See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226757208

An Ada library to program fault-tolerant distributed applications

Conference Paper - June 1997

DOI: 10.1007/3-540-63114-3_21 - Source: dx.doi.org

CITATIONS
16

4 authors, including:

Francisco Javier Miranda Gonzalez

Universidad de Las Palmas de Gran Canaria

33 PUBLICATIONS 112 CITATIONS

SEE PROFILE

Sergio Arévalo
Universidad Politécnica de Madrid

78 PUBLICATIONS 806 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sergio Arévalo on 11 April 2014.

The user has requested enhancement of the downloaded file.

READS
27

Alejandro Alvarez
W Universidad Politécnica de Madrid

8 PUBLICATIONS 30 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/226757208_An_Ada_library_to_program_fault-tolerant_distributed_applications?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/226757208_An_Ada_library_to_program_fault-tolerant_distributed_applications?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Gonzalez18?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Gonzalez18?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Gonzalez18?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro_Alvarez16?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro_Alvarez16?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Politecnica_de_Madrid?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro_Alvarez16?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Politecnica_de_Madrid?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_10&_esc=publicationCoverPdf

An Ada Library to Program Fault-tolerant
Distributed Applications*

F. Guerra, J. Miranda, A. Alvarez and S. Arévalo

University of T.as Palmas de Gran Canaria and Technical University of Madrid
fquerra@cic.teleco.ulpgc.es, jmiranda@cma.ulpge.es,
aalvarez@dit.upm.es, sarevalo@fi.upm.es

Abstract. This paper describes a library written in Ada which facilit-
ates the construction of fault-tolerant distributed applications based on
the active replication paradigm [18]. The library, called Group_TO [10],
offers a simple interface to the implementation of reliable, atomic, causal,
and uniform multicast. The work on Group_IO has been motivated by
our experience with Tsis [3] and similar reliable multicast frameworks.
The library allows also client server interactions where the client may
be a group this interaction is not supported by ISIS and relies on an
own consensus protocol [8, 9] to implement the uniform broadcast pro-
tocols. Group_T1O is the base on which the programming language Drago
[2, 15, 16] has been implemented, however it does not require Drago for
its use.

Keywords: Distributed Systems, Fault-Tolerant Systems, Ada, Isis.

1 Introduction

The increasing dependence of modern society on computer systems calls for
increasing degrees of reliability which become very expensive to implement with
traditional hardware and software techniques. In particular, the use of ad-hoc
replicated hardware to mask out failures requires special components with costs
much higher than the ones of standard, mass produced hardware. As a result, the
use of modern solutions in which the tolerance to hardware failures is obtained by
means of specialized software running on top of standard, inexpensive hardware,
s attracting a considerable degree of attention. However, the construction of
this specialized software 1s a rather complex task, and so the need for software
libraries that support these new programming paradigms arises.

The basic approach to fault-tolerance using standard hardware components
is the use of distributed systems with hardware and software replication. The
two main software techniques used there are the primary-backup approach, and
the active replication paradigm [19]. Compared with the primary-backup ap-
proach, the active replication technique offers the additional advantage that it

* This work has been partially funded by the Spanish Research Council (CICYT), con-
tract numbers TIC94 0162 C0O2 01 and TIC96 0614.

allows for continuous service in the presence of failures. That is, the system can
continue giving service without the need to interrupt for any length of time to
be reconfigured or in any way recover it after a failure.

In order to build programs with active replication and minimal additional
effort from the programmer, there is a need for transparent mechanisms to handle
the communication when a group of replicas receives a service request or requests
an external service [13]. Tn particular, for every single message sent to a group
of process replicas, the underlying system should transparently ensure that the
message 1s replicated and a copy of it sent to each replica of the process this is
known as “1-to-n” communication. When all interaction among processes takes
the form of message exchanges, all replicas of the same process must receive the
same messages, even in the presence of (partial) failures this is known as “all-
or-none” communication and in the same order. Symmetrically, (replicated)
messages sent by the replicas themselves shall be filtered so that only a single
copy of each replicated message 1s actually issued to the rest of the system this
is known as “n-to-17 communication.

The problem of “1-to-n” communication has been discussed at length in
numerous publications, where is has received the name of reliable broadcast [4]
[17] [14]. By contrast, references to “n-to-17 communication cannot be easily
found.

