment of the VoD system consists of end-users and several 
service providers. It can be represented in TRADE by a commun ica t i on  di- 
agram,  which is an undirected graph whose nodes represent components and 
whose edges represent communication connections between components. A com- 
munication diagram of an operating environment is also called a context diagram 
(fig. 1). The context diagram can be used to keep track of the transactions of the 
product with its environment. For example, all leaves of a fully grown function 
refinement tree of the product (treated next) should correspond to interactions 
between the product and external entities in the context diagram. 

Set 

Net  

r~ce 

~ofk 

Fig. 1. The operating environment of the VoD system. 
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3.2 Desired Product  Functions 

The context diagram can be used to find a list of required product functions. For 
the VoD system, it is convenient to group the functions according to the external 
entity for whom these functions are performed, For presentation purposes, it is 
convenient to organize the functions into a func t ion  ref inement  tree.  (Due 
to lack of space, we do not give an example here.) Such a tree says nothing 
about any decomposition of the VoD system. It is merely a convenient way of 
organizing the functions that the system must have for various external entities. 
It corresponds to the horizontal dimension of the magic square, not to the vertical 
dimension. 

3.3 The  Subjec t  E n v i r o n m e n t  

The subject environment of the VoD system is the part of the world about which 
data is stored and manipulated. Figure 2 shows a class-relat lonship diagram 
(CRD) of some of the data relevant for the VoD system. It stays close to well- 
known conventions but contains some adaptations motivated by ease of use as 
well as formalizability. A rectangle represents an object class or a link class. A 
link class is also called a relationship. A relationship rectangle is connected to 
its components by dashed arrows. Each rectangle in a CRD must contain a class 
name, followed optionally by a list of attributes of instances, followed optionally 
by a list of transactions that may change the state of an instance. Note that 
objects and links may be used to represent subjects in the subject domain or 
their surrogates in the system. 

V~EWlNG 
c~tegory CATEGORY Wewi~ Sessk~l 

pausing: ~ e ~ , ~  

~'~-~I Resetva~on 
Dale reserved 

Fig. 2. CRD of part of the subject domain of the VoD system. Create Viewing Category 
is an action that creates a link between the viewing session and a movie category. 

Any relationship can be represented by a box, but binary relationships can 
alternatively be represented by a line or arrow. A many-many relationship can 
be represented by an undirected line and a many-one relationship can be rep- 
resented by an arrow. In the line and arrow representations, local attributes 
or transactions of relationship instances cannot be shown (but they may be 
present). 

A relationship can itself be related to other elements. An example is the 
VIEWING_CATEGORY relationship, that is created when a user selects a cate ~ 
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gory during a viewing session. Relationships may be annotated, as usual, with 
cardinality properties and with the role names of the components. 

The difference between a CRD and a communication diagram is that a com- 
munication diagram represents possible communications between class instances, 
whereas a CRD represents the way class instances are identified. An object class 
box in a CRD says that the class instances are identified independently. A rela- 
tionship box (or line or arrow) says that the relationship instances are identified 
by tuples of component identifiers. 

3.4 S ys t e m D e c o m p o s i t i o n  and Implementat ion  Environment 

The VoD system implementation will be distributed over different processors, 
network and devices. This physical decomposition is given in advance of devel- 
opment. It is an important constraint that can be represented by an extension of 
the context diagram that shows the major hardware components on which the 
VoD software must run (fig. 3). Just like the context diagram, this is a commu- 
nication diagram. The connections represent possible communications. 

prov ider  provider  prov ider  

Leve l  o n e  
qetew=zy 

V i d e o  s e r v e r  

s e n d  Cat~gory  {iSt 
J send  m o v i e  list 

s e n d  M P E G  rece ive  M P E G  
etc,  send  < P E G  

etc.  

End user  

Set  top b o x  

V o D  s y s t e m  

I 

J 

current  d isp lay  
on 
~ a t e g o r y  list 
m o v i e  fist 

display start  s c r e e n  
rece ive  c a t e g o r y  list 
d isplay  c a t e g o r y  list 
rece ive  m o v i e  list 
d isplay  mov ie  list 
start  m o v i e  
etc.  

