
Núcleo de Computação Eletrônica

Fábio Protti

Felipe M. G. França

jayme Luiz Szwarcfiter

NCE -01/97
abril

On Computing AlI Maximal Cliques Distributedly*

Fábio Protti
Felipe M..G. França

Jayme Luiz Szwarcfiter
Universidade Federal do Rio de Janeiro, Brazil

email: {fabiop, felipe, jayme}@cos.ufrj.br

Abstract. A distributed algorithm is presented for generating all max-
imal cIiques in a network graph, based on the sequential version of
Tsukiyama et al. [TIAS77]. The time complexity of the proposed ap-
proach is restricted to the induced neighborhood of a node, and the
communication complexity is O(md) where m is the number of connec-
tions, and d is the maximum degree in the graph. Messages are O(log n)
bits long, where n is the number of nodes (processors) in the system. As
an appIication, a distributed algorithm for constructing the clique graph
k(G) from a given network graph G is developed within the scope of
dynamic transformations of topologies.

1 Introduction

The generation of all possible configurations with a given property is a prob-
lem that occurs frequently in many distinct situations. In terms of distributed
systems, the recognition of all subgraphs possessing special features within a
network graph may simplify distributed algorithms developed for the network
[CG90] .Among the different types of subgraphs, maximal cliques (completely
connected subgraphs) play a major role. For instance, the analysis of maximal
cliques provides a better understanding of the behavior of scheduling me.chanisms
[BG89] and the efficiency of mappings [FF95] for neighborhood-constrained sys-
tems.

In this paper, we propose a distributed algorithm for generating all maximal
cliques of an arbitrary network graph. A previous approach to parallel distributed
computation of all maximal cliques of a given graph was presented in [JM92].
The latter is based on the parallel version proposed in [DK88] and in order to
compute all maximal cliques, divide-and-conquer strategy is used by dividing the
node set into two disjoint subsets V1, V2, finding the maximal cliques in V1, V2
recursively, and joining these cliques via maximal bipartite complete subgraphs
of the graph G'(V1 U V2, E'), where E' is the subset of edges with one endpoint
in V1 and other endpoint in V2. .

The present method is based on the concurrent execution of a local sequen-
tial algorithm [TIAS77] for all induced neighborhoods. The time complexity is
restricted to the induced neighborhood of a node, and the communication com-
plexity is O(md) where m is the number of connections, and d is the maximum

* This work has been partially supported by the Conselho N acional de Desenvolvi-

mento Científico e Tecnológico (CNPq) Brazil.

degree in the graph. Messages are O(log n) bits long, where n is the number of

nodes (processors) in the system.
This work is organized as follows. Section 2 describes the distributed pro-

cessing environment. Section 3 reviews the sequential algorithm of Tsukiyama
et al. [TIAS77]. Section 4 describes the present algorithm and analyzes its com-
plexity. Section 5 contains the following application: a distributed algorithm for
constructing the clique graph K(G) from a given network graph G. The graph
K(G) has the set of maximal cliques of G as node-set, and there exists an edge
(C, C') in K(G) iff C n C' # 0. Some remarks form the last section.

2 The Distributed Processing Model

Consider an arbitrary connected graph G = (V, E), V = {1,2, ..., n}, where each
node in V corresponds to a complete local processing environment containing a
processor and sufficient local memory to perform computations. Notice that we
assume implicitly a set of distinct identifications of nodes having a total ordering.

Two nodes i and j are neighbors if (i, j) E E. The adjacency set
N(i) = {j E VI(i,j) E E} is the neighborhood of node i. The cardinality of
N(i) is the degree di of node i. If X ç V, we define G[X] as the subgraph of G
induced by x: its node-set is X, and a connection e = (i, j) in E belongs to the
edge-set of G[X] if and only if i, j E X. For each node i, G[N(i)] is the induced

neighborhood of i.
A clique C ç V is a completely connected set of nodes. That is, if

C = {i1,i2,...,ik}, then (ir,i,,) E E for alI r,s E {1,2,...,k}, r # s. A clique
C is maximal if, whenever we have C ç C' for a clique C' in V, then C = C'.

Messages can flow independently in both directions between neighboring
nodes through the connection linking them. Each node knows its neighborhood,
and maintains internally an input buffer for arriving messages.

