
Integrating Semi-formal and Formal
Requirements*

Roel Wieringa 1, Eric Dubois 2, Sander Huyts ~

1 Faculty of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan
1081a, 1081HV Amsterdam, the Netherlands. Email: roelw@cs.vu.nl.

2 Facult~s Universitaires Notre-Dame de la Paix, Institut d' Informatique, Rue
Grandgaguage 21, B-5000 Namur, Belgium. Emaih edu@info.fundp.ac.be.
Work performed at Belgacom Research, Development and Engineering Bd.

E.Jacqmain 177 - 12T83 B1030 Brussels, Belgium. Now at Cambridge technology
Partners, Apollolaan 15, 1077 AB Amsterdam, the Netherlands. Emaih

sander.huyts~ctp.com.

Abstract . In this paper, we report on the integration of informal, semi-
formal and formal requirements specification techniques. We present a
framework for requirements specification called TRADE, within which
several well-known semiformal specification techniques are placed. TRADE
is based on an analysis of structured and object-oriented requirements
specification methods. In this paper, we combine TRADE with the logic-
based specification language Albert II and show that this leads to a co-
herent formal and semiformal requirements specification. We illustrate
our approach with examples taken from a large distributed telecommu-
nication application case study performed in the context of the Esprit
project 2RARE.

1 Introduct ion

The field of requirements specification techniques has reached a state where it
is not desirable to introduce yet another technique without indicating how this
technique can be combined with other techniques in a coherent specification of
software requirements. Each software product can be described from many dif-
ferent perspectives and no technique can be used for the specification of software
requirements from all these perspectives. Consequently, the utility of a require-
ments specification technique depends for a considerable part on the way in
which its relationship to other specification techniques is defined, used for the
specification of requirements from other perspectives.

In particular, it is important to define ways to integrate semiformal and for-
real specification techniques. By semiformal techniques we mean diagram
techniques and tabular techniques that present information in structured form.
By formal techniques we mean mathematics, logic or algebra, in which the

* Supported by Esprit Project 2RARE, contractnr. 20424.

20

syntax, semantics and manipulation rules for the specification language are ex-
plicitly defined. By informal techniques we mean unrestricted natural lan-
guage. The majority of specifications in practice will use a mix of these three
techniques. For example, an informal requirements specification may be illus-
trated by a number of semiformal diagrams and formal techniques may be used
for critical or complex parts of the requirements, where the consequence of errors
in the requirements will be severe.

In the Esprit project 2RARE (Two Real Application of Requirements Engi-
neering), requirements for three complex distributed critical applications are
specified using a variety of specification techniques [1], including the formal
specification language Albert II [3], the object-oriented specification language
Oblog [18] and some semiformal, diagram-based techniques. In order to combine
these specification techniques, we need a general framework that allows us to
state which part of required w properties we specify by which technique,
and what the relationships between the different parts of the specification are. In
this paper, we present such a framework and show how it can be used to combine
Albert II with a number of well-known semiformal requirements specification
techniques. This result is not only relevant for Albert II but for any formal spec-
ification technique that should be combined with semiformal techniques. The
framework, called TRADE (Toolkit for Requirements And Design Engineering),
is based upon an analysis of structured and object-oriented requirements speci-
fication methods [22, 21, 23]. We use one of the systems specified at Belgacom,
a VoD system, as a running example [24]. A VoD system consists of a set top
box located in the home of a customer, connected to the television set of the
customer. The set top box offers roughly the functionality of a video player. It
is connected through a telephone network to a video server located at a service
provider. Through the set top box, the consumer can request videos to be shown
on his or her television.

We start in section 2 with the methodological framework of TRADE. In sec-
tion 3, we present some of the semiformal tools in TRADE, using the Belgacom
VoD application as an example. In section 4 we present Albert II specifications
of parts of this system and show how these are connected to the semiformal
specification.

Section 5 winds up the paper with a discussion of general results gathered in
the 2RARE project and and some topics for further work.

