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Abstract

Based on the notion of an order function we construct and determine
the parameters of a class of error-correcting evaluation codes. This class
includes the one-point algebraic geometry codes as well as the general-
ized Reed-Muller codes, and the parameters are determined without using
heavy machinery from algebraic geometry.

1 Introduction

Suppose we have n points P1, . . . , Pn in the affine space AG(m, q) of dimension
m over some finite field Fq, and a vector space of functions f : AG(m, q) → Fq.
We can then choose some of these functions f1, f2, . . . , fl, say, and define a code
El by

El = span(fi(P1), fi(P2), . . . , fi(Pn)), i = 1, . . . , l

and its dual code by
Cl = E⊥l .

In general nothing interesting can be said about the codes constructed in this
way, but in 1977 V. D. Goppa [1] showed that it is possible to determine the
parameters of such codes if the points are chosen on an algebraic curve and
the functions are from a certain space associated with the curve. The proof
of this uses some heavy machinery from algebraic geometry, in particular the
Riemann-Roch Theorem. The subject of algebraic geometry codes exploded
after Tsfasman-Vlǎduţ and Zink [2] showed that in this way it is possible to
get asymptotically good sequences of codes with parameters better than the
Varshamov-Gilbert bound in a certain range of the rate and for large enough
q. Since 1977 a lot of effort has gone into finding a more elementary way of
describing these codes [3]-[8]. In this paper we give such a description based
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on the so-called order functions. The paper came about when working on a
chapter on algebraic geometry codes which will appear in the Handbook on
Coding Theory [9].

In Section 2 we introduce the concept of an order function. Section 3 treats
evaluation codes and their duals and determines the parameters and Section 4
contains some concluding remarks.

2 Order Functions

Let R be a commutative ring with a unit which contains the finite field Fq as
a unitary subring. We will call R an Fq-algebra. Let N denote the positive
integers and N0 the nonnegative integers.

Definition 2.1 A function ρ : R → N0 ∪{−∞} is called an order function if it
satisfies

O.0 ρ(f) = −∞⇔ f = 0
O.1 ρ(λf) = ρ(f) for all nonzero λ ∈ Fq

O.2 ρ(f + g) ≤ max{ρ(f), ρ(g)} with equality if ρ(f) 6= ρ(g)
O.3 If ρ(f) ≤ ρ(g) and h ∈ R \ {0} then ρ(hf) < ρ(hg)
O.4 If ρ(f) = ρ(g) then there exists a nonzero λ ∈ Fq such that

ρ(f − λg) < ρ(g)

for all f, g, h ∈ R. Here −∞ < n for all n ∈ N0.

Definition 2.2 Let R be an Fq-algebra. A weight function on R is an order
function that furthermore satisfies

O.5 ρ(fg) = ρ(f) + ρ(g)

for all f, g ∈ R. Here −∞+ n = −∞ for all n ∈ N0.

Example 2.3 Let R = Fq[x] and ρ(f) = deg f . Then ρ is a weight function.
For multivariate polynomials the degree function does not satisfy O.4.

Example 2.4 Let R = Fq[x1, x2, . . . , xn]. We will use the multiindex nota-
tion for monomials. This means xα =

∏m
i=1 xαi

i if α = (α1, . . . , αm). The
lexicographic order on the monomials is defined by xα <L xα if and only if
α1 = β1, . . . , αl−1 = βl−1 and αl 6= βl for some 1 ≤ l ≤ m, and the graded lexico-
graphic order <D is defined by xα <D xβ if and only if either deg(xα) < deg(xβ)
or deg(xα) = deg(xβ) and xα <L xβ . The graded lexicographic order is an ad-
missible order, and can be extended to an order function on R in the following
way. Let f1, f2, . . . be an enumeration of the monomials such that fi <D fi+1

for all i. The monomials are a basis of R over Fq, so every nonzero polynomial
f can be written in a unique way as

f =
j∑

i=1

λifi
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where λi ∈ Fq for all i and λj 6= 0. Define a function

ρ : R → N0 ∪ {−∞}

by ρ(0) = −∞ and ρ(f) = j − 1 where j is the smallest integer such that f can
be written as a linear combination of the first j monomials. Then ρ is an order
function, but not a weight function.

