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Abstract 

Event structure models often have some constraint which ensures that 
for each system run it is clear what are the causal predecessors of an event 
(i.e. there is no causal ambiguity). In this contribution we study what 
happens if we remove such constraints. We define five different partial 
order semantics that are intentional in the sense that they refer to syn- 
tactic aspects of the model. We also define an observational partial order 
semantics, that derives a partial order from just the event traces. 

It appears that this corresponds to the so-called early intentional se- 
mantics; the other intentional semantics cannot be observationally charac- 
terized. We study the equivalences induced by the different partial order 
definitions, and their interrelations. 

1 Introduct ion  

Prominent models for non-interleaving semantics are the event structure mod- 
els. Event structures have as their basic objects labelled events together with 
relations representing causality and conflict. Originally event structures were 
used for giving a semantics to Petri nets [Win80]. They have been also used as 
a semantics for process algebraic languages like CCS [BC94], CSP [LG91] and 
LOTOS [Lan92]. Several different types of event structures exist: we mention 
prime event structures [Win80, WinS9], stable event structures [Win89], flow 
event structures [BC94], and bundle event structures [Lan93, Lan92]. 

All these models are causally disambiguous, by which we mean the following: 
if an event has happened, there is exactly one set of causal predecessors of the 
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event, i.e. there is never any ambiguity in deciding which are the causes of an 
event. 
This is an important  technical property, especially if one wants to relate an 
event structure model to the more fundamental  model of partially ordered sets 
(or posers). Posets can be used as the underlying semantics of many  different 
models; for an elaborate motivation of the importance of posets we refer to 
[Ren93]. Absence of causal ambiguity implies that  there is exactly one poset 
corresponding to a system run. 
Posets can be defined in two alternative ways: by referring to the causality 
representation in the model (we call this intentional), or by just referring to 
the system runs (we call this observationa O. Having corresponding intentional 
and observational characterizations of the posets is important  for relating event 
structures to other models, where an explicit representation of causality may be 
absent. 

In e.g. stable or bundle event structures the absence of causal ambiguity (this 
property is called stability in [Win89]) is due to a constraint on the model, which 
roughly says tha t  if there are alternative causes for an event, then these causes 
should somehow be in conflict. 

For certain application areas (e.g. business redesign) it can be argued that  this 
constraint is too restrictive [Fer94]. Therefore the problem this paper  addresses 
is the following: is it possible to define a partial  order semantics for an event 
structure model with causal ambiguity ? 

The organization of the paper  is as follows. In section 2 we present an event 
structure model and sketch the problem of causal ambiguity. In section 3 we 
give five intentional poset definitions, and in section 4 we show that  exactly one 
of them (the so-called early causality) has an observational characterization. 
In section 5 we look at the induced equivalence relations, and section 6 is for 
conclusions. 

2 E v e n t  s t r u c t u r e s  

Event structure models have as their basic ingredient events labelled with ac- 
tions; an event models the Qccurrence of its action. Different events can have the 
same action label, implying that  they model different occurrences of the action. 
Action labels do not play a role in this paper  but  are impor tant  when the model 
is used e.g. as a semantics for a language. We are in general not interested in 
the event identities as such (so implicitly we work modulo an event renaming 
morphism),  as the events just serve to identify or distinguish action occurrences. 
Often we will denote an event by its action label, if no confusion arises. 

Two events in a system are said to be in conflict if there is no system run in 
which both events happen. In this paper  we will restrict ourselves to the repre- 
sentation of conflict by a binary relation between events. In that  case the main 
difference between the models lies in the way they represent causality. 

In prime event structures causality is modelled by a partial  order on the set of 
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events. This model is mathematically very elegant and convenient. The  draw- 
back is that  as a consequence each event has a unique enabling, so if an action 
can be caused in alternative ways we need to model the action by different 
events, harmful to the conciseness of models. In addition it may be rather com- 
plicated to define some operations on prime event structures, especially parallel 
synchronization. 
For these reasons other models like stable, flow and bundle event structures 
model causality in a different way. Flow event structures model causality by a 
flow relation that  (contrary to prime event structures) need not be transitive, 
thereby making it possible for an event to have alternative enablings. However, 
also for flow event structures parallel synchronization is a bit problematic as it 
is technically dependent on self-conflicting events (as we argued in [Lan92]). 
The first event structure model that  was defined in order to allow for multiple 
enablings is the model of stable event structures [Win89]. There causality is 
represented by a set }- of enablings, which are pairs (X, e), with X a set of 
events and e an event, denoted by X b- e. The interpretation is that  e can 
happen if for some enabling X }- e all the events in X have happened already. 
In this paper we use bundle event structures as our illustrative vehicle, since for 
them some necessary technical results are readily available. However, in the full 
version of this paper [LBK97] we have shown that  the approach here applies to 
stable event structures just as well. 
Since concepts, like well-foundedness [Win89], that  address problems with infi- 
nite sets of events are orthogonal to the issues of this paper and need not bother 
us here, we conveniently restrict ourselves to finite sets of events. 