\ 
A D S L  A P O N  

( A s y m m e t r i c  digital (ATM ~assive 
subscr iber  line) optival network)  

I S D N  P S T N  
( In tegra ted  serv ice  (Public swi tched 

dlg~al  network)  t e l e p h o n e  net%york} 

Fig. 3. Simplified physical decomposition of the VoD system in its operating environment 
and implementation environment. 

The ASDL and APON external entities are part of the implementation envi- 
ronment. They exist in advance of development and will continue to exist during 
and after development. It is a constraint that the set top box and level one 
gateway must communicate through these networks. They are connected to two 
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additional external entities, ISDN and PSTN. These are shown because the VoD 
system implementation should not cause any interference with these entities. 
This is a requirement of nomfeature interaction. 

The communication diagram of fig. 3 can be used to identify the actor classes 
of an Albert specification of VoD requirements. Later, we give an example spec- 
ification of the set-top-box (STB) component as an Albert agent. 

3.5 Al loca t ion  and  F l o w d o w n  

Both the required functions of the VoD system and the conceptual objects manip- 
ulated by the system must be allocated to physical components of the system. 
Figure 4 shows part of a table that allocates and flows down the functions of 
the VoD system to functions of the physical components of the system. This 
fiowdown can be further illustrated by showing message sequence charts of the 
communication between the physical components of the system. (Due to lack of 
space, this is not shown here.) Note that the ADSL and APON networks are 
not shown in the flowdown because these components act as channels through 
which messages are passed undisturbed. 

The data specified by the CRD is stored at several places in the system as 
shown in the allocation table of fig. 5. This is explained by the fact that when a 
set top box is switched on, data about movies and movie categories is downloaded 
from the video server to the set top box. Billing data is maintained by the level 
one gateway. 

4 Albert Specification 

Albert II (called "Albert" for short) is a formal specification language based 
upon real-time temporal logic [3, 2]. It has been validated in the specification of 
non-trivial systems like Computer Integrated Manufacturing [10] and telecom- 
munications systems [11]. Albert organizes its specification around the agents 
identified in the operating environment, where an agent  is an active entity that 
can perform or suffer actions that change or maintain the state of knowledge 
about the external world and/or the states of other agents. Actions are per- 
formed by agents to discharge contractual obligations expressed in terms of local 
constraints, applicable to the agents itself, and cooperation constraints, that ap- 
ply to the interaction between agents. A specification in Albert is made up of 
(i) a graphical component in terms of which is declared the vocabulary of the 
application to be considered and of (ii) a textual component in terms of which 
the specification of the admissible behaviors of agents is constrained through 
logical formulas. Herafter, we illustrate the application of the language on the 
specification of the Select-category service identified in the hierarchy presented 
in fig. 4. 
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i t l l c I  
VOD lylt@rfl ~oot  i~i 

ConluJ met Po~er on STB Select 

boot 
disolay weicome select secvice 

VOD S, t  Top Box i lo~ se~ce  menu Fc.ad sppI~c.~tion 

VOD Level Ore  actlvat e c~ntrol oh. 
g~teway dow~ad service menu actPza~e MPEG ch 

transpo,l a~l~caeqn 

access con~ol 
VOD video Senter atloc.~t e resources 

download apphcat=on 

Iolect  
category 

Select 

~etec~ cat egon/ 

=elect 
movt l  play ~auae 

5eFect Play Pause 

select mowe display MPEG $~earn freeze current screen 
request movie display VCR ~spo display VCR Icgo 
display MPEG stream monitor VCR corn. monitor VC~  corn 
diSPlay VCR logo play ~ause 

~'az~sport request tra~sE:~rl r eques~ 
accounling transport MPEG transport requesl 

transpo~ MPEG 

con ~'~l & cOOrd, control & coord, co~kcl & coord. 
mc~e co~Irol processVCR r equesl ~rocessVCR request 
load movie play normal speed suspend playback 
~ay normal speed end detec~on 

~n~  MPEG 

Fig. 4. Allocation and flowdown.of some of the functions of the VoD system to functions 
of its components. 

VIDEO SERVER 

LEVEL 1 GATEWAY 

SET TOP BOX 

CATEGORY MOVIE VIEWING RESERVATION USER STB ADDRESS BILL 

X X X X 

X X X X X 

X X 

Fig. 5. Allocation of conceptual components of the VoD system to its physical components. 