Lemma 2.5 Let ρ be an order function on R. Then:
1) If ρ(f) = ρ(g), then ρ(fh) = ρ(gh) for all h ∈ R.
2) ρ(1) ≤ ρ(f) for all nonzero elements f ∈ R.
3) F = {f ∈ R | ρ(f) ≤ ρ(1)}.
4) If ρ(f) = ρ(g), then there exists a unique nonzero λ ∈ F such that ρ(f−λg) <
ρ(g).

Proof.
1) If ρ(f) = ρ(g), then there exists a nonzero λ ∈ F such that ρ(f − λg) <

ρ(g), by (O.4). So ρ(fh−λgh) < ρ(gh), by (O.3). Now fh = (fh−λgh)+λgh.
Hence ρ(fh) = ρ(λgh) = ρ(gh), by (O.2) and (O.1), respectively.

2) Suppose that f is a nonzero element of R such that ρ(f) < ρ(1). Then
ρ(1) > ρ(f) > ρ(f2) > · · · is a strictly decreasing sequence, by Condition (O.3),
but this contradicts the fact that N0∪{−∞} is a well-order. Hence ρ(1) ≤ ρ(f)
for all nonzero elements f in R.

3) It is clear that F is a subset of {f ∈ R | ρ(f) ≤ ρ(1)}, by Conditions
(O.0) and (O.1). If f is nonzero and ρ(f) ≤ ρ(1), then ρ(f) = ρ(1), by 2) and
hence there exists a nonzero λ ∈ F such that ρ(f − λ1) < ρ(1), by (O.4). So
f − λ = 0 and f ∈ F .

4) If ρ(f) = ρ(g), then there exists a nonzero λ ∈ F such that ρ(f − λg) <
ρ(g) by condition (O.4). If ρ(f − µg) < ρ(g), we get by (O.1) and (O.2) that
ρ(f − λg − (f − µg)) < ρ(g) and therefore ρ((µ− λ)g) < ρ(g). Condition (O.1)
gives µ− λ = 0.

Proposition 2.6 If there exists an order function on R, then R is an integral
domain.

Proof. Suppose that fg = 0 for some nonzero f, g ∈ R. We may assume that
ρ(f) ≤ ρ(g). So ρ(f2) ≤ ρ(fg) = ρ(0) = −∞. So ρ(f2) = −∞, and f2 = 0.
Now f 6= 0, hence ρ(1) ≤ ρ(f), by Lemma 2.5. So ρ(f) ≤ ρ(f2) = ρ(0) = −∞.
Hence f = 0, which is a contradiction. Therefore R has no zero divisors.

Example 2.7 The F -algebra R = F [X1, X2]/(X1X2−1) is an integral domain.
We will show that it does not have an order function. Denote the coset of Xi

modulo the ideal (X1X2 − 1) by xi. If ρ is an order function on R, then
ρ(1) ≤ ρ(x1), so ρ(x2) ≤ ρ(x1x2) = ρ(1), hence ρ(x2) = ρ(1) and in the same
way we get ρ(x1) = ρ(1). Therefore ρ(f) ≤ ρ(1) for all f ∈ R. Hence F = R by
Lemma 2.5, which is a contradiction since x1 6∈ F .
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The following proposition and theorem show that if there exists an order func-
tion, then there exists a basis with certain properties; and conversely if such a
basis exists, then one can define an order function. Although the formulation is
technical, it is easy to apply. This will be shown in some examples.

Proposition 2.8 Let R be an F -algebra with order function ρ. Then there
exists a basis {fi | i ∈ N} of R over F such that ρ(fi) < ρ(fi+1) for all i. Every
such basis has the property that if i is the smallest positive integer such that f
can be written as a linear combination of the first i elements of that basis, then
ρ(f) = ρ(fi). Furthermore, if l(i, j) is the smallest positive integer l such that
ρ(fifj) = ρ(fl), then l(i, j) < l(i + 1, j) for all i and j.

Proof. Let (ρi | i ∈ N) be the increasing sequence of all nonnegative integers
that appear as the order ρ(f) of a nonzero element f ∈ R. By definition there
exists an fi ∈ R such that ρ(fi) = ρi for all i ∈ N . Hence ρ(fi) < ρ(fi+1) for all
i, and for all nonzero f ∈ R there exists an i with ρ(f) = ρ(fi), by definition.
The fact that {fi | i ∈ N} is a basis is proved by induction and Lemma 2.5 (4),
and it has the required property by (O.2). That the function l(i, j) is strictly
increasing in its first argument is a consequence of condition (O.3).