2.1 B u n d l e  e v e n t  s t r u c t u r e s  

In bundle event structures [Lan93, Lan92], causality is represented by bundles: 
a bundle is a pair (X, e) with X a set of events and e an event. The set of all 
bundles is denoted by ~-~ and we denote a bundle (X, e) by X ~ e. 
The meaning of a bundle X ~-~ e is that  X is a set of causal conditions for e, in 
the sense that  if e happens, one of the events in X has to have happened before. 
If several bundles point to e, for each bundle set an event should have happened. 
In addition, we demand that  for each bundle X ~-~ e, all the events in X are 
in mutual conflict with each other. In this way, if e has happened, exactly one 
event from X has happened before, so there is no doubt about which are the 
causal predecessors of e. In the next section we see what happens if we remove 
this condition. 
The definition of bundle event structures: 

D e f i n i t i o n  2.1 A bundle event structure g is a 4-tuple 
s : (E, # ,  ~ ,  l) with : 

�9 E a set of events 

�9 # C_ E • E ,  the symmetric and irreflexive conflict relation 

�9 ~ .  s 2 E x E,  the bundle set 
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�9 l : E --~ Act, the labelling function 

such that  the following property holds: 
P I :  X ~-+ e ==:~ Vel, e2 E X : ( el  ~ e2 ==~ el ~ e2 ) [] 

We represent a bundle event structure graphically in the following way. Events 
are drawn as dots; near the dot we sometimes give the event name and/or  the 
action. Conflicts are indicated by dotted lines. A bundle X ~+ e is indicated by 
drawing an arrow from each element of X to e and connecting all the arrows by 
small lines. 
The following picture is an example of a bundle event structure, with a bundle 
{a,b,c} ~-~ d : 

a e 

The bundle here means that  for d to happen,  either a, b or c should have hap- 
pened already. 

The concept of a system run for a bundle event structure is captured by the 
notion of an event trace, which is a conflict-free sequence of events, where each 
event is preceded by its causal predecessors: 

D e f i n i t i o n  2.2 Let E -- (E, ~ ,  ~+, l) be a bundle event structure. An event 
trace is a sequence of distinct events e l , . . . ,  Ca, with e l , . . . ,  en E E, satisfying: 

�9 { e l , . . . ,  en} is conflict-free, i.e. Vei, e j :  -~(ei # ej). 

�9 X ~ ei ==* { e l , . . . ,  e i -1} n X # 0 
[] 

Notation: Let a = e l . . .  en be an event trace, then 3 = { e l , . . .  ,en} is the set of 
events in a.  
With  the help of event traces we can define a semantics for bundle event struc- 
tures in terms of (labelled) partial  orders, abbreviated posers (not to be confused 
with pomsets, which are equivalence classes of posets modulo event renaming 
morphisms [Pra86]). Posets form a natural  and at tract ive basic semantics for 
comparing true concurrency models [Ren93]. 
The next definition and theorem show how to obtain posets from event traces: 

D e f i n i t i o n  2.3 Let a be an event trace of E, with ~ -- T. We define the 
precedence relation "~T ~ T x T by e "~T el iff 3X C_ E : ( e E X A X ~ e' ). 
The relation --~T is defined as _<T = A~, i.e. the reflexive and transitive closure 
of ~T .  [] 

T h e o r e m  2.4 _<T is a partial  order over T. 

P r o o f  : see [Lan92] [] 

Let E be a bundle event structure, then the set of posets we get by applying 
definition 2.3 to all event traces of s is denoted by P(E),  where P stands for 
posets. 
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2.2 Observational partial orders 

We have called the above definitions of partial order (obtained from an event 
trace) intentional, as opposed to observational, because they refer to aspects of 
the model, viz. bundles, that  are not observable as such. Therefore the question 
arises how to relate these partial orders to systems where the only observations 
that  can be made are the event traces. As an answer to this question we give a 
definition of partial orders from event traces that  is only based on event traces 
and does not need to take recourse to bundles. We call this definition observa- 
tional, even though a rather strong notion of observation is assumed, namely the 
ability to observe events (so the occurrence of actions, instead of just actions). 