Tt has been proven that uniform reliable atomic and totally ordered broad-
cast is equivalent to distributed consensus [11]. Tn the consensus protocol, a num-
ber of processes start each one proposing a possibly different value, and at the
end of the protocol all (correct) processes end up agreeing on the same value,
even 1f some of them happen to fail during the execution of the protocol itself.
To see how both mechanisms are equivalent, one only needs to consider a (se-
quence of) consensus where the values to agree upon are the actual messages
the different processes wish to broadcast, and to understand the agreement to
select a particular message as the delivery? of that message in all the processes
involved in that consensus. In addition, when one process finds that its message
has not been selected in a consensus, 1t just stubbornly insists on proposing the
same message until it eventually gets selected. As a result, all processes involved
in the (sequence of) consensus end up receiving the same messages and in the
same (total) order.

The work on Group_1O has been motivated by our experience with Isis, with
similar reliable multicast frameworks, and with the development of different
consensus protocols. By contrast, systems such as PVM [6] and MPT [7] had no
influence on Group_IO as they only provide a basic broadcast service, without
features like causality, order or atomicity, which are needed to program replicas
in the fault-tolerant active replication model.

After this brief introduction, in the next two sections we present a short de-
scription of ISIS and Drago, respectively. We then have a section on the interface

2 For other than the basic broadcast, delivery of messages is an event different from
reception; the distinction is needed in order to enforce the required message order,
in spite of the actual transmission times.

offered by Group_10, followed by another section with some programming ex-
amples. Three more sections then discuss implementation aspects of Group_1O,
and its relation with Ada 95 and Drago. The paper closes with some conclusions,
and with references to related work.

2 ISIS

ISTS [3] is a toolkit that goes a long way in the active replication line just
described and which has been the original inspiration for Group_10. Tn TSIS
programmers can define groups of processes and then refer to them by a single
name. Communication with a group of processes is by means of (different versions
of) reliable® broadcast®, which can be used to implement replicated (as well as
cooperative®) process groups.

However, from our experience with ISIS the system has three major draw-
backs. First, ISIS broadcast is not uniform, that 1s, there is no guarantee that
non-failed processes receive a message which has anyhow been received by a
process failing subsequently to the reception of that message. And the problem
with this approach is that if the failed process has taken any actions after re-
ceiving that message and before failing, its remaining replicas will be out of sync
with it. As a consequence, it is close to impossible to implement active process
replication in TSIS along the lines described above.

The second problem with ISIS is that it does not support full n-to-1 commu-
nication®. Last but not least, SIS provides no lingnistic support. Tn fact, TSIS is
just a collection of libraries written in C, and as such its use leads to code which
is both complex and error-prone.

3 Drago

Drago[16] is an experimental language developed as an extension of Ada for the
construction of fault-tolerant distributed applications. The hardware assump-
tions are a distributed system with no memory shared among the different nodes,
a reliable communication network with no partitions, and fail-silent nodes. (That
is nodes, which once failed are never heard from again by the rest of the system.)

The language 1s the result of an effort to impose discipline and give linguistic
support to the main concepts of TSIS[3], as well as to experiment with the group

? What ISIS calls reliable is actually called atomic by other authors to reflect its “all-

or-none” property.

Actually, a kind of multicast remote procedure call, but we will use here the term
broadcast to follow ISIS convention.

Member processes of a cooperative group usually do not perform exactly the same
function, and make use of this fact to “cooperate” in the provision of one or more
services.

In particular, when a replicated process group issues a call to another process, be it
a single process or a group, as many calls as group members are issued.

communication paradigm. To help build fault-tolerant distributed applications,
Drago explicitly supports two process group paradigms, replicated process groups
and cooperative process groups. Replicated process groups allow for the program-
ming of fault-tolerance applications according to the active replication model[18§],
while cooperative process groups permit programmers to express parallelism and
so increase throughput.

A process group 1n Drago is actually a collection of agents, which is the way
processes are called in the language. Agents are rather similar in appearance
to Ada tasks (they have an internal state not directly accessible from outside
the agent, an independent flow of control, and special operations named entries)
although they are the unit of distribution in Drago and so perform a role similar
to Ada 95 active partitions and Ada 83 programs. Each agent resides in a single
node of the network, although several agents may reside in the same node. A
Drago program is composed of a number of agents residing at a number of nodes.