2 T h e M e t h o d o l o g i c a l F r a m e w o r k o f T R A D E

In this section, we briefly sketch the major principles of TRADE. Because all
elements of TRADE are borrowed (with minor adaptations) from the literature,
sources and related approaches will be acknowledged as we go.

2.1 Sys tem Environments

The central methodological principle in TRADE is the principle of environ-
m e n t model ing: in order to model the requirements on a product, we must

2]

model the desired situation in the environment of the product. The reason for
this is that any product exists in order to provide a service to its environment.
This service may be to make certain behavior in the environment possible or
to enforce certain behavior in the environment. There are many environments
of the product that may be relevant during a particular development process:
examples are the physical, social, financial and normative environments. Four
environments are singled out in TRADE as being important in every software
product development.

- The p r o b l e m e n v i r o n m e n t is the place and time of the world in which the
problem exists to which the product must provide a solution.

- The so lu t ion e n v i r o n m e n t is the place and time of the world in which
the product exists and contributes to a solution of the identified problems.
Synonyms used in TRADE are operating environment and usage environ-
ment. The elements of the solution environment needed to understand the
behavior of the product are called ex te rna l entit ies.

- The i m p l e m e n t a t i o n p l a t fo rm is the technical infrastructure on top of
which the product is to be built. It includes the operating system, database
management systems, software libraries and legacy components on top of
which the desired software product is to be built. It does not include compo~
nents that have to be built specially to satisfy required product properties.

- The s u b j e c t doma in of a software product is the part of the world that
is represented in the software product. Synonyms are subject environment
and Universe of Discourse (UoD). The elements of the subject domain repre-
sented by the product are called subjec ts . In TRADE we use the hypothesis
of sub jec t -o r i en t a t i on , which says that the state of a software product al-
ways contains a representation of the state of the subject domain.

It is important to distinguish a specification of properties of the environment of
the product and the product specification itself. The former expresses how the
environment will behave in presence of the product [14] while the latter focusses
on the description of the behavior of the product. Similar distinctions are made
in the Esprit project Nature [16]. The concept of external entity is well-known
from structured analysis [9]. The importance of subject-orientation for modeling
data-intensive system requirements was pointed out by Chen [6]. Jackson [13]
showed that subject-orientation is useful for a significant number of control-
intensive systems as well. We Should note that the operating environment and
subject domain a software system may overlap.

2.2 S y s t e m P r o p e r t i e s

A second methodological principle in TRADE is the logical independence of
the decomposition of a system into subsystems and the refinement of system
functions into subfunctions. This principle originates from general systems the-
ory and is used elsewhere as the basis for a framework for system development
methods [22]. Harel and Pnueli [12] represent this by what they call the magic

22

square , which sets off a behavior refinement dimension against a system de-
composition dimension. In general, a development process advances by reduc-
ing uncertainty about the required decomposition and required behavior of the
product simultaneously. In this process, we may meander in any way through
the square and we may use other decomposition principles besides the principle
of functional decomposition.

At any point in the development process, we have reached a level of certainty
about two sets of desired system properties: requirements on external system
behavior (the horizontal dimension of the magic square) and constraints on sys-
tem decomposition (the vertical dimension). Properties of external behavior can
be classified as either properties of observable states or properties of observ-
able state transitions. This leads us to a classification of three kinds of system
properties: properties of states, properties state evolution and properties of de-
composition. Each subsystem 'in turn may be characterized in the same way by
specifying its states, state changes and internal decomposition.

We now apply this classification of system properties to the product as well
as to its environments.

2.3 E n v i r o n m e n t P roper t i e s

Subject domain properties. The subject domain can be modeled by representing
its decomposition into subjects and their connections. If there are many subjects,
as in the case of data-intensive systems, we usually do this by identifying subject
types and connection types and we use one of the many variants of the entity-
relationship notation to represent this. If there are a few subjects, as in many
control-intensive systems, we can do this at the instance level by drawing a graph
whose nodes represent subjects and whose edges represent connections.