We will assume that each node of G is able to execute the communication
instruction BROADN(msg) [BF88, BDH94]. Used in some massively parallel
applications, BROADN(msg) works simply as follows: when executing it, node
i sends a message msg to alI of its neighbors.

We will also assume that .in the distributed model alI nodes execute the
same algorithm. Message transmission time is not taken into account, since the
distributed algorithm is totally message-driven, not only inside each of its local

steps, but also between the steps.

3 The Sequential Version

First, we review the sequential algorithm for generating alI maximal independent
sets developed in [TIAS77] (see also [L76], [PU59]), in its maximal clique version.
The proofs of lemmas in this section can be found in [L 76] .

Let H be a connected graph with node-set V(H) = {1,2,...,p}. Let Cj
denote the collection of all maximal cliques in H[{1,2, ...,j}]. The idea is to

compute Cj+l from Cj, eventually computing Cp.

Let C E Cj.lfCnN(j+1) = C, then CU{j+1} E Cj+l.lfcnN(j+1) :;t C,
then C E Cj+l and (CnN(j+ l))U{j + 1} is a clique (notnecessarily maximal).
Let C;+l = {C'IC' = (C n N(j + 1)) U {j + 1}, C E Cj}.

The observations above lead to the following lemma:

Lemmal. Cj+l ç Cj UC;+l.

Lemma 1 provides a way of generating algorithmically Cj+l from Cj. One point
to be considered is how to avoid inclusion of nonmaximal sets in Cj+l, since
Cj U C;+l may contain sets of that sort. This is the subject of Lemma 2.

Lemma2. Let C E Cj. Then, C' = (CnN(j+1))U{j+1} E Cj+l ifand only
iffor all k < j,k � C, we have N(k) nc' :;t C'.

Another point is how to avoid inclusion of a maximal set which has already
been included. To deal with this second question, we may regard C;+l as a
multiset containing duplicates. That is, a given set C' E C;+l may be obtained
from distinct sets C1, C2 E Cj such that C' = (C1 n N(j + 1)) U {j + 1} =
= (C2 n N(j + 1)) U {j + 1}. In order to avoid duplicates, we use the following

rule: given a set C E Cj, we include C' = (CnN(j + 1)) u {j+ 1} into C;+l only
if C -N (j + 1) is lexicographically smallest among all sets C E Cj for which
C n N(j + 1) is the same (alI sets are implicitly organized as lists in increasing
order). Lemma 3 tells us how to check this property for a given set.

Lemma 3. A set C E Cj satisfies the lexicographic condition if and only if there
is no node k < j + 1, k � C, such that:
a) k is adjacent to X = C n N(j + 1), that is, N(k) n X = X ;
b) k is adjacent to all lower-numbered nodes in C -N(j + 1), that is,
N(k) n y = Y, where y = {1,2, ..., k -1} n (C -N(j + 1)).

The algorithm below follows from Lemmas 1-3:

proc Generate(Cj , Cj +I)

for C E Cj do

if C U {j + 1} is a clique
then include C U {j + 1} in Cj+l
else

include C in Cj+l;
C' := (C n N (j + 1)) U {j + 1} ;
ifC' and C satisfy Lemrnas 2 and 3 then include C' in Cj+l;

end

The following routine computes Cp:

proc Generate-maximal-cliq'Ites(H, Cp)
% Input: connected graph H with node-set { 1, ..., p }
% Output: Cp, the set of alI maximal cliques of H

C1:={{1}};
for j := 1 to p- 1 do call Generate(Ci , Ci+!);

end

The tree of Figure 1 illustrates the computation. Nodes at leveI j correspond to
the sets in Ci. The root of the tree is {1}, the only set in C1. Each node has
at least one son because for each C E Ci, either C or C U {j + 1} is in Ci+l.
The left son of a node C E Ci, if it exists, corresponds to C. It exists only if
C n N(j + 1) # C, otherwise C would not bemaximal in Ci+l. The right son
exists only ifthe maximality and the lexicographic conditions hold. In this case,
it corresponds to (C n N(j + 1)) U {j + 1}.

(1}
"'2 (1.2}

G "'
(1.2.3}

/"'7 (1.2.3} (1.3.4}

/ /"'
4 /2.3} /3.4} (3.4.",

/2.3} /3.4} /.�
(1.2.3} (1.3.4} (3.4.5.6} (6.7}

Fig.l. Tree representing the genera.tion of a.ll ma.xima.l cliques for the gra.ph G.