Aside from distribution, the main difference they have with Ada tasks is that
calls to its entries are automatically ordered by the underlying Drago global run-
time message system to enforce reliable, causal, uniform coordination among the
agents of the same group. This is actually the essence of Drago, and what makes
1t most useful.

4 Group_IO Interface

Group_lO is a library built as a generic Ada package that provides operations
and types to perform distributed client-server interactions among Ada programs
organized as groups according to the active replication model. Tn this model
clients either a single Ada program or a group of them issue requests to serv-
ers made up of groups of Ada program replicas running in different network
nodes and then wait for replies. Group_IO transparently masks out possible
failures of nodes running the Ada program replicas.

Group_IO provides a generic interface that expects the user to define the max-
imum size of requests and replies, the retransmition time, and other parameters
that depend on the particular system and distributed application at hand. Basic
types provided by a generic instance of Group_1O are:

subtype T_Data is STRING (1 .. Max_Length_Data);
subtype T_Name is STRING (1 .. Max_Length_Name);
type T_Group_Id is private;

type T_Request_Id is private;

All the information contained in the requests and replies sent through the
network are strings of type T_Data. Tt is the responsibility of user programs to
know how to use the messages delivered and to perform type conversion when
needed. Group names are strings of type T_Name. Group_IO also provides two
types to declare handlers for groups and requests, respectively: T_Group_Id and
T_Request_Id.

The way to use Group_1O depends on whether the user software behaves as
a client, a server, or a replica.

Client interface:

Before a client requests a service to a server group, it must start with a call
to join that group as a client:

procedure Join_Group_Client (Grp_Name : in T_Name;
Grp : out T_Group_Id);

Join_Group_Client creates the data structures and tasks associated with the
client role and returns a group handler (Grp.) The exception Inactive_Group
is raised in case there is no group named Grp_Name.

After a user program has obtained a group handler Grp, it can send a request
to the associated group:

procedure Send_Request (Grp : in T_Group_Id;
Mess : in T_Data;
Req : out T_Request_Id);

Send_Request blocks the caller only until the request arrives to all live mem-
bers of server group Grp, and then it returns the request handler Req. The
exception Inactive_Group is raised if the caller is not a client of group Grp
or when no members of the group Grp are alive anymore.

The number of replies is not fixed because members of a group may fail. A
user program can get the number of pending replies each group member
gives its own reply with the function:

function Replies_Number (Req : T_Request_Id) return Natural;

The exception Invalid_Handler is raised when Reqis an invalid request hand-
ler.
After Send_Request returns the request handler, the user program can re-
trieve the replies received all members of the server group reply one by
one:

procedure Receive_Reply(Req : in out T_Request_Id;
Mess : out T_Data);

The exception Invalid_Handleris raised when Req 1s an invalid request hand-
ler; the exception No_Replies is raised when all replies from live members
have already been delivered.

A user program only gets the number of replies it wishes. In particular, it
can use a reply before getting the next one, and this will be the usual case in
which the first reply to arrive will be used and all the rest will be discarded.
User programs can indicate that they do not wish to receive any more of the
replies belonging to a certain request calling the procedure:

procedure Close_Request(Req : in out T_Request_Id);

Close_Request either marks the handler Reg as invalid or raises the exception
Invalid_Handler if it is already invalid before the call.

Server interface:

All server members must first join the group:

procedure Join_Group_Server (Grp_Name : in T_Name)
Grp : out T_Group_Id);

Join_Group_Server creates the data structures and tasks associated with the
server role and returns a group handler. The exception Inactive_Group is
raised if there is no group named Grp_Name.

Fvery member of the server group can get the next request made to the

group:

procedure Receive_Request(Grp : in T_Group_Id;
Req : out T_Request_Id;
Mess : out T_Data);

Receive_Request returns the handler Req associated with the request Mess.
This handler is used later to send the associated reply. The exception In-
active_Group 1s raised when the user code calling Receive_Request 18 not a
member of server group Grp.

Servers send its replies associated to a request with the procedure:

procedure Send_Reply(Req : in out T_Request_Id;
Mess : in T_Data);

After the reply is sent, the handler becomes invalid every group member
can only send a single reply. The exception Invalid_Handler is raised when
the handler Req is invalid.

Replicated client interface: To implement a fault-tolerant service by means
of a group of replicas we should only use the server interface. However, when this
group of replicas needs to request a service the group of replicas can be client
of any other group 1t is necessary to add to the client interface some operations
where the client’s group of replicas 1s referenced.