Theorem 2.9 Let R be an F -algebra. Let {fi | i ∈ N} be a basis of R as
a vector space over F with f1 = 1. Let Li be the vector space generated by
f1, . . . , fi. Let l(i, j) be the smallest positive integer l such that fifj ∈ Ll.
Suppose l(i, j) < l(i + 1, j) for all i, j ∈ N . Let (ρi | i ∈ N) be a strictly
increasing sequence of nonnegative integers. Define ρ(0) = −∞, and ρ(f) = ρi

if i is the smallest positive integer such that f ∈ Li. Then ρ is an order function
on R. If moreover ρl(i,j) = ρi + ρj, then ρ is a weight function.

Proof. The conditions (O.0), (O.1), (O.2), and (O.4) are a direct consequence
of the definitions.

With every nonzero element f ∈ R the smallest positive integer ι(f) is
associated such that f ∈ Lι(f). Let f and g be nonzero elements of R. Then

f =
∑

i≤ι(f)

λifi, g =
∑

j≤ι(g)

νjfj and fg =
∑

l≤ι(fg)

µlfl,

with λι(f) 6= 0, νι(g) 6= 0 and µι(fg) 6= 0. There exist µijl ∈ F such that

fifj =
∑

l≤l(i,j)

µijlfl

and µijl(i,j) 6= 0. Hence
µl =

∑
l(i,j)=l

λiνjµijl.

The function l(i, j) is strictly increasing in both arguments, by assumption and
symmetry. So l(i, j) < l(ι(f), ι(g)) if i < ι(f) or j < ι(g). Furthermore, if
i = ι(f) and j = ι(g), then

λiνjµijl(i,j) 6= 0,
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This element is therefore equal to µι(fg), and we have proved that ι(fg) =
l(ι(f), ι(g)).

If moreover ρl(i,j) = ρi + ρj , then

ρ(fg) = ρι(fg) = ρl(ι(f),ι(g)) = ρι(f) + ρι(g) = ρ(f) + ρ(g).

Example 2.10 Let w = (w1, . . . , wm) be an m-tuple of positive integers called
weights. The weighted degree of α ∈ Nm

0 and of the corresponding monomial
Xα is defined by

wdeg(Xα) = wdeg(α) =
∑

αlwl,

and of a nonzero polynomial F =
∑

λαXα by

wdeg(F ) = max{ wdeg(Xα) | λα 6= 0 }.

This gives a degree function wdeg on the ring F [X1, . . . , Xm]. The weighted
graded lexicographic order ≺w on Nm

0 is defined by

α ≺w β if and only if wdeg(α) < wdeg(β) or wdeg(α) = wdeg(β) and α ≺L β ,

and similarly for the monomials. For m = 2 with X = X1, Y = X2, wdeg(X) =
4 and wdeg(Y ) = 5, the begining of this total graded lexicographic order looks
like:

1 ≺
X ≺ Y ≺
X2 ≺ XY ≺ Y 2 ≺
X3 ≺ X2Y ≺ XY 2 ≺ Y 3 ≺
X4 ≺ X3Y ≺ X2Y 2 ≺ XY 3 ≺ Y 4 ≺
X5 ≺ X4Y ≺ X3Y 2 ≺ X2Y 3 ≺ XY 4 ≺ X6 ≺ Y 5

Example 2.11 Let I be the ideal in F [X, Y ] generated by a polynomial

Xa + Y b + G(X, Y )

with deg(G) < b < a and gcd(a, b) = 1. Let R = F [X, Y ]/I. Denote the cosets
of X and Y modulo I by x and y, respectively. Then xa = −yb − g(x, y) and
therefore xa is a linear combination of elements of the form xαyβ with 0 ≤ α < a,
since deg(G) < a. By recursion one shows that the set

{xαyβ | 0 ≤ α < a}

is a basis for R. Suppose there exists a weight function ρ on R such that
gcd(ρ(x), ρ(y)) = 1. We will show that ρ(x) = b and ρ(y) = a. Let xiyj be the
monomial in g with the largest weight. Then ρ(g) ≤ iρ(x) + jρ(y) by (O.2) and
(O.5) and therefore either ρ(g) ≤ (i+j)ρ(x) or ρ(g) ≤ (i+j)ρ(y) from which we
get ρ(g) < ag(x) or ρ(g) < bρ(y) since i + j < b < a. But ρ(xa) = ρ(yb + g) and
ρ(yb) = ρ(xa + g) by (O.1) so we conclude ρ(xa) = ρ(yb) using (O.2) and (O.5),
and therefore aρ(x) = bρ(y). Since gcd(ρ(x), ρ(y)) = 1, the result follows.
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In the following it is shown that indeed such a weight function exists.