Let q be the number of edges and M be the number of maximal cliques in H .
Both tests of Lemmas 2 and 3 can be performed for C' and C in O(p + q) time.
Therefore, we can compute Ci+l from Ci in O((p + q)M) time. That is, Cp can
be obtained in O((p+q)p)M = O(qpM) time. The computation can be done by
a depth-first search of the tree. If the leaves are to be output, space requirements
are reduced to O(p) cells, each one containing at most p nodes.

4 The Distributed Version

The distributed algorithm c?nsists of two asynchronous steps. At the end, each
node will have computed all the maximal cliques it belongs to.

4.1 Step 1: Constructing induced neighborhoods

The objective ofthis step is that all ofthe system's nodes may know their induced
neighborhoods. Therefore, every node i starts by notifying alI of its neighbors
about its own adjacency relations by executing the following subroutine:

proc Broadcast-neighborhood(i)

for j E N(i) do BROADN(adj(i,j»;
B RO AD N (broad-end(i)) ;

end

An adj(i,j) message means that i and j are neighbors, and a broad-end(i) mes-
sage warns the neighborhood of i to consider the broadcasting of the adjacency
relations concluded. .

Next, i is ready to process information that has just been received from its

neighbors. Upon receiving a message broad-end(j) from every node j E N(i),
the construction of G[N(i)] is concluded.

proc Construct-induced-neighborhood(i)

% Gi is the induced neighborhood G[N(i)] to be constructed

for j E N(i) do include edge (i,j) in Gi;
for an adj(j, k) message arrived before a broad-end(j) message do

if j, k # i and j, k E N(i) then include edge (j, k) in Gi;
end

Now, let m be the number of connections and d the maximum degree in the

system.

Lemma 4. The first step takes O(dr) /oca/ computation time for node i, and its
communication comp/exity is O(md).

Proof. Executing BROADN instructions and collecting adj(j, k) messages to
construct G[N(i)] takes O(dr) time, therefore the first part follows. After alI

.nodes have completed the first phase, the number of messages is L(i,j)EE di +
dj + 2 = O(md). Notice that each message can be formed with O(logn) bits. D

4.2 Step 2: Computing alI maximal cliques

Having constructed G[N(i)], node i is able to compute internally and sequen-
tially the maximal cliques it belongs to. The essence of the second step is the
concurrent execution of the sequential algorithm we described in Section 3. Let
C be a maximal clique containing i. Of course, G[C- {i}] ÇG[N(i)]. This sug-
gests that node i must execute the sequential algorithm applied to its induced

neighborhood.

proc A//-maxima/-c/iques(i)

H +- 0.
p +- d..

, "

map nodes of G[N(i)] into {1, ..., di} so that f(j) < f(k) iffj < k;
for (j, k) E G[N(i)] do include edge (f(j), f(k» in H;
call Generate-maxima/-c/iques(H, Cp); % local sequential algorithm
for B E Cp do

let C be the set of nodes in {f-l(j)jj E B} U {i};

order C increasingly as a list;
store (or output) C;

end

In order to generate each clique as a list in increasing order of Ilodes, nodes
of G[N(i)] are mapped into V(H) = {1,2, ..., di} in such a way that relative
positions between nodes be preserved. After generating a clique, i must itself be
included in it.

Lemma 5. Let mi be the number of connections in G[N(i)] and Mi the number
of maxima/ c/iques containing i. Then, the second step takes O(midiMi) /oca/
computation time for i, and no messages are sent.

Proof. Consider the complexity of the algorithm in [TIAS77] when applied to

G[N(i)]. D

4.3 Analysis of the algorithm

Asynchronicity is an interesting feature of the proposed algorithm, as each node
can start independently the first step and enter the second step even though other
nodes in the system may have not completed the first step yet. This facilitates
considerably the development of actual distributed and parallel applications.
Lemmas 4 and 5 lead to the following theorem, which synthetizes the properties
of the algorithm.

Theorem 6. The time comp/exity ofthe a/gorithm is maxiEv{O(midiMi)}. The
communication comp/exity is O(md) , with O(log n)-bit /ong messages.

The communication complexity of the algorithm in [JM921 is 0(M2n21og n),
where M is the number of maximal cliques and there is a condition on the
messages, assumed to be O(logn) bits long. In [JM92], since there are transmis-
sion of messages containing identifications of c/iques, message length becomes a
function of M. Thus, it has been assumed that M is polinomial on n in order to
ensure that message length is not higher than O(logn). In the present algorithm,
there is no such restrictions: the communication mechanism does not depend on
M, and message length is indeed limited by O(log n) .