Fvery replica must still call first Join_Group_Server as before. However, be-
fore the group of replicas issues a request, every replica must execute the next
procedure, passing the replica group handler Replica_Grp and the name of
the server group Grp_Name as parameters:

procedure Join_Group_Client(Replica_Grp : in T_Group_Id;
Grp_Name : in T_Name;
Grp : out T_Group_Id);

Join_Group_Client creates the data structures and tasks associated with the
replicated client role and returns a group handler. The exception [Inact-
we_Group is raised when the caller i1s not a member of the group Replica_Grp
or when there 18 no group named Grp_Name.

When a replica sends a request to a server group, it must also pass the
handler associated with the group of replicas.

procedure Send_Request(Replica_Grp : in T_Group_Id;
Server_Grp : in T_Group_Id;
Mess : in T_Data;
Req : out T_Request_Id);

Again, Send_Request blocks the caller only until the request arrives to all live
members of server group Grp, and then returns the request handler Reg. The
exception Tnactive_Group is raised when the caller is not a member of group
Replica_Grp, the replica group 1s not a client of group Grp, or all members
of group Grp have already failed.

Tt is crucial that all the replicas have the same code, perform the same
actions, and go through the same sequence of states, and in the same order.
Group_l10O delivers the same sequence of requests server role and replies
client role to all replicas. However, it is necessary to call the next procedure
to find out the kind of the next message delivered because requests and

replies are delivered by different procedures?.

type T_Operation_Id is (Replica_Request, Replica_Reply, Final_Reply);

procedure Next_Operation(Replica_Grp : in T_Group_Id;
Req : out T_Request_Id;
Operation : out T_Operation_Id);

Nezt_Operation returns the handler Req associated to the next request (or
reply) and the kind of operation Operation is equal to Replica_Request or
Replica_Reply. This handler is also returned when there are no more replies
associated with a request Operation is equal to Final_Reply, and so does
not need to call Replies_Number repeatedly. The exception Inactive_Group
is raised when the caller is not a member of the group Replica_Grp.

5 Programming with Group_1O

Fvery user program must create its own instance of Group_lO, passing generic
actual parameters defining its system and distributed application. For example:

with Group_I0;
package My_Group_IO is

new Group_ID(Max_Length_Mess => 128,
Max_Groups => 5,
Max_Members_Per_Group => 15,
Max_Asinc => 4);

My_Group_I0 is an instance that defines the maximum length of a request
or reply message; the maximum number of groups; the maximum number of

7 This is particularly important for those cases in which the programming language
used includes non-deterministic constructs, as is the case with Ada tasks; all non-
determinism must then be resolved in the same way for all process replicas.

members per group; and the maximum number of requests that can be pending
to be delivered to any server group member. Additional parameters of Group_10
take the default formal parameter values. Tet’s see some examples of use of

My_Group_10:

Server. A server has a loop where it gets the requests, performs the service,

and sends the associated reply.

with My_Group_I0;
use My_Group_IO0;

procedure Server is

Grp_Id T_Group_Id;
Req_Id T_Request_Id;
Req_Mess,
Ans_Mess T_Data;

begin

Join_Group_Server ("G1", Grp_Id);
loop

Receive_Request(Grp_Id, Req_Id, Req_Mess); --

Send_Reply(Req_Id, Ans_Mess);
end loop;
end Server;

It is member of group Gi

The next request is delivered
THE SERVICE IS PERFORMED

THE REPLY IS PLACED IN Ans_Mess
The

reply is sent

Client. This example presents the code associated with a client that sends

a request and waits for all replies.

with My_Group_I0;
use My_Group_IO0;

procedure Client is

Grp_Id T_Group_Id;
Req_Id T_Request_Id;
Req_Mess,
Ans_Mess T_Data;

begin

Join_Group_Client ("G1", Grp_Id);

Send_Request (Grp_Id, Req_Mess, Req_Id);
While Replies_Number(Req_Id)>0 loop
Receive_Reply(Req_Id, Ans_Mess);

end loop;
Close_Request (Req_Id);
end Client;

It is client of group Gi

THE REQUEST IS PLACED IN Req_Mess

The request is sent

While there are replies
The next reply is delivered
THE REPLY CAN BE USED

end

The handler is marked as invalid

Replicated client. Let’s now see the code of a group of replicas which is
simultaneously server and client of other groups.