Operating environment specification. The operating environment can be modeled
by a graph in which one node represents the product and in which the other nodes
represent external entities. Figure 1 shows such a graph, discussed in more detail
later. The edges represent connections through which the nodes communicate.
We then get an e x t e n d e d context d iagram as defined by Jackson [14], which
is a generalization of the convention used in structured analysis.

Implementation platform properties In a software requirements specification, the
implemtation platform plays a role in as far as this imposes constraints on the
physical decomposition of the product. Constraints may also follow from the
properties of the external entities. In a distributed system, an important con-
straint is that the system is implemented on a distributed collection of physical
nodes. This network is embedded in the decomposition of the operating environ-
ment into external entities. For example, the VoD system must be implemented
in a network consisting of a collection of set top boxes, the telephone network,
a gateway and a video server.

23

2.4 P r o d u c t Specif icat ion

The models of the subject environment and operating environment have a simple
relationship with a model of the desired properties of the product along each of
the two dimensions of the magic square. Briefly, the model of the operating
environment can be used to specify desired system functions, and the model of
the subject domain can be used to represent a conceptual system decomposition.

- Because each interaction between an external entity and the product is a
desired product function, the context diagram of the operating environment
gives us a model of desired system behavior. This is usually given by a list of
desired p r o d u c t funct ions, where each function is a useful piece of exter-
nal product behavior. Product transactions are atomic product functions.
The list of desired product functions, possibly documented by a function
refinement tree and data flow diagrams to specify the effect of a function, is
usually called the funct ion view of the system. A specification of tempo-
ral properties of these functions is usually called the behav io r v iew of the
system.

- According to the principle of subject-orientation, the state of a software
product contains a representation of the subject domain. This means that
the software state between different product transactions contains a set of
su r roga te s that represents the set of currently existing subjects. Following
JSD [13], we use the subject domain model as a guideline to find a concep-
tual decomposition of the software product into surrogates, which we call
the concep tua l m o d e l of the product. The conceptual model may indicate
other relevant components of the product, that have no counterpart in the
subject domain, such as function objects in a JSD model of the product, or
control- and interface objects in an Objectory/OOSE model of the prod-
uct [15, 17]. In data-intensive systems, a conceptual model of the surrogates
in the software product is often called the da t a v iew of the product, be-
cause it defines the meaning of the surrogates (data) in terms of the subject
domain.

There is a relationship between the functions of the product and its conceptual
decomposition: Every function must be realized by the collaboration of its con-
ceptual components. This can be represented by the well-known t raceab i l i ty
tables of systems engineering, which set off the product functions against prod-
uct components. An entry in this table shows the role that the component plays
in the realization of this function [8, page 192], [20]. Such a table shows in basic
tabular format what the collaboration diagrams of object-oriented analysis show
in more detail in graph format. 4

Note that the conceptual model mentioned above is independent of the phys-
ical d e c o m p o s i t i o n of the system into processors and processor connections

4 The term collaboration diagram comes from Wirfs-Brock [25]. Booch calls them ob-
ject diagrams [4, page 208] and in Fusion they are called object interaction graphs [7,
page 63]. In the UML they are called collaboration diagrams [5].

24

or pre-existing software components in the implementation environment. The
components of the conceptual decomposition must be allocated to the compo-
nents of the physical decomposition. This can be represented by a second kind of
traceability table, in which conceptual components are linked to physical com-
ponents.

In the next two sections, we illustrate the use of semiformal techniques to
specify the operating environment and subject domain and show how the prod-
uct requirements can be specified formally using Albert in a way that yields a
coherent formal-semiformal specification.

3 S e m i f o r m a l S p e c i f i c a t i o n T e c h n i q u e s

In this section, we present some of the semiformal specification techniques in
TRADE, using the VoD system as an example. All names introduced in TRADE
diagrams can be documented informally in a specification dictionary. This is not
illustrated here. The reader is warned that the TRADE techniques contain no
surprises. An effort has been made to stay in the middle of the road. Simplicity
and familiarity have been preferred above complexity and novelty.