Proposition 2.12 Let I be the ideal in F [X, Y ] generated by a polynomial of
the form Xa + Y b + G(X, Y ) with deg(G) < b < a and gcd(a, b) = 1. Let
R = F [X, Y ]/I. Then there exists a weight function ρ on R. The ring R is
an integral domain, I is a prime ideal and Xa + Y b + G(X, Y ) is absolutely
irreducible.

Proof. Consider the total weighted degree lexicographic order ≺w on the
monomials in X and Y with respect to the weights wdeg(X) = b and wdeg(Y ) =
a. This weight function is injective on the set {XαY β | 0 ≤ α < a}, since
gcd(a, b) = 1. Let f1, f2, . . . be an enumeration of the elements xαyβ of the
basis of R, and let ρ1, ρ2, . . . be an enumeration of the nonnegative integers of
the form αb + βa with 0 ≤ α < a, in such a way that ρi < ρi+1 and fi = xαyβ

if ρi = αb + βa and 0 ≤ α < a, for all i. Let Ll = 〈f1, . . . , fl〉.
It is proved by induction that ρl(i,j) = ρi +ρj . The induction is with respect

to the well-order ≺w on N2. Now f1 = 1 and ρ1 = 0. So l(1, 1) = 1 and the start
of the induction is satisfied. Suppose that the claim is proved for all (i′, j′) ≺w

(i, j). Let fi = xαyβ , ρi = αb+βa with 0 ≤ α < a. Let fj = xγyδ, ρj = γb+ δa
with 0 ≤ γ < a. Then fifj = xα+γyβ+δ and ρi + ρj = (α + γ)b + (β + δ)a.

If α+γ < a, then fifj is a basis element. So fl(i,j) = fifj and ρl(i,j) = ρi+ρj .
If α + γ ≥ a, then α + γ = a + ε with 0 ≤ ε < a. Hence

ρi + ρj = (α + γ)b + (β + δ)a = εb + (b + β + δ)a

and
fifj = −xεyb+β+δ − xεg(x, y).

The term xεyb+β+δ is a basis element fl. We may assume by induction that
xεg(x, y) ∈ Ll−1, since deg(G) < b < a. Hence fifj = fl, l(i, j) = l and
ρl = εb + (b + β + δ)a = ρi + ρj . This concludes the proof that ρl(i,j) = ρi + ρj .
Therefore l(i, j) < l(i + 1, j).

Hence there exists a weight function ρ on R such that ρ(xαyβ) = αb+βa, by
Theorem 2.9. So R is an integral domain by Proposition 2.6 and I is therefore
a prime ideal.

The general question under what conditions on the ideal I it is possible to
find an order function on R = F [x1, . . . , xm]/I is difficult. Some results relating
this to the existence of Groebner bases for I with certain properties are given
by R. Pellikaan in [8].

3 Evaluation Codes and Their Duals

Let R be an Fq-algebra with an order function ρ. Let (fi | i ∈ N) be a basis
of R over Fq such that ρ(fi) < ρ(fi+1) for all i ∈ N , and for all nonzero f ∈ R
there exists a j with ρ(f) = ρ(fj). The existence of such a basis is guaranteed
by Proposition 2.8. Let Ll be the vector space generated by f1, . . . , fl. Hence
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for all nonzero f ∈ R we have that ρ(f) = ρ(fl) if and only if l is the smallest
integer such that f ∈ Ll. Let l(i, j) be the smallest positive integer l such that
fifj ∈ Ll. So l(i, j) < l(i + 1, j) for all i, j ∈ N .

The coordinatewise multiplication on Fn
q is defined by a∗b = (a1b1, . . . , anbn)

for a = (a1, . . . , an) and b = (b1, . . . , bn). The vector space Fn
q becomes an Fq-

algebra with the multiplication ∗.