It is easy to prove that  each event trace is a linearization of the partial order 
we get by definition 2.3. This provides the basic intuition for the observational 
poset definition, which works as follows. 
Let a be an event trace of a bundle event structure E, with set of events 3 -- 
T. Now consider all event traces of E with the same events as a and suppose 

{a, I ~' = T} = { a l , . . . ,  a,~}. 
We associate with each event trace a~ an ordering _<i on its events, which is 
simply the order of the events in the event trace, so if a~ = e~l . . .  ein then _<i is 
defined by eil _<i ei2 ~i . . .  ~i ein. 
Now define <~T by <~T=~I N <~2 N. . .  N ~fn. It is not hard to see that  ~T is a 
partial order over T, so (T, ~T) is a partially ordered set or poset. 
Let E be a bundle event structure, then the set of posets we get by applying the 
above definition to all event traces of s is denoted by OP(E) ,  where O P  stands 
for observational posets. 
In Corollary 7.5.4. in [Lan92] it is stated that  P(E)  = O P ( e ) ,  i.e. the intentional 
posets are equal to the observational posets. This correspondence between the 
intentional and the observational definition makes it possible to relate bundle 
event structures to other models that  can be defined to generate event traces, 
e.g. Petri nets or process algebras [Lan92]. 

2.3 The problem of causal ambiguity 

Crucial for the definitions above is the constraint P1 (see definition 2.1), that  
says that from each bundle only one event can happen. If we would not have 
constraint P1, then the following would be a "bundle" event structure: 

d 

with bundles {a, b} ~ d and {b, c} ~ d. Suppose we would take event trace 
abcd and would ask what partial order corresponds to this event trace. What  
are the causal predecessors of d ? With constraint P1 this question always has 
a unique answer, but now there are several candidates: {a, c}, {b}, {a, b}, {b, c} 
and {a, b, c} are all candidate sets of causal predecessors of d. We therefore have 
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to adapt  our definition of how to obtain a partial  order from an event trace, and 
in the next section we will see tha t  there are several ways of doing so. 

Also the observational definition of the previous section does not work anymore. 
If  we t ry  the recipe given there for the above event structures, we obtain 14 event 
traces with events {a, b, c, d}; the intersection of these linear orders is a poset 
with just  the identity as the ordering relation, which surely does not capture the 
causality information of the event structure. 
Bundle event structures without constraint P1 have been baptized dual event 
structures in [Kat96]. Providing intentional and observational partial  order def- 
initions for dual event structures is the theme of the following sections. 

3 Intentional partial order definitions 

In this section we present several definitions of causality in possibly causally 
ambiguous situations. Wha t  definition is appropriate  depends on considerations 
coming from the application area. In this respect the situation is very similar to 
the field of implementat ion relations [vG90], where many  different implementa-  
tion relations exist, each with its own (often observational) justification. In fact 
in section 5 we show how these different causality notions give rise to different 
partial  order equivalences, and s tudy their interrelations. In section 4 we show 
that  only one of the notions in this section has an observational characterization 
in terms of event traces. 

By a cause of e in a we mean a set of causal predecessors of e, that  is a set 
of events tha t  enable e to happen. Each of the notions in this section gives an 
answer to the following question: suppose we have a dual event structure C, with 
an event trace a~ and an event e in a~ what  are the possible causes C in a of e ? 
We do not demand tha t  C is always unique, i.e. in principle we allow a set (Ci} 
of possible causes as an answer to our question (some notions lead to a unique 
C though). 

We can define partial  orders on ~ in the following way: for each e in a,  choose a 
cause Ce. Now define for all e, e t E ~: e / -~ e iff e t E Ce and define the ordering 
relation on ~ to be the transitive and reflexive closure of -~. If each cause C~ 
occurs before e in a (and all notions we consider have this property, in agreement 
with the common sense idea that  causes have to occur before effects) it is easy 
to see that  this definition leads indeed to a partial  order. 

3 . 1  L i b e r a l  causality 
The least restrictive notion of causality, which we call the liberal one, is the one 
saying that  each set of events from bundles pointing to e that  satisfies all bundles 
is a cause. 