with My_Group_I0;
use My_Group_IO0;

procedure Client_Server_Replica is

Replica_Grp_Id, Server_Grp_Id
Req_Id

Replica_Req_Mess, Req_Mess, Ans_Mess
opP

begin

T_Group_Id;
T_Request_Id;
T_Data;
T_Operation_Id;

Join_Group_Server ("G1", Replica_Grp_Id); -- It is member of replicas group Gi
Join_Group_Client(Replica_Grp_Id, -- The group G1 is a client of
G2, -- group G2
Server_Grp_Id);
-—— ... -- THE REQUEST IS PLACED IN
-- Replica_Req_Mess
Send_Request (Replica_Grp_Id, Server_Grp_Id,
Replica_Req_Mess, Req_Id); -- The request is sent
loop
Next_Operation(Replica_Grp_Id, Req_Id, OP);-- The next event is received
case OP is
when Replica_Request =>
Receive_Request(Replica_Grp_Id, -- A Request is delivered
Req_Id,
Req_Mess) ;
-—— ... -- THE SERVICE IS PERFORMED
-—— ... -- THE REPLY IS PLACED IN Ans_Mess
Send_Reply(Req_Id, Ans_Mess); -- The reply is sent

when Replica_Reply =>
Receive_Reply(Req_Id, -- The next reply is delivered
Ans_Mess) ;
-— .. -- THE REPLY CAN BE USED

when Final_Reply =>
Close_Request (Req_Id); -- The handler is invalid
end case;
end loop;

end Client_Server_Replica;

Next_Operation 1s also used when the group of replicas is just a client of
various server groups because 1t must know the request handler associated
with every delivered reply.

6 Group_lIO Implementation

Group IO is currently implemented over an Ethernet with Sun Sparc stations
and uses Paradise [5] as its basic communication service Paradise only blocks
the task issuing an TO operation and not the whole Ada process. The proto-
cols implemented in Group_IO assume a distributed hardware system with no
memory shared among the different nodes, a reliable communication network
with no partitions, and fail-silent hardware nodes; namely, when one of the
nodes fails the rest of the system never hears from it again.

Fach user program can be seen as a logical machine in the distributed system.
Several logical machines may execute on the same physical machine, but each
needs its own instance of Group_ IO see figure 1.

The Group_1O body is composed of three levels: Medium Access Level, Group
Protocol Level, and User Operation Level. The Medium Access Level uses Para-
dise to get access to Berkeley sockets. The Group Protocol level uses the services
of Medium Access Level to implement the multicast protocols [10] and provides
the services required by the User Operation Level. Finally, the User Operation
Level implements the user program interface.

Fach Group_IO instance has common information used by all the three levels.
For every group the user program belongs to, either as a client or as a server,

USER USER USER
PROGRAM PROGRAM PROGRAM
[erouP 10| [GROUP_I0

\

\ V

Fig. 1. User programs connected by Group_10.

USER PROGRAM

NETWORK

Fig. 2. Internal levels of Group_lO.

this information describes:

Name of the group.

Identity of the user program to communicate with the group.

Role(s) of the program within the used group: client, server, or replica.
View of the group (number of members and linear order of each one.)
Pointers to the tasks that execute the different role(s) the user program has
within the group.

There are two task types in the Group Protocol Tevel: the type T_Client
executes the role associated with a client and the type T_Member defines the
role associated with a server that is member of a group. As an example, the user
program with the Group_1O instance shown in figure 3, is both a client of group
A and a member of group B. Furthermore, this program communicates also
with the rest of members of group B because t is also a client of this group the

members of group B may cooperate to give the requested services, this is known
as intragroup interaction.

S

7

|

I :
.l' (TTITTTTTTTITIT

GROUP PROTOCOL LEVEL

Fig. 8. Example of Group Protocol T.evel

Currently the groups configuration is static and it is specified by means of
two files:

Logic_Names. Dat defines the names associated with every user program, the
Internet address (TP) of the machine where the program executes, and the
port address (UDP) through which the program communicates. Each line of
this file has the following format:

PROCESS_NAME, INTERNET_ADDR, PORT_NUMBER

Groups_Configuration. Dat defines the names of the groups and the members
of every group according to the next syntax:

GROUP_NAME := PROCESS_NAME {,PROCESS_NAME};

7 Group_IO and Ada 95

Group_IO has been implemented in Ada 83 and has been used with Ada 83 pro-
grams. We believe that some features of Ada 95 can be used to improve the
implementation of Group_lQ, protected objects in particular. What is not clear
to us is whether we can take advantage of the distributed partition paradigm
instead of a socket library. However, we don’t see any problems for Ada 95 pro-
grams to make use of the Group_IO library.