3.1 The O p e r a t i n g E n v i r o n m e n t

The operating environment of the VoD system consists of end-users and several
service providers. It can be represented in TRADE by a commun ica t i on di-
agram, which is an undirected graph whose nodes represent components and
whose edges represent communication connections between components. A com-
munication diagram of an operating environment is also called a context diagram
(fig. 1). The context diagram can be used to keep track of the transactions of the
product with its environment. For example, all leaves of a fully grown function
refinement tree of the product (treated next) should correspond to interactions
between the product and external entities in the context diagram.

Set

Net

r~ce

~ofk

Fig. 1. The operating environment of the VoD system.

25

3.2 Desired Product Functions

The context diagram can be used to find a list of required product functions. For
the VoD system, it is convenient to group the functions according to the external
entity for whom these functions are performed, For presentation purposes, it is
convenient to organize the functions into a func t ion ref inement tree. (Due
to lack of space, we do not give an example here.) Such a tree says nothing
about any decomposition of the VoD system. It is merely a convenient way of
organizing the functions that the system must have for various external entities.
It corresponds to the horizontal dimension of the magic square, not to the vertical
dimension.

3.3 The Subjec t E n v i r o n m e n t

The subject environment of the VoD system is the part of the world about which
data is stored and manipulated. Figure 2 shows a class-relat lonship diagram
(CRD) of some of the data relevant for the VoD system. It stays close to well-
known conventions but contains some adaptations motivated by ease of use as
well as formalizability. A rectangle represents an object class or a link class. A
link class is also called a relationship. A relationship rectangle is connected to
its components by dashed arrows. Each rectangle in a CRD must contain a class
name, followed optionally by a list of attributes of instances, followed optionally
by a list of transactions that may change the state of an instance. Note that
objects and links may be used to represent subjects in the subject domain or
their surrogates in the system.

V~EWlNG
c~tegory CATEGORY Wewi~ Sessk~l

pausing: ~ e ~ , ~

~'~-~I Resetva~on
Dale reserved

Fig. 2. CRD of part of the subject domain of the VoD system. Create Viewing Category
is an action that creates a link between the viewing session and a movie category.

Any relationship can be represented by a box, but binary relationships can
alternatively be represented by a line or arrow. A many-many relationship can
be represented by an undirected line and a many-one relationship can be rep-
resented by an arrow. In the line and arrow representations, local attributes
or transactions of relationship instances cannot be shown (but they may be
present).

A relationship can itself be related to other elements. An example is the
VIEWING_CATEGORY relationship, that is created when a user selects a cate ~

26

gory during a viewing session. Relationships may be annotated, as usual, with
cardinality properties and with the role names of the components.

The difference between a CRD and a communication diagram is that a com-
munication diagram represents possible communications between class instances,
whereas a CRD represents the way class instances are identified. An object class
box in a CRD says that the class instances are identified independently. A rela-
tionship box (or line or arrow) says that the relationship instances are identified
by tuples of component identifiers.

3.4 S ys t e m D e c o m p o s i t i o n and Implementat ion Environment

The VoD system implementation will be distributed over different processors,
network and devices. This physical decomposition is given in advance of devel-
opment. It is an important constraint that can be represented by an extension of
the context diagram that shows the major hardware components on which the
VoD software must run (fig. 3). Just like the context diagram, this is a commu-
nication diagram. The connections represent possible communications.

prov ider provider prov ider

Leve l o n e
qetew=zy

V i d e o s e r v e r

s e n d Cat~gory {iSt
J send m o v i e list

s e n d M P E G rece ive M P E G
etc, send < P E G

etc.

End user

Set top b o x

V o D s y s t e m

I

J

current d isp lay
on
~ a t e g o r y list
m o v i e fist

display start s c r e e n
rece ive c a t e g o r y list
d isplay c a t e g o r y list
rece ive m o v i e list
d isplay mov ie list
start m o v i e
etc.

\
A D S L A P O N

(A s y m m e t r i c digital (ATM ~assive
subscr iber line) optival network)

I S D N P S T N
(In tegra ted serv ice (Public swi tched

dlg~al network) t e l e p h o n e net%york}

Fig. 3. Simplified physical decomposition of the VoD system in its operating environment
and implementation environment.