4.1 Graphical  Dec larat ions  

Figure 6 contains part of the graphical declaration of the VoD system according 
to the Albert conventions. Each agent is represented by an oval and multiplicity 
is indicated by shadowing an oval. Note that this declaration is derived from the 
context diagram of fig. 1. Figure 6 also declares the internal structure of the VoD 
agent. It declares the state structure and the actions that may happen during 
the lifetime of an agent and which may change the state of the agent. State 
components are represented by rectangles and actions are represented by ovals. 
State components are typed and actions can have typed arguments. Types may 
vary from simple data types to complex data types (recursively built using the 
usual data type constructors). The information provided in fig. 6 is informally 
rephrased in the first part (Declarations) of fig. 7, playing the role of data dic- 
tionary. However, from graphical conventions used in fig. 6, we also know that 
Movies and Display are tables respectively indexed on MOVIE and ENDUSER 
(the type associated the identity of the End-User agent) while List-cat corre- 
sponds to a set of CATEGORY and is derived (see below) from the Movies 
component. 

In addition, the graphical notation also expresses visibility relationships link- 
ing agents to the outside. Lines on fig. 6 show (i) how agents make information 
visible to other agents (e.g., the Movies component is made visible by the Con- 
tent Provider to the VoD) and (ii) how external agents may influence the agent's 
behaviour through exportation of information (the VoD is influenced by the 
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Vod ~ -  " ~ Content-Provider 
End-User ~ " ~  

~l / I ~ I~'r"",,~ / I CATEGORY 
Display-Services Display [ ] 

Fig. 6. The graphical declaration of the VoD system. 

Select-Category action of the EndUser agent). 
Finally, it is important to note that, in fig. 6, all the information character- 

ising the VoD system is shared by the VoD with its environment. This typically 
results from our operating environment perspective focussing on the role of the 
product in terms of the external entities. 

4.2 Classif ication of  P r o p e r t i e s  

Besides graphical declarations, textual constraints are used for pruning the (usu- 
ally) infinite set of possible lives associated with the agents of a system. These 
possible lives will respect different constraints classified in terms of der ived  and  
local constraints on the internal behavior of the agent and c o o p e r a t i o n  con- 
straints on the interaction of agents within the society. To guide the requirements 
engineer in the elicitation and structuring of requirements, the constraints are 
further classified into categories, for each with a characteristic t e m p l a t e  is de- 
fined. For example, on fig. 7, we list a fragment of specification of requirements on 
the VoD, listing the following categories of constraints: De r ived  C o m p o n e n t s ,  
Initial  Valuation,  S ta t e  Behaviour ,  Effects of  Act ions ,  Ac t ion  C o m p o -  
sition,etc. The template for S t a t e  b e h a v i o u r  axioms expresses restrictions 
on the possible agent's behavior only in terms of the values that can be taken 
by its state components, while the template for Ac t ion  C o m p o s i t i o n  axioms 
expresses restrictions only in terms of admissible sequences of actions/events. 
Details about the different templates of the Albert language fall outside of this 
paper and are given elsewhere [3]. 

The informal comments in fig. 7 should allow the reader to judge the ex- 
pressiveness and naturalness of the language. As pointed out before, informal 
comments that paraphrase the formal constraints can be used to validate the 
specification with customers. These comments could correspond to sentences in 
a natural language specification of requirements, for example. 
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DECLARATIONS 

STATE COMPONENTS 
ovies denotes the information sent  by the d i f f e r e n t  Content-Providers shout the sve i l sb l e  movies 
d the category to  which they belong. 

|L i s t -Ca t  i s  �9 (derived) component syntheeining the l i s t  of categories for  uhich movies are proposed. 

~ i sp luy  i s  u s o c i a t e d  with the s t a t s  of the v iee ing  session of each End-User. The ' . '  denotes 
has t h i s  sta't.e can be undefined a t  some moment, t h i s  denotes thn t  the VeD i s  not in  use by the End-User. 

ACTIONS 

~ e l e c t - m o v i e - s e r v i c e  i s  the a c t i o n  t r iEge red  by an End-User when he/she v a t s  ~o access ~ a movie s e r v i c e .  