D e f i n i t i o n  3.1 Liberal: Let a be an event trace of C, e an event in this trace, 
and all bundles pointing to e given by X1 ~ e , . . . ,  Xn ~-+ e. 
A set C is a cause of e in a iff the following conditions hold: 
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�9 each e' 6 C occurs before e in ~r 

�9 CC_X1U. . .UX ,~  

�9 for all i: X i N C r  

The set of posets obtained in this way from a is denoted by Pub (a) 

E x a m p l e  3.2 Consider event trace abcd of event structure 

d 

Then Plib(abcd) consists of the posets 

a a a . . . , , .~ a a . , , , ,~  

b - - ~ d  b - ~ d  b---~ d b---~ d b d 
c c / /  c c / ' ,  c 11 

[3 

[] 

3.2 Bundle satisfaction causality 

This causality notion is based on the idea that  for an e in a each bundle pointing 
to e is satisfied by exactly one event in a cause of e. This means tha t  for all 
bundles pointing to e, each bundle can be mapped  to an event in a cause C such 
that  all events in C are being mapped  upon, so the presence of each event e' in 
C should be justified by some bundle X ~-+ e, with e '  6 X,  tha t  is associated to 
e I . 

D e f i n i t i o n  3.3 Bundle satisfaction: Let a be an event trace of E, e an event in 
this trace, and all bundles pointing to e given by X1 ~-~ e , . . . ,  Xn ~-~ e. 
A set C is a cause of e in a iif the followifig conditions hold: 

�9 each e' 6 C occurs before e in 

�9 There is a surjective mapping f : {Xi} -+ C such tha t  f (Xi)  6 Xi 

The set of posets obtained in this way from a is denoted by Pbsat(a) [] 

E x a m p l e  3 . 4  Let E be the same dual event structure as in example 3.2. Now 
we allow e.g. 

b-----~ d 

C 

(where a satisfies bundle {a, b} ~ d and b satisfies bundle {b, c} ~ d ) and 
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& 

b ----~ d 

c 

(where b satisfies both bundles {a, b} ~-4 d and {b, c} ~4 d). Notice that  we 
do allow more events from one bundle, or several bundles satisfied by the same 
event. 

is not allowed as a poset, as d has three causal predecessors and there are only 
two bundles to be satisfied. [] 

Clearly each C satisfying definition 3.3 also satisfies definition 3.1, so for all 
event traces C_ 

3.3 Minimal causality 
The next causality definition is based on the idea that each cause should be 
minimal, in the sense that  there is no subset which is also a cause. 

De f in i t i on  3.5 Minimal: Let a be an event trace of E, e an event in this trace, 
and all bundles pointing to e given by X1 ~-~ e , . . . ,  Xn ~-~ e. 
A set C is a cause of e in a iff the followir~g conditions hold: 

�9 each e ~ E C occurs before e in a 

�9 for all i: XiNCTLO 

�9 there is no proper subset of C satisfying the previous two conditions 

The set of posets obtained in this way from a is denoted by Pmin (a) [] 

E x a m p l e  3.6 Let s be the same dual event structure as in example 3.2. Now 
the only posets for trace abcd are 

E.g. 

b ~ d and b 
c c 

d 

b - - - - ~  d 

c 

is not allowed anymore as {a, b} is not minimal: also the subset {b} would be 
sufficient for d to be enabled. [] 

Again it is easy to see that each C satisfying definition 3.5 also satisfies definition 
3.3, so for all event traces a, Pmin(a) C_ Pbsat(a). 
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3.4 Early causality 

If one is t rying to remove "superfluous" events from the causes, at  first sight the 
minimal definition given above seems hard to improve upon. However, look at 
the following example. 

E x a m p l e  3.7 Consider trace abc from event structure 

then {a} is a minimal cause of b, and {b} is a minimal cause of c, so we have a 
poset 

b / ' , ,  
a ~ e 

(with a <_ c because of transitivity).  However, if b happens, a has happened 
already, and a is enough to let c happen. So in a sense the causality relation 
between b and c is superfluous. [] 

In order to remove this superfluousness, we would like to demand tha t  a cause 
is somehow the "earliest". 

D e f i n i t i o n  3.8 Let a = e l . . .  en be an event trace, and let C, C ~ C {el . . .  en}. 
We say C is earlier than C I, notat ion C << C ~, iff the maximal  index in a of the 
events in C \ C ~ is smaller than the maximal  index in a of the events in C '  \ C 
(we define the maximal  index of 0 to be 0). [] 

L e m l n a  3.9 Let a be an event trace, let Id be the identity relation over all the 
subsets of ~. The relation << UId is a total  order over all the subsets of F. 