The ASDL and APON external entities are part of the implementation envi-
ronment. They exist in advance of development and will continue to exist during
and after development. It is a constraint that the set top box and level one
gateway must communicate through these networks. They are connected to two

27

additional external entities, ISDN and PSTN. These are shown because the VoD
system implementation should not cause any interference with these entities.
This is a requirement of nomfeature interaction.

The communication diagram of fig. 3 can be used to identify the actor classes
of an Albert specification of VoD requirements. Later, we give an example spec-
ification of the set-top-box (STB) component as an Albert agent.

3.5 Al loca t ion and F l o w d o w n

Both the required functions of the VoD system and the conceptual objects manip-
ulated by the system must be allocated to physical components of the system.
Figure 4 shows part of a table that allocates and flows down the functions of
the VoD system to functions of the physical components of the system. This
fiowdown can be further illustrated by showing message sequence charts of the
communication between the physical components of the system. (Due to lack of
space, this is not shown here.) Note that the ADSL and APON networks are
not shown in the flowdown because these components act as channels through
which messages are passed undisturbed.

The data specified by the CRD is stored at several places in the system as
shown in the allocation table of fig. 5. This is explained by the fact that when a
set top box is switched on, data about movies and movie categories is downloaded
from the video server to the set top box. Billing data is maintained by the level
one gateway.

4 Albert Specification

Albert II (called "Albert" for short) is a formal specification language based
upon real-time temporal logic [3, 2]. It has been validated in the specification of
non-trivial systems like Computer Integrated Manufacturing [10] and telecom-
munications systems [11]. Albert organizes its specification around the agents
identified in the operating environment, where an agent is an active entity that
can perform or suffer actions that change or maintain the state of knowledge
about the external world and/or the states of other agents. Actions are per-
formed by agents to discharge contractual obligations expressed in terms of local
constraints, applicable to the agents itself, and cooperation constraints, that ap-
ply to the interaction between agents. A specification in Albert is made up of
(i) a graphical component in terms of which is declared the vocabulary of the
application to be considered and of (ii) a textual component in terms of which
the specification of the admissible behaviors of agents is constrained through
logical formulas. Herafter, we illustrate the application of the language on the
specification of the Select-category service identified in the hierarchy presented
in fig. 4.

28

i t l l c I
VOD lylt@rfl ~oot i~i

ConluJ met Po~er on STB Select

boot
disolay weicome select secvice

VOD S, t Top Box i lo~ se~ce menu Fc.ad sppI~c.~tion

VOD Level Ore actlvat e c~ntrol oh.
g~teway dow~ad service menu actPza~e MPEG ch

transpo,l a~l~caeqn

access con~ol
VOD video Senter atloc.~t e resources

download apphcat=on

Iolect
category

Select

~etec~ cat egon/

=elect
movt l play ~auae

5eFect Play Pause

select mowe display MPEG $~earn freeze current screen
request movie display VCR ~spo display VCR Icgo
display MPEG stream monitor VCR corn. monitor VC~ corn
diSPlay VCR logo play ~ause

~'az~sport request tra~sE:~rl r eques~
accounling transport MPEG transport requesl

transpo~ MPEG

con ~'~l & cOOrd, control & coord, co~kcl & coord.
mc~e co~Irol processVCR r equesl ~rocessVCR request
load movie play normal speed suspend playback
~ay normal speed end detec~on

~n~ MPEG

Fig. 4. Allocation and flowdown.of some of the functions of the VoD system to functions
of its components.

VIDEO SERVER

LEVEL 1 GATEWAY

SET TOP BOX

CATEGORY MOVIE VIEWING RESERVATION USER STB ADDRESS BILL

X X X X

X X X X X

X X

Fig. 5. Allocation of conceptual components of the VoD system to its physical components.