~ lec~-Categery in the act ion t r i gge red  by an End-User when he/she se lec ts  the ce~egory for  ehich 
/she des i res  t e  censu l t  a v a i l a b l e  movies. 
splay-Services ie the Action tri~ered by the Vod in order to display the list of available 
t r i c e s  f o r  Lu End-User. 

BASIC CONSTRAINTS 

DERIVED COMPONENTS 

|The l i s t  of cemeteries i s  derived from the information s i ren  by the Con~ent-Providers (1). 

(c 6 List-Cat Le/trightarrow B Mov]es.cp: c 6 Codom(Alovies.cp)) 
LOCAL CONSTRAINTS 
INITIAL VALUATION 

|At the startlng of the VoD, there is no on-going viewing session (2). 

Displau = uNoEe 

STATE BEHAVIOUR 

i The display of the catesories list (ic) for �9 given End-User (eu) remains until the display of services 
l i s t  ( e l )  e r  o f  the movies l i s t  ( : 1 )  ( 3 ) .  

Display[eu] = Ic U (Displau = se V Display[eu] = ml) 
~Fhe display of the categeries list (Ic) to a given End-User (eu) does not last for more ~han 2' (4). 

-~ 0>2, Display[eu] = Ic 
EFFECTS OF ACTIONS 

~l~ e Select-Movie-Serene menu, originated from ~he E~d-Ueer (eu), resnl~s in the display of the category 
st (io) fur ~hie End-User (5). 

eu.Select-Movie-Service: Disp]ey[eu] := List-Cat 
CAPABILITY 

I The display of the services list (el) should occur .hen ~he display of categories list is made for 
1 minute (6). 

XO (Display-services-List(eu) / m=1~. Disp]ay[eu] = ]c ) 
ACTION COMPOSITION 

i The Select-Nevie-service action brought by a~ End-User has to be followed by s Select-Category 
action made by this End-User er the Display-Services-List (7). 

Ca&egory-Selection ~ eu.Select-Movie-Service ; (eu.Select-Category(c) 6) Display-Services-List) 
ACTION DURATION 

iThe durat ion of ~he Category-Select ion process should be l e ss  than 1' (8). 

0 < I CateKory'Selection I <- i' 
COOPERATION CONSTRAINTS 
ACTION PERCEPTION 

I T~e VoD por t i e re s  the  Select-Category act ion brought by an End-User (eu) i f  the selected 
category (c) is one of those proposed in the Catgory-List (9). 

7~IC (eu.Select-Category(c) / c 6 List-Cat ) 
STATE PERCEPTION 

mThe VoD always perceives  the information of movies brough~ by Conten~-Providere (cp) (10). 

X~C ( cp.Movies / ,,0~ ) 
ACTION INFORMATION 

|The VoD aluays infer~e the end-user of a Display-Services-List action (Ii). 

2I~C ( Display-Services.eu / ,,us ) 
STATE INFORMATION 

I Ths VoD only shout,  to  the End-User (eu), h i s / he r  own viewing session (prodided ths~ ~hie one i s  
on-going) (12 ) .  

If)C ( Display[eu].eu' / eu' = eu A Display[eu] 9& u.o~ ) 

Fig. 7. Albert II specification of some properties of the VoD. 
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5 Discussion and Conclusions 

Our experience with formal techniques in the 2Rare project is that their use 
allows the discovery of errors in the requirements document. A ratio was es- 
tablished showing that the total amount of time spent in writing the formal 
specification was marginal (the ratio established it to 10%) with respect of the 
total of time devoted to the correction of the discovered errors. The extra time 
required to use formal techniques is on the average the same as the time needed 
to fix 12 requirements problems. An important conclusion from the project is 
that the introduction of semiformal or formal techniques for requirements speci- 
fication must be guided by the maturity level of the software organization. More 
information on the lessons learned during the project can be found at the URL 
http : //w-ww. info. fundp, ac. be/phe/2rare, html. 

To summarize, we have shown that the TRADE framework can be used to 
write coherent specifications of requirements in semiformal (diagrammatic) and 
formal languages. This approach was illustrated with some examples from one 
of the applications studied in the 2RARE project, using Albert II as a formal 
specification language. 
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