A different issue is how distributed programs built with Ada and Group_T1O
(let’s call them Group_IO programs) compare with distributed programs built
with Ada 95 distributed active partitions.

One important difference between Group_IO programs and active partitions
is that the first accept services explicitly 1ssuing a receive request as part, of their
flow of control, while the second export passive subprograms declared in their
RCT package specifications. This difference makes the first kind of programs
deterministic in its behavior, while the behavior of the second ones is dependent
on the runtime system. As we will see below, determinism is essential in the
active replication model.

The main difference between Group_IO programs and the distributed pro-
gramming model of Ada 95 is that Group_ IO provides direct support for the
active replication model in order to build fault-tolerant applications. Where
Ada 95 provides a single remote call, Group_IO transparently gives program-
mers multiple send_requests to all the programs of a replicated group. And more
important, the multiple send_requests are automatically coordinated so that all
programs of the same group are guaranteed to receive the same requests, and
in the same (causally consistent) order, even in the presence of hardware node
failures midway in the sequence of calls. And because replicated Group_1O pro-
grams have a deterministic behavior all members of the same group go through
the same sequence of internal states, and so give exactly the same replies to all
incoming calls. This way live members of a group can mask out transparently
the possible failure of other group members, something that cannot be obtained
in Ada 95 without a considerable effort from the part of programmers.

On the question of what is the relation between Group_IO and the Distrib-
uted Systems Annex of Ada 95 and, in particular, on whether Group_1O can be
integrated into the PCS to implement transparent replication of active partitions
in Ada95, the answer is yes (with one natural caveat.)

There would be no need to change the specification of System.RPC, nor the
compiler or the language itself, only rewrite the implementation of System.RPC
so that it calls Group_1O when needed, that is, when the actual remote call is dir-
ected towards a procedure of a replicated partition. Whether a certain partition
is replicated or not would be decided at configuration time (after compile time
and before link time) and that information could be stored in a configuration
file, from where the code of System.RPC would retrieve it at run-time.

Tt 1s clear nevertheless, that replicated partitions in no case could be serving
more than one request at the same time. This is a restriction required not by
Group_IO but by the replicated state-machine model, in orden to guarantee
replica determinism.

8 Group_IO and Drago

The language Drago uses Group_lO as its communication subsystem and so sup-
ports the same group mechanisms as Group_lO. This similarity allows Ada and
Drago programs to interoperate in a straightforward manner. For example, we
can have one or several fault-tolerant services implemented in Drago executing
n a distributed system, and then compile and run “Ada-with-Group_10” clients
that use those services in a manner analogous to the one described in section 5

above. The only thing the clients need to know are the logical names of the Drago
groups that implement those services and those names are within the config-
uration files. In this way the Drago code may be as complex as the application
requires while the interface to the Ada clients can be kept quite simple.

9 Conclusions

This paper has described a reliable multicast library written in Ada, Group_l1O,
that can be used to easily build fault-tolerant distributed applications, them-
selves also written in Ada. The programming paradigm supported is the active
replication state-machine model.

The current implementation of Group_TO runs on a SUN/OS network with
the SUN-Ada compiler, and provides reliable atomic broadcast using an ori-
ginal consensus protocol[1][8][9]. All the communications are based on standard
TCP/TP protocols and use the PARADISE[5] library of UNTX kernel calls.

The implementation is rather crude as far as efficiency goes mainly due to
the use of TCP/TP protocols and no measures of performance have yet been
taken. The configuration and load work is currently performed by hand with a
minimal support from the file system, basically a configuration file kept at all
participating nodes. We are reimplementing Group_1O on top of GNAT with
Tinux, and investigating how to handle dynamic groups where members enter
and leave groups at run-time.

The interface proposed 1s the result of an effort to impose discipline and give
an Ada binding to the main concepts of TSIS [3]. This interface also permits
client-server interactions where the client may be a group this interaction is
not supported by ISTS and 1t has been designed and implemented to support
the code generation for the Drago language [2, 15, 16].