Definition 3.1 The map
ϕ : R −→ Fn

q ,

is called a morphism of Fq-algebras if ϕ is Fq-linear and

ϕ(fg) = ϕ(f) ∗ ϕ(g).

Let hi = ϕ(fi). Define the evaluation code El and its dual Cl by

El = ϕ(Ll) = 〈h1, . . . ,hl〉,

Cl = {c ∈ Fn
q | c · hi = 0 for all i ≤ l}.

We will consider only those algebra morphisms ϕ that are surjective. Hence
there exists a positive integer N such that El = Fn

q and Cl = 0 for all l ≥ N .

Let the set P consist of n distinct points P1, . . . , Pn in Fm
q . Consider the

evaluation map
evP : F [X1, . . . , Xm] −→ Fn,

defined by evP(f) = (f(P1), . . . , f(Pn)). This is a morphism of Fq-algebras
from R to Fn

q , since FG(P ) = F (P )G(P ) for all polynomials F and G, and all
points P .

Lemma 3.2 The map evP is surjective.

Proof. Let Pj = (xj1, . . . , xjm). Let Ail = {xjl | j = 1, . . . , n} \ {xil}. Define
the polynomial fi by

fi =
m∏

l=1

∏
x∈Ail

(Xl − x).

Then fi(Pj) = 0 for all i 6= j. Furthermore fi(Pi) 6= 0, since the points
P1, . . . , Pn are mutually distinct. Let gi = fi/fi(Pi). Then evP(gi) is the ith
standard basis element of Fn

q . Hence evP is surjective.

Suppose that I is an ideal in the ring F [X1, . . . , Xm]. Let P1, . . . , Pn be in
the zeroset of I with coordinates in F . Hence f(Pj) = 0 for all f ∈ I and all
j = 1, . . . , n. Then the evaluation map induces a well-defined linear map

evP : F [X1, . . . , Xm]/I −→ Fn,

which is also a surjective morphism of F -algebras.
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In the above setting the codes are very general and nothing specific can be said
about the minimum distance of the codes El and Cl. We will show that certain
order and weight functions on the affine ring R give a bound on the minimum
distance which is in many cases the actual minimum distance.

Suppose that ρ is a weight function. Condition (O.5) implies that the subset
S = {ρ(f) | f ∈ R, f 6= 0 } of N0 has the property that, 0 ∈ S, and x + y ∈ S
for all x, y ∈ S.

Definition 3.3 A subset S of the nonnegative integers N0 is called a semigroup
if 0 ∈ S and for all x, y ∈ S also the sum x + y ∈ S. Elements of N0 \ S are
called gaps of S and elements of S are called nongaps of S. If all elements of
S are divisible by an integer d > 1, then there are infinitely many gaps. The
number of gaps is denoted by g = g(S). If g < ∞, then lg(S) = lg is both the
largest gap of S and the gth gap.

Lemma 3.4 Let S be a semigroup with finitely many gaps and s ∈ S. Then
the number of elements of S \ (s + S) is equal to s.

Proof. Let s ∈ S. Let lg be the largest gap of S. Let T = {t ∈ N0 | t > s+ lg}.
Then T is contained in S and in s + S. Let U = {u ∈ S | u ≤ s + lg}. Then
the number of elements of U is equal to s + lg + 1 − g, and S is the disjoint
union of T and U . Let V = {v ∈ s + S | s ≤ v ≤ s + lg}. Then the number of
elements of V is equal to lg + 1− g, and s + S is the disjoint union of V and T .
Furthermore V ⊆ U , since s ∈ S and S is a semigroup. Hence

#(S \ (s + S)) = #U −#V = (s + lg + 1− g)− (lg + 1− g) = s.

Lemma 3.5 Let f be a nonzero element of an Fq-algebra R with a weight func-
tion ρ. Then

dim(R/(f)) = ρ(f).

Proof. Let S be the semigroup of the weight function ρ. Let s = ρ(f). Let
(ρi | i ∈ N) be the sequence of the elements of S in increasing order. The image
under ρ of the set of nonzero elements of the ideal (f) is equal to s + S. So
for every ρi ∈ S there exists an fi ∈ R such that ρ(fi) = ρi, and fi ∈ (f) if
ρi ∈ s + S. The sets {fi | i ∈ N} and {fi | i ∈ N, ρi ∈ s + S} are bases of the
algebra R and the ideal (f), respectively, by the same argument as 2.8. Hence
the classes of fi modulo (f) with i ∈ N and ρi ∈ S\(s+S) form basis for R/(f).
So the dimension of R/(f) is equal to the number of elements of S \ (s + S),
which is ρ(f) by Lemma 3.4.