P r o o f  : Represent a subset C of F by a binary n-digit, where the i th digit is 1 iif 
ei E C, the n th digit being the most  significant one. Call the resulting number 
n(C), then it is easy to see tha t  C << C '  iff n(C) < n(C'). [] 

Given a set of subsets of ~, l emma 3.9 ensures t h a t  it makes sense to talk of a 
unique earliest element of this set. Now we are ready for the definition of early 
causality: 

D e f i n i t i o n  3.10 Early: Let a be an event trace of E, e an event in this trace, 
and all bundles pointing to e given by X1 ~-~ e , . . . ,  X~ ~-~ e. 
A set C is a cause of e in a iff the following conditions hold: 

�9 each e I E C occurs before e in a 

�9 for all i" X i M C r  
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�9 C is the earliest set satisfying the previous two conditions. 

The set of posets obtained in this way from a is denoted by P~arl~(a) [] 

Note that  due to the uniqueness of the earliest enabling, this definition leads to 
a unique cause in an event trace a, and so to a unique poset for a.  

I t  is easy to check that  if C C C ~ then C << C~; this means tha t  each earliest 
cause C is also minimal, so for all event traces a, P~a~ly(a) C Pmi,~(a). 

3.5 Late causality 

In the last section we defined an early causality, taking always the earliest cause. 
One might ask if it would also be possible to ask for the latest possible cause. 
Think for instance of a situation where events write values into variables; then 
it would be natural  to consider the last write as a causal predecessor of e.g. an 
event that  reads the variable. 

We define C later C l if[ C I << C. Now it is not the case tha t  latest implies 
minimali ty (on the contrary, a superset of a set C will always be later). Therefore 
in the definition of late causality we have to explicitly state that  the cause is a 
minimal one, whereas for early causality this was a consequence. 

D e f i n i t i o n  3.11 Late: Let a be an event trace of ~, e an event in this trace, 
and all bundles pointing to e given by X1 ~-+ e , . . . ,  X~ ~ e. 
A set C is a cause of e in a iff the following conditions hold: 

�9 each e / E C occurs before e in a 

�9 for all i: X i n C r  

�9 there is no proper subset of C satisfying the previous two conditions 

�9 C is the latest set satisfying the previous three conditions 

The set of posets obtained in this way from a is denoted by Plate(a) [] 

Each C satisfying definition 3.11 trivially satisfies definition 3.5, so for all event 
traces g Pm n(o). 

3.6 Comparisons 
We saw tha t  for each event trace a, Plate(a), Pearly(a) C Pmin(a) C_ Pbsat(a) C_ 

We can extend the definition of P~ to dual event structures by having Px(~) 
denote the posets of all event traces of event s t ructure C. 
The subset inclusions for the posets of a single event trace carry over to the 
subset relations for the posets of a dual event structure. These inclusions are 
strict because of the following reasons. For s in example 3.2 we have seen that  
Pm~n(~) C Pbsat(~) C Pllb(C). For s in example 3.7 we have that  Pea~l~(~) C 
Pmin($). An example of a dual even structure tha t  has a minimal poset tha t  is 
not a late poset: let s be the following dual event structure: 
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e 

We invite the reader to check tha t  

\zd-.bt 
is a minimal poset for e.g. event trace abcde, but cannot be a late poset for any 
event trace of C. 

4 An observational partial order definition 

We would like to have also for the dual or instable event s t ructure an observa- 
tional definition of partial  order like the one in section 2.3 (cf. definition 2.3). 
As illustrated in section 3, we cannot use the technique of reconstructing the 
posets from their linearizations (the event traces) as we end up with posets tha t  
have too little ordering and do not model the causality in a satisfactory way. We 
therefore t ry  another recipe. 

The idea of this definition is the following: for an event e in a,  we look at all 
event traces with the same events as a.  We then look at the set of predecessors 
of e in some event trace (we call such a set a securing for e). From all these 
securings we now take the earliest securing for e in a and define e r < e for all e t 
in this earliest securing. 

Definit ion 4.1 Let a be an event trace of a dual event s t ructure E, and e an 
event in a.  

�9 let [a] be the set of all event traces of E with events 

�9 the securings of e are defined as {~'113a2 : alea2 e [a]} 

�9 take the earliest securing S in a and define e ~ < e iff e ~ E S U {e} 

[] 

The nice result is tha t  < as defined by the observational definition 4.1 is exactly 
the unique partial order as defined by the intentional one of early causality. 
Let < be the ordering defined by definition 4.1, then we write OP(a) (for obser- 
vational poser) for (~, ~) .  