Notice that the time complexity of the proposed algorithm is limited to one
of the induced neighborhoods of the system. On the other hand, the 0(M n log n)
time complexity of [JM92] refers to message transmission time.

Our algorithm is time effici.ent, of course, for classes of systems in which the
number of maximal cliques is polynomially bounded. The time performance is
also good for topologies with constrained connectivity, i.e., when the maximum
degree d is limited (a quite natural restriction for many actual systems).

The distributivity of the computation among the processors is weaker in
systems with universal nodes (nodes u for which N(u) = V- u), since every
node of this kind computes alI maximal cliques. On the other hand, as the
number of universal nodes increases, the number of maximal cliques tends to
decrease (in the extreme case of a complete graph, there is one maximal clique

only).

5 An application: clique graph construction

-The subject of this section is within the scope of dynamic transformations
of topologies according to a pre-established rule or operation. An operation
op : U --U is a function over the set U of all graphs. Now, let N be a net-
work graph on which a certain operation op will be applied. This means that
we will run on N a distributed algorithm A, which by creating and removing
nodes and connections, will modify the topology of N transforming it into a new
system N' such that N' = op(N). By running A on N', we generate N", which
by its turn corresponds to op(N'). That is, repeated executions of A correspond
to iterated applications of op.

The operation we consider is the construction of the c/ique graph K (G) from
a given graph G. The node-set of K(G) is the set of all maximal cliques in G,
and there is an edge between two nodes of K(G) whenever the corresponding
cliques in G share a common node. Detailed information on clique graphs can
be found in [P95] .
The construction of K(G) can be brieHy described as follows. The nodes of the
connected network graph G = (V, E), V = {1,2, ..., n }, start running indepen-
dently copies of the same algorithm. At the end, the system will be identified
with K(G), in the sense that new nodes correspond to maximal cliques of G,
and new connections to node-sharing between cliques.

Before describing the algorithm, it .is necessary to detail an additional set
of instructions for communication between nodes (see [BF88, BDH94]). Assume
each of the following instructrions is being executed by node i.

.SEN D(j, msg): node i sends a message msg destined to node j. If i and j
are neighbors the communication is direct. Otherwise, the instruction needs to be
re-transmitted by other nodes. This means that routing information indicating
the next node to send arriving messages is required in general. This mechanism
is independent of internal computations in the nodes, i.e., a node only processes
messages sent to it. If n is the number of nodes in the system, an instruction
SEN D may require n-1 transmissions, and this fact must be taken into account
when calculating the communication complexity of a distributed algorithm. Ifj
does not exist, msg is discarded after visiting all of the nodes.

.CREATE(id): this is a high-level instruction where node i creates a new
neighbor and assigns to it the identification id.

.LIN Kl(k,j): this is another high-level instruction where node i creates a
connection between nodes k and j belonging to its neighborhood.

.LIN K2(j): nodei creates a connection between itself and j. If i and j are
already neighbors, this instruction has no effect.

.U N LI N K (j) : node i removes the connection between itself and j .

The construction of the clique graph has three steps.

5.1 Step 1: local computing of m.aximal cliques

In this step each node i simply executes the algorithm of the previous section
for generating all maximal cliques it belongs to. The only difference is that i

discards every clique C whose first node in the list is different from i (recall that
the cliques are generated as lists in increasing order of nodes). This means that
the set of all maximal cliques of G becomes partitioned among the nodes. Notice
that some nodes will store no cliques.

Lemma 7. Step 1 takes O(midiMi) time for node i. The communication com-
plexity of this step is O(md), with O(logn)-bit long messages.

Proof. See Theorem 6. D

5.2 Step 2: generating clusters

Once i has completed Step 1, it starts immediately Step 2 by generating a cluster,
a clique formed by new nodes where each one represents a clique C stored in i
at the end of Step 1 and receives C as its identification. See Figure 2.

,@.,..., , -
'...1.

...: ...

...: ...

Fig. 2. Genera.tion of a. generic cluster formed by 3 nodes.