Suppose that we have a weight function ρ on an affine Fq-algebra R =
Fq[X1, . . . , Xm]/I. Let P consist of n distinct points of Fm

q in the zero set of I,
and let evP : R → Fn

q be the corresponding evaluation map.
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Lemma 3.6 Let f be a nonzero element of R. Then the number of zeros of f
is at most ρ(f).

Proof. Let Q be the set of zeros of f and let t = |Q|. The map evQ : R → F t
q

is linear and surjective by Lemma 3.2. Furthermore g(Q) = 0 for all Q ∈ Q and
g ∈ (f). This induces a well-defined map evQ : R/(f) → F t

q which is linear and
surjective. Hence the number of zeros of f is at most the dimension of R/(f)
which is equal to ρ(f) by Lemma 3.5.

Theorem 3.7 Let ρ be a weight function. Then the minimum distance of El

is at least n− ρl. If ρl < n, then dim(El) = l.

Proof. Let c be a nonzero element of El. Then there exists a nonzero element
f ∈ R such that ρ(f) ≤ ρl and c = evP(f). So ci = f(Pi) for all i. The number
of zeros of f is at most ρl, by Lemma 3.6. Hence wt(c) ≥ n− ρl.

Suppose moreover that ρl < n. El is the image under the evaluation map of
the vector space Ll of dimension l. If f ∈ Ll and evP(f) = 0, then f has at least
n zeros. Hence f = 0 by Lemma 3.6, since ρl < n. So the map evP : Ll → El

is a linear isomorphism, so dim(El) = l.

Corollary 3.8 Let ρ be a weight function with g gaps. If ρk < n, then Ek is
an [n, k, d] code such that k + d ≥ n + 1− g.

Proof. This follows from Theorem 3.7 and the fact that l ≥ ρl + 1− g.

Remark 3.9 If ρ is an order function but not a weight function, then in general
R/(f) is not finite dimensional and there is not a straightforward bound on the
minimum distance for El.

We will now give a bound on the minimum distance of Cl and repeat the main
definitions. Let R be an Fq-algebra with an order function ρ. Let {fi | i ∈ N} be
a basis of R over Fq such that ρ(fi) < ρ(fi+1) for all i ∈ N . Let ϕ : R → Fn

q be
a surjective morphism of Fq-algebras. Let Ll be the vector space with f1, . . . , fl

as a basis. The number l(i, j) was defined as the smallest positive integer l such
that fifj ∈ Ll. The function l(i, j) is strictly increasing in both arguments. Let
hi = ϕ(fi). Let El = ϕ(Ll) and Cl its dual. There exists a positive integer N
such that El = Fn

q for all l > N . So Cl = 0 for all l > N . Let H be the N × n

matrix with hi on the ith row for 1 ≤ i ≤ N .

Definition 3.10 Consider the syndromes

si(y) = y · hi and sij(y) = y · (hi ∗ hj).

Then S(y) = (sij(y) | 1 ≤ i, j ≤ N) is the matrix of syndromes of y.

9



Lemma 3.11 Let y ∈ Fn
q . Let D(y) be the diagonal matrix with y on the

diagonal. Then
S(y) = HD(y)HT ,

and
rank(S(y)) = wt(y).

Proof. The matrix of syndromes S(y) is equal to HD(y)HT , since

sij(y) = y · (hi ∗ hj) =
∑

l

ylhilhjl,

where hil is the lth entry of hi. The rank of the diagonal matrix D(y) is equal
to the number of nonzero entries of y, which is wt(y). The rows of H generate
Fn

q , since EN = Fn
q . Hence the matrices H and HT both have full rank n.

Therefore rank(S(y)) = rank(D(y)) = wt(y).

Definition 3.12 Define

Nl = { (i, j) ∈ N2 | l(i, j) = l + 1 }.

Let νl be the number of elements of Nl.

Lemma 3.13
1) If y ∈ Cl and l(i, j) ≤ l, then sij(y) = 0.
2) If y ∈ Cl \ Cl+1 and l(i, j) = l + 1, then sij(y) 6= 0.