At any rate, the funcionality of Group_IO does not relate much to Ada 95
nor Ada 83, but to the future of Ada instead, i.e. Ada 0X. Tt is likely that by the
time of the new revision of Ada, aspects such as fault-tolerance by replication
and reliable broadcast will have to be considered into the new standard. And so
the interest of the Ada community to start experimenting with these techniques.

10 Acknowledgments
We wish to thank the members of the Distributed Systems Seminar in the Tech-

nical University of Madrid for their help in clarifying the ideas contained in this
paper.

References

1. Arévalo, S. and Gehani N. H. 1989. Replica Consensus in Fault Tolerant. Concurrent,
C. Technical Report AT&T Bell Taboratories, Murray Hill, New Jersey 07974.

10.

11.

12.

13.

14.

16.

17.

18.

19.

. Arévalo, S., A]varez, A., Miranda, J. and Guerra, F.: A Fault-tolerant Program-

ming Language Based on Distributed Consensus, Cabernet’94 Workshop, Dublin
(March 1994)

Birman, K., R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane,
F. Schmuck, and M. Wood. The Isis System Manual. Version 2.1. September
1990.

Chang, J. M. and Maxemchuck, N. 1984. Reliable Broadcast Protocols. ACM
Trans. on Computer Systems, 2(3), pages 251 273.

. Courtel, N., PARADISFE: Package of Asynchronous Real-Time Ada Drivers for

Interconnected Systems Fxchange, version 3.2. GNU (January 1993).

Geist, A. et al.: PVM: Parallel Virtual Machine; A User’s Guide and Tutorial for
Networked Parallel Computing. The MIT Press, Cambridge, Mass. (1994)

Gropp, W., Tusk, E., and Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message- Passing Interface. The MIT Press, Cambridge, Mass. (1994)
Guerra, F., Arévalo, S., A]varez, A., and Miranda, J. A Distributed Consensus
Protocol with a Coordinator. TFIP International Conference on Decentralized and
Distributed Systems 1CDDS’93. Palma de Mallorca (Spain). September 1993.
Guerra, F., Arévalo, S., A]varez, A., and Miranda, J. A Quick Distributed Con-
sensus Protocol. Microprocessing and Microprogramming 39 (1993) pp.111 114.
Guerra, F. 1995. Ffficient Consensus Protocols for Distributed Systems. Doctoral
Dissertation. Technical University of Madrid. (In Spanish.)

Hadzilacos V. and Toueg, S. 1993. Fault-tolerant broadcasts and related problems.
In Sape Mullender, editor, Distributed Systems, chapter 5, pages 97 145. Addison-
Wesley.

Intermetrics, Inc. 1995. Ada 95 Language Reference Manual. ITntermetrics, Inc.,
Cambridge, Mass. (January).

Tiang, 1.., Chanson, S.T., and Neufeld, G.W.: Process Groups and Group Commu-
nications: Classification and Requirements. TEFEF Computer. (February 1990)
Malki, D., Amir, Y., Dolev, D)., and Kramer, S. 1994. The Transis approach to high
available cluster communication. Technical Report (CS-94-14, Institute of Computer
Science, The Hebrew University of Jerusalem, 1994.

. Miranda, J. 1994. Drago: A Language to Program Fault-tolerant and Cooperative

Distributed Applications. Doctoral Dissertation. Technical University of Madrid.
(Tn Spanish.)

Miranda, J., Alvarez, A., Arévalo, S. and Guerra, F. Drago: An Ada Fxtension
to Program Fault-Tolerant Distributed Applications. Proceedings of the Reliable
Software Technologies Ada-FEuroped6 Conference, LNCS 1088, Springer Verlag.
Moser, T.., Amir, Y., Melhar-Smith, P., and Agarwal, D). 1994. Extended Virtual
Synchrony. In TEEF 14th Intl. Distributed Computing Systems, pages 56 67, June.
Schneider, F.B. Implementing Fault-tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Surveys, 22(4), December 1990.
Guerraoui, R. and Schiper, A. Fault-Tolerance by Replication in Distributed Sys-
tems. Proceedings of the Reliable Software Technologies Ada-FEuroped6 Confer-
ence, LNCS 1088, Springer Verlag.

This article was processed using the I¥TEX macro package with T.I.LNCS style

https://www.researchgate.net/publication/226757208