4.1 Graphical Dec larat ions

Figure 6 contains part of the graphical declaration of the VoD system according
to the Albert conventions. Each agent is represented by an oval and multiplicity
is indicated by shadowing an oval. Note that this declaration is derived from the
context diagram of fig. 1. Figure 6 also declares the internal structure of the VoD
agent. It declares the state structure and the actions that may happen during
the lifetime of an agent and which may change the state of the agent. State
components are represented by rectangles and actions are represented by ovals.
State components are typed and actions can have typed arguments. Types may
vary from simple data types to complex data types (recursively built using the
usual data type constructors). The information provided in fig. 6 is informally
rephrased in the first part (Declarations) of fig. 7, playing the role of data dic-
tionary. However, from graphical conventions used in fig. 6, we also know that
Movies and Display are tables respectively indexed on MOVIE and ENDUSER
(the type associated the identity of the End-User agent) while List-cat corre-
sponds to a set of CATEGORY and is derived (see below) from the Movies
component.

In addition, the graphical notation also expresses visibility relationships link-
ing agents to the outside. Lines on fig. 6 show (i) how agents make information
visible to other agents (e.g., the Movies component is made visible by the Con-
tent Provider to the VoD) and (ii) how external agents may influence the agent's
behaviour through exportation of information (the VoD is influenced by the

29

Vod ~ - " ~ Content-Provider
End-User ~ " ~

~l / I ~ I~'r"",,~ / I CATEGORY
Display-Services Display []

Fig. 6. The graphical declaration of the VoD system.

Select-Category action of the EndUser agent).
Finally, it is important to note that, in fig. 6, all the information character-

ising the VoD system is shared by the VoD with its environment. This typically
results from our operating environment perspective focussing on the role of the
product in terms of the external entities.

4.2 Classif ication of P r o p e r t i e s

Besides graphical declarations, textual constraints are used for pruning the (usu-
ally) infinite set of possible lives associated with the agents of a system. These
possible lives will respect different constraints classified in terms of der ived and
local constraints on the internal behavior of the agent and c o o p e r a t i o n con-
straints on the interaction of agents within the society. To guide the requirements
engineer in the elicitation and structuring of requirements, the constraints are
further classified into categories, for each with a characteristic t e m p l a t e is de-
fined. For example, on fig. 7, we list a fragment of specification of requirements on
the VoD, listing the following categories of constraints: De r ived C o m p o n e n t s ,
Initial Valuation, S ta t e Behaviour , Effects of Act ions , Ac t ion C o m p o -
sition,etc. The template for S t a t e b e h a v i o u r axioms expresses restrictions
on the possible agent's behavior only in terms of the values that can be taken
by its state components, while the template for Ac t ion C o m p o s i t i o n axioms
expresses restrictions only in terms of admissible sequences of actions/events.
Details about the different templates of the Albert language fall outside of this
paper and are given elsewhere [3].

The informal comments in fig. 7 should allow the reader to judge the ex-
pressiveness and naturalness of the language. As pointed out before, informal
comments that paraphrase the formal constraints can be used to validate the
specification with customers. These comments could correspond to sentences in
a natural language specification of requirements, for example.

30

DECLARATIONS

STATE COMPONENTS
ovies denotes the information sent by the d i f f e r e n t Content-Providers shout the sve i l sb l e movies
d the category to which they belong.

|L i s t -Ca t i s �9 (derived) component syntheeining the l i s t of categories for uhich movies are proposed.

~ i sp luy i s u s o c i a t e d with the s t a t s of the v iee ing session of each End-User. The ' . ' denotes
has t h i s sta't.e can be undefined a t some moment, t h i s denotes thn t the VeD i s not in use by the End-User.

ACTIONS

~ e l e c t - m o v i e - s e r v i c e i s the a c t i o n t r iEge red by an End-User when he/she v a t s ~o access ~ a movie s e r v i c e .

~ lec~-Categery in the act ion t r i gge red by an End-User when he/she se lec ts the ce~egory for ehich
/she des i res t e censu l t a v a i l a b l e movies.
splay-Services ie the Action tri~ered by the Vod in order to display the list of available
t r i c e s f o r Lu End-User.