Proof.
1) Let y ∈ Cl. If l(i, j) ≤ l. Then fifj ∈ Ll. So hi ∗ hj = ϕ(fifj) is an

element of ϕ(Ll), which is the dual of Cl. Hence sij(y) = y · (hi ∗ hj) = 0.
2) Let y ∈ Cl \Cl+1. If l(i, j) = l +1, then fifj ∈ Ll+1 \Ll. So fifj ≡ µfl+1

modulo Ll for some nonzero µ ∈ Fq. Hence hi ∗hj ≡ µhl+1 modulo ϕ(Ll). Now
y 6∈ Cl+1, so sl+1(y) 6= 0. Therefore sij(y) 6= 0

Lemma 3.14 If t = νl and (i1, j1), . . . , (it, jt) is an enumeration of the ele-
ments of Nl in increasing order with respect to the lexicographic order on N2,
then i1 < · · · < it and jt < · · · < j1. If moreover y ∈ Cl \ Cl+1, then

siujv
(y) =

{
0 if u < v
not zero if u = v.

Proof. The sequence (i1, j1), . . . , (it, jt) is ordered in such a way that i1 ≤
. . . ≤ it and ju < ju+1 if iu = iu+1. If iu = iu+1, then ju < ju+1, and therefore

l + 1 = l(iu, ju) < l(iu, ju+1) = l(iu+1, ju+1) = l + 1,

which is a contradiction. Hence the sequence i1, . . . , it is strictly increasing. A
similar argument shows that ju+1 < ju for all u < t.
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Let y ∈ Cl. If u < v, then l(iu, jv) < l(iv, jv) = l + 1. Lemma 3.13 implies
that siujv

(y) = 0.
Moreover, let y 6∈ Cl+1. If u = v, then l(iu, jv) = l + 1. Lemma 3.13 implies

that siujv
(y) 6= 0.

Proposition 3.15 If y ∈ Cl \ Cl+1, then wt(y) ≥ νl.

Proof. This follows from Lemmas 3.11 and 3.14.

Definition 3.16
dORD(l) = min{νl′ | l′ ≥ l},

dORD,ϕ(l) = min{νl′ | l′ ≥ l, Cl′ 6= Cl′+1},
If R is an affine algebra of the form Fq[X1, . . . , Xm]/I and ϕ is the evaluation
map evP of the set P of n points in Fm

q , then we denote dORD,ϕ by dORD,P .

Theorem 3.17 The numbers dORD(l) and dORD,ϕ(l) are lower bounds for the
minimum distance of Cl:

d(Cl) ≥ dORD,ϕ(l) ≥ dORD(l).

Proof. The theorem is a direct consequence of Definition 3.16 and Proposition
3.15.

Remark 3.18 The set Nl and the numbers νl and dORD depend only on the
order function ρ and neither on the choice of the basis {fi | i ∈ N} nor on the
choice of the set of points. The number dORD,P depends on the order function
and the choice of the set of points, but not on the choice of the basis.

If P ⊆ P ′, then dORD,P ≥ dORD,P′ .

Example 3.19 Let R = Fq[X] and let ρ, with ρ(f) = deg(f), be the order
function of Example 2.3. Let fi = Xi−1. For a primitive element α of Fq and
n = q − 1, let ϕ : R → Fn

q be defined by ϕ(f) = (f(α0), f(α1), . . . , f(αn−1)).
Then Cl = {c ∈ Fn

q |c ·ϕ(fi) = 0, 1 ≤ i ≤ l} and Cl is a cyclic code with defining
set α0, α, . . . , αl−1. The order bound gives dORD(l) = l+1 from which the BCH
bound may be derived.

Example 3.20 Let R = F16[x, y]/ < x5 +y4 +y >. The polynomial x5 +y4 +y
has 64 zeros in F 2

16. The monomials {xiyj |0 ≤ i, 0 ≤ j ≤ 3} constitute a basis
for R and ρ(xiyj) = 4i + 5j gives a weight function on R. The table gives a
list of the functions fl, the nongaps ρl, the numbers νl and the bound dORD(l)
from Theorem 3.17. The number of gaps is g = 6 and the largest gap is lg = 11.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fl 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 x5

ρl 0 4 5 8 9 10 12 13 14 15 16 17 18 19 20
νl 2 2 3 4 3 4 6 6 4 5 8 9 8 9 10

dORD(l) 2 2 3 3 3 4 4 4 4 5 8 8 8 9 10

11



The above example can be generalized to treat all the so-called Hermitian codes.