Observe that each cluster mrist be completely connected, since it consists of
nodes identifying pairwise non-disjoint cliques of G. Observe also that new iden-
tifications are formed for ordered lists of nodes in G. This means that the set
of identifications of K(G) will also have a total (lexicographic) ordering. The
processing of Step 2 can be described in the following way:

proc Step-2(i)

for a clique C stored in i do CREATE(C);
for distinct cliques C,C' stored in i do LINK1(C,C');

end

For the sake of simplicity, from now on we will refer indistinctly to the node C
in K (G) and the clique C in G. Figure 3a shows the system G in Figure 1 after
all nodes have completed Step 2.

Lemma 8. Step 2 takes O(Mi2) time for node i. No messages are sent in this
step.

Proof. The second instruction for consists of Mi2 iterations. D

5.3 Step 3: making links between clusters

Let us call /eaders the origina/ nodes of the system G. Notice that only leaders
run the algorithm.

The processing in Step 3 is the following:

proc Step-3(i)

% notifying other leaders for a clique C belonging to the cluster of i do

let j be the highest node in C;
for k = i + 1 to j do SEN D(k, c/ique(C));

% synchronization ifi=l

then SEN D(i + 1, end-notify(i))
else
collect alI c/ique() messages arriving before a end-notify(i -1) message;
SEN D(i + 1, end-notify(i));

% making links for a c/ique(C) message collected do

% messages referring only to SEN D(i, c/ique(C)) instructions
for a clique C' belonging to the cluster of i do

ifC' n C # 0 then
LIN K2(C);
LIN K1(C', C);

UNLINK(C);

% removing- for a leader j E N(i) do U N LIN K(j);

for a cliqueC E N(i) do UNLINK(C);
end

Node i starts notifying other leaders about the nodes belonging to the cluster it
leads. A message c/ique(C) means that C is a clique. For each node C belonging
to the cluster of i, allleaders whose clusters may contain some node C' such that
C n C' # 0 are notified. Let max be the highest node in the union of the cliques
i leads. Notice that there is no use notifying leaders with higher identifications
than max, since they cannot lead a clique C' such that C n C' # 0. AIso, no
leader k with identification smaller than i is notified, since k will certainly notify
i in case when there exists a clique C in the cluster of k and a clique C' in the
cluster of i such that C' n C # 0. .

Next, a synchronization point is needed: each leader, in order to perform the
next stages ('making links' and 'removing'), must be sure that no more c/ique()
messages will be received, that is, there are no more c/ique() messages to be

processed.
Now let us deal with thematter of linking the nodes of K(G). Every c/ique()

message is (re-)transmitted between leaders only. Each leader i verifies for each

message clique(C) received whether there are cliques in its cluster intercepting
C. For each clique C' with this property, an instruction LI N K 1 (C' , C) is exe-
cuted. Figure 3b shows the system after alI the leaders have executed this linking

process.

e :e 1.2.3 --.�: 1.3..

o
v..

(3a) (3b)

Fig. 3. The system after generating clusters (3a) and after making links between nodes
in distinct clusters (3b).

Finally, notice that by removing the leaders we obtain a system corresponding
exactly to the clique graph K(G). Since K(G) is a connected graph whenever G
is also connected, the resulting system after removing the leaders is connected.

Lemma 9. Step-3 takes O(diMi l:::j<i Mj) = O(diMiM) time for node i. The
communication complexity of this step is O(ndM), with 0(d log n)-bit long mes-

sages.

Proof. Notifying other leaders requires O(nMi) time, and synchronization
requires O(l:::j <i M j) time. With respect to making the links, recall that i
does not receive any message clique() from leaders with higher identifica-
tions than i. Since the internal for requires O(diMi) time, links are made in
O(diMi l:::j<i Mj) time. Removing requires simply O(di) time, therefore the time
complexity of the third phase follows. The number of messages corresponds to
the number of SEN D instructions executed overall. Each clique() message is re-
transmitted at most n times, thus the communicationcomplexity of this phase is
0(l:::?=1 ndiMi) = O(ndM). Since each clique has O(d) nodes, message length

is O(dlog n). D

By Lemmas 7,8 and 9, we obtain the complexity for constructing K (G) .Compare
it with the sequential-time coIIÍplexity, which is O(mnM + dM2).

Theorem 10. The time complexity of the clique graph construction algorithm is
maxiEv{O(midiMi + diMiM)}, and its communication complexity is O(ndM),
with 0(d log n)-bit long messages.

It remains to prove the correctness of the construction and that no redundant
linking instructions are executed.