BASIC CONSTRAINTS

DERIVED COMPONENTS

|The l i s t of cemeteries i s derived from the information s i ren by the Con~ent-Providers (1).

(c 6 List-Cat Le/trightarrow B Mov]es.cp: c 6 Codom(Alovies.cp))
LOCAL CONSTRAINTS
INITIAL VALUATION

|At the startlng of the VoD, there is no on-going viewing session (2).

Displau = uNoEe

STATE BEHAVIOUR

i The display of the catesories list (ic) for �9 given End-User (eu) remains until the display of services
l i s t (e l) e r o f the movies l i s t (: 1) (3) .

Display[eu] = Ic U (Displau = se V Display[eu] = ml)
~Fhe display of the categeries list (Ic) to a given End-User (eu) does not last for more ~han 2' (4).

-~ 0>2, Display[eu] = Ic
EFFECTS OF ACTIONS

~l~ e Select-Movie-Serene menu, originated from ~he E~d-Ueer (eu), resnl~s in the display of the category
st (io) fur ~hie End-User (5).

eu.Select-Movie-Service: Disp]ey[eu] := List-Cat
CAPABILITY

I The display of the services list (el) should occur .hen ~he display of categories list is made for
1 minute (6).

XO (Display-services-List(eu) / m=1~. Disp]ay[eu] =]c)
ACTION COMPOSITION

i The Select-Nevie-service action brought by a~ End-User has to be followed by s Select-Category
action made by this End-User er the Display-Services-List (7).

Ca&egory-Selection ~ eu.Select-Movie-Service ; (eu.Select-Category(c) 6) Display-Services-List)
ACTION DURATION

iThe durat ion of ~he Category-Select ion process should be l e ss than 1' (8).

0 < I CateKory'Selection I <- i'
COOPERATION CONSTRAINTS
ACTION PERCEPTION

I T~e VoD por t i e re s the Select-Category act ion brought by an End-User (eu) i f the selected
category (c) is one of those proposed in the Catgory-List (9).

7~IC (eu.Select-Category(c) / c 6 List-Cat)
STATE PERCEPTION

mThe VoD always perceives the information of movies brough~ by Conten~-Providere (cp) (10).

X~C (cp.Movies / ,,0~)
ACTION INFORMATION

|The VoD aluays infer~e the end-user of a Display-Services-List action (Ii).

2I~C (Display-Services.eu / ,,us)
STATE INFORMATION

I Ths VoD only shout, to the End-User (eu), h i s / he r own viewing session (prodided ths~ ~hie one i s
on-going) (12) .

If)C (Display[eu].eu' / eu' = eu A Display[eu] 9& u.o~)

Fig. 7. Albert II specification of some properties of the VoD.

31

5 Discussion and Conclusions

Our experience with formal techniques in the 2Rare project is that their use
allows the discovery of errors in the requirements document. A ratio was es-
tablished showing that the total amount of time spent in writing the formal
specification was marginal (the ratio established it to 10%) with respect of the
total of time devoted to the correction of the discovered errors. The extra time
required to use formal techniques is on the average the same as the time needed
to fix 12 requirements problems. An important conclusion from the project is
that the introduction of semiformal or formal techniques for requirements speci-
fication must be guided by the maturity level of the software organization. More
information on the lessons learned during the project can be found at the URL
http : //w-ww. info. fundp, ac. be/phe/2rare, html.

To summarize, we have shown that the TRADE framework can be used to
write coherent specifications of requirements in semiformal (diagrammatic) and
formal languages. This approach was illustrated with some examples from one
of the applications studied in the 2RARE project, using Albert II as a formal
specification language.

Acknowledgements : Thanks are due to M. Lemoine and J. Foisseau of CERT-
ONERA, Toulouse, and P. Dieu and L. Levrouw of Belgacom Research, Brus-
sels, for the fruitful cooperation and stimulating discussions during the 2RARE
project.

R e f e r e n c e s

1. 2RARE (2 Real Applications for Requirements Engineering): Project Programme.
http://www.info.fundp.ac.be/ ~phe/2rare.html, August 1995. Esprit Contract
Number 20424.