Example 3.21 Reed-Muller codes Let R = Fq[X1, . . . , Xm]. Let ρ be the order
function associated to the graded lexicographic order on the monomials of R.
Let fi be the ith monomial with respect to this order. Let n = qm. Let
P1, . . . , Pn be an enumeration of the n points of Fm

q = P. Then RMq(r, m) is
by definition the code obtained by evaluating all f ∈ Fq[X1, . . . , Xm] of degree
at most r at all points of P. If fl = Xr

1 , then fl+1 = Xr+1
m and {fi | i ≤ l} is the

set of all monomials of degree at most r. So RMq(r, m) = evP(Ll) = El. Hence
Cl is the dual of RMq(r, m), which is equal to RMq(m(q − 1)− r − 1,m). The
minimum distance of Reed-Muller codes is well-known. It is also a consequence
of the theory developed above, as we will now demonstrate.

Proposition 3.22
1) If fl+1 = Xγ , then νl =

∏m
t=1(γt + 1).

2)

dORD(l) =
{

deg(fl) + 2 if fl = Xr
1 ,

deg(fl) + 1 otherwise.

3) Let fl = Xr
1 . Write r + 1 = ν(q − 1) + µ with ν, µ ∈ N0 such that µ < q − 1.

Then d(Cl) = dORD,P(l) = (µ + 1)qν .

Proof.
1) If fi = Xα, fj = Xβ , then fl = Xα+β for some l. So l(i, j) = l. So if

fl+1 = Xγ , then νl is equal to the number of pairs (i, j) such that fifj = fl+1,
which is equal to the number of all α ∈ Nm

0 such that 0 ≤ αt ≤ γt for all t,
1 ≤ t ≤ m, which is

∏
(γt + 1).

2) If fl = Xr
1 , then fl+1 = Xr+1

m . So νl = r + 2 = deg(fl) + 2, and

νl′ =
∏

(γt + 1) ≥ (
∑

γt) + 1 = deg(fl′+1) + 1 ≥ deg(fl) + 2,

where fl′+1 =
∏

Xγ , for all l′ ≥ l. Hence dORD(l) = deg(fl) + 2.
If fl is not of the form Xr

1 , then fl0+1 = Xr
1 for some l0 ≥ l and r = deg(fl).

So νl0 = r + 1 and νl′ ≥ r + 1 for all l′ ≥ l. Hence dORD(l) = deg(fl) + 1.
3) If fl′+1 = Xγ , then the code Cl′ is not equal to Cl′+1 if and only if

0 ≤ γt ≤ q − 1 for all t. Hence

dORD,P(l) = min{
∏

(γt + 1) |
∑

γt ≥ r + 1 and 0 ≤ γt ≤ q − 1 for all t },

if fl = Xr
1 . Consider f defined by f(x) =

∏
(xt + 1) as a real function on the

domain {x ∈ Rm |
∑

γt ≥ r + 1 and 0 ≤ xt ≤ q − 1 for all t }. The method
of the multipliers of Lagrange gives that the minimum of f is obtained in the
corner (0, . . . , 0, µ, q − 1, . . . , q − 1), where the last ν coordinates are equal to
q− 1. Hence dORD,P(l) = (µ + 1)qν . We refer to the literature for the fact that
there are codewords in Cl with this weight.
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4 Concluding Remarks

Let P1, P2, . . . , Pn, P∞ be a set of Fq-rational points on a nonsingular, irreducible
curve of genus g defines over Fq. The algebraic geometry codes CL(D,G) and
CL(D,G)⊥ where D = P1 + · · ·+ Pn, G = mP∞, are a subclass of the codes El

and Cl respectively. In this case R =
⋃∞

m=1 L(mP∞) and ρ : R → N0 ∪ {−∞}
is defined by ρ(f) = −νP∞(f), where νP∞ is the valuation at infinity. It then
follows from properties of valuations that this ρ indeed is a weight function. This
implies that the so-called one-point algebraic geometry codes can be understood
as a special case of the codes treated in section 3. Many other classes of codes
can also be treated and it is indeed possible to give fast decoding algorithms as
well. For further results on this we refer to [9].
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