Theorem 4.2 Let a be an event trace of dual event s tructure s Then: 
OF(a) = Pearlu(a). 
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P r o o f  : See [LBK97] [] 

So early causality can also be characterized in an observational way. Is it possible 
to find a characterization for any of the other intentional causality concepts ? 
The answer is no, as can be learned from the following example. 

E x a m p l e  4.3 The dual event structures 

El . b  

a ~~-e c a 

have the same event traces. s has for trace abc the poset 

b / ' , ,  
under liberal, bundle satisfaction, minimal and late causality, but this is not a 
poset of s [] 

Any observational definition of causality would have the same result for s and 
s above as they have the same traces. Since the other intentional causality 
concepts lead to different posets for C1 and s this shows that  these intentional 
concepts cannot be observationally characterized. 

So the result is that  the early causality concept is the only one that  can be 
observationaUy characterized. 

5 Partial  order equivalence relations 

The causality notions defined in the previous sections induce equivalence rela- 
tions in the following way: 

D e f i n i t i o n  5.1 Let ~1, E2 be dual event structures. We define C1 ~= E2 iff 
P=(C1) = P=(C2), where x e {lib, bsat, rain, early, late}. [] 

Now an obvious question is the relation between the different equivalence rela- 
tions. First of all, we note that  due to theorem 4.2, ~ a r l v  is equal to event trace 
equivalence (since equal event traces lead to the same observational posets so to 
the same early posets, and vice versa). W e  have the following two implications: 

T h e o r e m  5.2 

1. ~1 ~= E2 : t- E1 ~e=rty E2 for x E {lib, bsat, min,  late} 

2. s ~bsat s ~ ~1 ~t~b s 
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P r o o f  : See [LBK97] [] 

The two above implications are strict (i.e. the reverse does not hold). More- 
over, no other implications hold. This can be seen from the following examples, 
where each pair of dual event structures is event trace equivalent and so early 
equivalent: ~ /  

E x a m p l e  5.3 

E1 �9 b 

a/ ~ � 9  

# l ib  

,rain 

~late  a _ _ C 

as s can have b < c and E1 can not. [] 

Example 5.4 

~.bsat 

a ~-'min 

�9 b ~-'late b 

as s can have b < c in liberal and bundle satisfaction posets and E1 can not. 
For minimal and late causality, b will not be in a cause for c as a is sufficient. [] 

Example 5.5 

El 

~late 

& 

as the extra bundle {a, b, c} ~ d has no influence on liberal, minimal and late 
causes, but Pbsae(E2) has poset 

b---~ d 

c /  
and Pbsat(E1) has not. [] 
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E x a m p l e  5.6 

s ~bsat 

~min  
d ~late 

c 

~ b 
a s 

.d 
c 

For minimal and late causality, E2 has poset 

a ~ c  

as {b, d} is a minimal cause for c in e.g. trace abdc, which does not hold for El. 
[] 

The only relationship we have not been able to clear up is between ~mi,~ and 
~late. We have not been able to produce an example of their difference, nor 
have we been able to prove that  such an example does not exist. 
If we leave that  relation as an open question, we can resume our findings in the 
following diagram: 

~early 

~-"lib r r 
? 

~bsat 

6 Conclusion 

We have shown that  it is possible to give a partial order semantics for a causally 
ambiguous event structure model. We have presented five intentional causality 
concepts (that make use of the way causality is represented in the model): lib- 
eral, bundle satisfaction, minimal, early and late causality. We have given an 
observational characterization (that makes use of just event traces) of one of 
them, namely the early causality, and have shown that  for the other notions no 
observational characterization can be given. 
Especially the fact that  late causality, which at first sight seems a symmetric 
counterpart to early causality, cannot be observationally characterized is some- 
thing that  we did not expect beforehand. 

We studied the induced equivalence relations and found that  all equivalences 
imply early equivalence (which is equal to event trace equivalence), and that  
bundle satisfaction equivalence implies liberal equivalence. 
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We gave examples showing that  apart  from these implications the different equiv- 
alences are incomparable, except for the relation between minimal and late equiv- 
alence: the relation between these equivalences is an open question. 

Another problem for further s tudy would be to look at transformation laws pre- 
serving the various equivalences, in a similar way as has been done in [Lan92] 
for event trace equivalence. 
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