2. Klemens BShm and Amilcar Sernadas. A logic to specify real-time object be-
haviour. Technical report, Departamento de Matem~tica, Instituto Superior
Tdcnico, Lisbon (Portugal), 1993.

3. P. du Bois. The ALBERT H Language. PhD thesis, Facultds Universitaires Notre-
Dame de la Palx, Namur, 1995.

4. G. Booch. Object-Oriented Design with Applications, Second edition. Ben-
jamin/Cummings, 1994.

5. G. Booch, I. Jacobson, and J. Rumbaugh. The unified modeling language for
object-oriented development, version 0.91 addendum. Technical report, Rational
Software Corporation, 2800 San Tomas Expressway, Santa Clara, CA 95051-0951,
September 1996. URL http://www.rational.com/ot/um191.pdf.

6. P.P.-S. Chen. The entity-relationship model - Toward a unified view of data. ACM
Transactions on Database Systems, 1:9-36, 1976.

7. D. Coleman, P. Arnold, S. Bodoff, C. Doliin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development: The FUSION Method. Prentice-Hall,
1994.

8. A.M. Davis. Software Requirements: Objects, Functions, States. Prentice-Hall,
1993.

32

9. T. DeMarco. Structured Analysis and System Specification. Yourdon
Press/Prentice-Hall, 1978.

10. Eric Dubois, Philippe Du Bois, and Michael Petit. Elicitating and formalis-
ing requirements for CIM information systems. In C. Rolland, F. Bodart, and
C. Canvet, editors, Proc. of the 5th conference on advanced information systems
engineering - CAiSE'93, pages 252-274, Paris (France), June 8-11, 1993. LNCS
685, Springer-Verlag.

11. Eric Dubois, Philippe Du Bois, and Jean-Marc Zeippen. A formal requirements
engineering method for real-time, concurrent, and distributed systems. In Proc.
of ICSE-17 Workshop on Formal Methods Applications in Software Engineering,
Seattle WA, April 24-25, 1995.

12. D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt,
editor, Logics and Models of Concurrent Systems, pages 477-498. Springer, 1985.
NATO AS[Series.

13. M. Jackson. System Development. Prentice-Hall, 1983.
14. M. Jackson. Software Requirements and Specifications: A lexicon of practice, prin-

ciples and prejudices. Addison-Wesley, 1995.
15. I. Jacobson, M. Christerson, P. Johnsson, and G. (~vergaard. Object-Oriented

Software Engineering: A Use Case Driven Approach. Prentice-Hall, 1992.
16. M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassiliou. Theories un-

derlying requirements engineering: an overview of the NATURE approach. In
S. Fickas and A. Finkelstein, editors~ International Symposium on Requirements
Engineering, pages 19-31. IEEE Computer Science Press, 1993.

17. Objectory AB. Objectory: Robustness Analysis, version 3.6 edition, 1995.
18. Oblog Software. OBLOG Case V1.P, 1995.
19. Quality Systems and Software Ltd. DOORS Unix Reference Manual, Version 2.1,

1995.
20. R.H. Thayer. Software system engineering. In R.H. Thayer and M. Dorfman, ed-

itors, System and Software Requirements Engineering, pages 77-116. IEEE Com-
puter Science Press, 1990.

21. R.J. Wieringa. Requirements Engineering: Semantic, Real-Time, and Object-
Oriented Methods. Course notes., 1995.

22. R.J. Wieringa. Requirements Engineering: Frameworks for Understanding. Wiley,
1996.

23. R.J. Wieringa. Advanced object-oriented requirement specification methods.
Technical report, faculty of Mathematics and Computer Science, Vrije Univer-
siteit, 1997. Tutotial presented at the International Symposium o/ Requirements
Engineering, 6-10 january 1997, Annapolis, U.S.A.

24. R.J. Wieringa and S. Huyts. Requirements analysis of the VoD application using
the tools in TRADE. Technical report, Faculty of Mathematics and Computer
Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, 1996.

25. R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Soft-
ware. Prentice-Hall, 1990.