Theorem 11. Let C and C' be two nodes of K(G) created in Step 2.
a) if a /inking instruction between C a7!-d C' is executed, then C n C' # 0;
b) if C n C' # 0, then exact/y one /inking instruction between C and C' is
executed.

Proof. The proof of a) is straightforward, since any LIN K instruction between
C and C' is only executed either when constructing a cluster in Step 2 or after
an intersection test in Step 3. In both cases, CnC' # 0. For the proofof b), let
C and C' be two cliques of K(G) such that CnC' # 0 and C is lexicographically
smaller than C'. Let k be the smallest node in Cn C'. There are two cases:

i) k is the smallest node in C. In this case, k is also the smallest node in
C'. Therefore, C and C' belong to the same cluster generated in Step 2. By
construction of the clusters, exactly one linking instruction between C and C' is
executed.

ii) k is not the smallest node in C. Let / and m be the smallest nodes in
C and C', respectively. Of course, / < m :::; k. Observe that leader / executes
a SEND(m,c/ique(C» instruction, and leader m executes a LINK(C,C') in-
struction, since C' is a clique in the cluster of m and C n C' # 0. Moreover,
every instruction ofthe form LIN K(*, C') is executed only inside node m. Since
SEN D(m, c/ique(C» is executed by / exactly once, LIN K(C, C') is executed
exactly once. D

6 Conclusions

A simple distributed algorithm for generating alI maximal cliques of any ar-
bitrary network graph has been presented. As an application, a method for

constructing clique graphs distributedly has also been described.

References

[BDH94] V. C. BARBOSA, L. M. de A. DRUMMOND, and A. L. H. HELLMUT ,
From distributed algorithms to Occam programs by successive refinements, The
J. of Systems and Software 26 (1994), pp. 257-272.

[BF88] V. C. BARBOSA and F. M. G. FRANÇA, Specification ofa communica-
tion virtual processor for parallel processing systems, in Proc. of Euromicro-88

(1988), pp. 511-518.

[BG89] v. C. BARBOSA and E. GAFNI, Concurrency in heavily loaded

neighborhood-constrained systems, ACM :rransactions on Programming Lan-
guages and Systems 11 (1989), pp. 562-584.

[BS96] V. C. BARBOSA and J. L. SZWARCFITER, Generating alI acyclic ori-
entations of an undirected graph, Technical Report ES-405/96, COPPE/Federal
University of Rio de Janeiro.

[CG90] I. CIDON and I. S. GOPAL, Dynamic Detection of Subgraphs in Com-

puter Networks, AIgorithmica 5 (1990), pp. 277-294.

[DK88] E. DAHLHAUS and M. KARPINSKI, A fast parallel algorithm for com-
puting alI maximal cliques in a graph and related problems, Proc. of the first
Scandinavian Workshop on AIgorithm Theory (1988),pp. 139-144.

[FF95] F. M. G. FRANÇA and L. FARIA, Optimal mapping of neighborhood-
constrained systems, in A. Ferreira and J. Rolim eds., Lecture Notes in Computer
Science 980, pp. 165-170.

[JM92] E. JENNINGS and L. MOTYCKOVA, A distributed algorithm for find-
ing alI maxima.l cliques in a network graph, in I. Simon, ed., Lecture Notes in
Computer Science 583, pp. 281-293, 1992.

[JYP88] D. S. JOHNSON, M. YANNAKAKIS, and C. H. PAPADIMITRIOU,
On generating alI maximal independent sets, Information Processing Letters 27
(1988), pp. 119-123

[L76] E. L. LAWLER, Graphical algorithms and their complexity, Mathematical
Centre Tracts 81 (1976), Foundations of Computer Science II Part I, Mathema-
tisch Centrum, Amsterdam, pp. 3-32.

[PU59] M. C. PAUL and S. H. UNGER, Minimizing the number of states in

incompletely specified sequential functions, IRE Trans. Electr. Computers EC-8
(1959), pp. 356-357.

[P95] E. PRISNER, Graph Dynamics, Pitman Research Notes in Mathematics
Series 338 (1995), Longman.

[TIAS77] S. TSUKIYAMA, M. IDE, H. ARUJOSHI and H. OZAKI, A new
algorithm for generating alI the maximal independent sets, SIAM J. Computing
6 (1977), pp. 505-517.

This a.rticle was processed using the �TEX macro pa.cka.ge with LLNCS style

