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Computing Minimum-Link Path
in a Homotopy Class

amidst Semi-Algebraic Obstacles in the Plane

D. Grigoriev!” A. Slissenko?*
Dept. of Computer Science, Dept. of Informatics,
Penn State University, USA Univ. Paris-12, France

and and
Steklov Inst. for Mathematics, Inst. for Informatics,
Acad. of Sci. of Russia, Acad. of Sci. of Russia,
St-Petersburg, Russia St-Petersburg, Russta

Abstract. Given a set of semi-algebraic obstacles in the plane and two
points in the same connected component of the complement, the prob-
lem is to construct a polygonal path between these points which has
the minimum number of segments (links) and the minimum ‘total turn’,
that is the sum of absolute values of angles of turns of the consecu-
tive polygon links. We describe an algorithm that solves the problem
spending polynomial time to construct one segment of the minimum-
link and minimum-turn polygon if to use a modification of real RAMs
which permits to handle the solutions of algebraic equations. It is known
that the number of segments in such a minimum-link polygon can be
exponential as function of the length of the input data or even of the
degree of polynomials representing the semi-algebraic set. In fact, we
describe how to construct a minimum-link-turn path for a given class
of homotopy (whose shortest path has no self-intersections), and pro-
vide a rigorous and rather a universal way of reasoning about homotopy
classes in contexts related to algorithms. It was previously shown by
Heintz-Krick-Slissenko-Solerné that a shortest path in the situation un-
der consideration is semi-algebraic, and an extended real RAM that is
able to compute integrals of algebraic functions can find it in polytime.

1 Introduction.

We consider the problem of constructing minimum-link minimum-turn polygon
amidst semi-algebraic obstacles in the plane either for a given homotopy class or
globally. Usually this problem is motivated by robotics (see, e. g. [HS94, MPA92,
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MRW92)): if a robot is hard to turn then we try to minimize, firstly, the number of
turns, and secondly, the total turn that is the sum of absolute values of all turns.
We consider the case of semi-algebraic obstacles in the plane. It is known that
one cannot reduce this case to the case of polygonal obstacles, approximating
the initial ones, without exponential growth of the complexity of representation
(e. g. see [HKSS94, HKSS93]).

1.1 Semi-algebraic obstacles.

A semi-algebraic [BCR87] set S in the plane is a set represented by a disjunctive
normal form formula which atoms are polynomial equations and inequalities:

Vo A w0 (1)

1<i<Ny 1<5<Ns

where f; ; € Z[z,y] and w; ; € {<, <, =}.

We treat the set as representing obstacles. It may consist of many connected
components, and every its connected component will be also called an obstacle.
Zero-dimensional componets, i. e. isolated points can hardly be obstacles, so we
exclude them from the set. These points can be easily described by a formula of
Tarsky algebra with small number of quantifiers and containing polynomials of
small number of variables.

As we consider the complexity on a qualitative level, namely, polynomial, ex-
ponential, we do not need to go into details of descriptions of the sets under
consideration. Our starting set is (1), denote it by S, and the complexity of its
representations is measured by the following parameters: d, the maximum of de-
grees of the polynomials f;;, and M, the least integer such that 2M bounds the
absolute values of the coefficients of f;;. Related sets as the closure S, the interior
S°, the boundary S”, the complement coS of S, the set of isolated points of S etc.
can be represented by formulas of Tarski algebra which complexity (the number
of quantifiers, the number of variables in polynomials involved) is bounded by
a constant. We need a procedure which, given such a set, constructs its con-
nected components and a procedure that recognizes whether two points are in
the same connected component. Within the mentioned context such polytime
procedures are known (for general case see, e. g. [HRS90, Gri88, GV92, Ren92],
for 2-dimensional case see also [AMS8]).

To assure the existence of a shortest path, the space admissible for trajectories
is constituted by open space coS, that is the free space, and by the boundary
A=, S8, The trajectories can go anywhere in the free space, but they are for-
bidden to go through boundaries though allowed to border them alongside.

1.2 Path Problems.

A path or curve is a continuous piecewise smooth image of a closed segment. A
simple path or quasi-segment is a path without self-intersections.

Let s and t be two points in the free space. We consider paths between s and
t not intersecting obstacles. When speaking about the order of points on a path
¥ between s and t we mean later or after in the sense of a continous, ‘length in-
creasing’ parametrisation ¢ = {¢(t) }o<¢<1 of ¥ such that s = (0), t =(1).



A polygonal path is minimum-link if it has minimum possible number of links
among all polygonal paths between s and t in the same class of homotopy of
the free space, and such a path is globally minimum-link if its number of links is
minimum among all polygonal paths between s and ¢ .

Such a minimum-link (for a class of homotopy or globally) polygon always exists,
is not unique and may have exponential number of links (for lower bound see
[HKSS94, HKSS93], and for upper bound see [HRS94]). The latter fact implies
that it is reasonable to estimate the complexity of construction of a minimum-
link path in terms of the complexity of building one link.

Turn of two segments [X, Y] and [Y, Z] is the angle between vectors XY and V2.
(The angle between these two vectors is the angle between the ray emanating
from X in the direction XY and the ray emanating from X in the direction par-
allel to ﬁ) Total turn of a polygonal line is the sum of absolute values of turns
of all its consecutive links, say, from s to ¢ . Minimum-link path is minimum-
turn if its total turn is minimum among all minimum-link paths.

Our construction of a minimum-link path uses as an initial information a shortest
path in the same class of homotopy of the free space; to get a globally minimum-
link path we start from the graph of ‘shortest paths’ constructed in [HKSS94]. A
shortest path is a path between s and ¢ having the minimum length in its class
of homotopy. For the case of semi-algebraic obstacles in the plane it was shown
in [HKSS94] that a shortest path can be constructed in polytime by an extended
version of real RAM [BSS89] that is able to calculate in polytime integrals of
algebraic functions. For the purposes of this paper as a computational model we
use another extension which we call a real RAM with equation solver. It allows
at a step of computation to compute a root of a polynomial with coefficients
computed at previous steps. In the usual real RAM [BSS89] the admitted poly-
nomials have degree 1, so rational operations can be performed. Since a real
RAM is a generalization of usual RAM (e. g. [Pap94]), polytime algorithms for
bitwise models can be implemented on the model we consider.

Slight development of the construction of [HKSS94] gives an algorithm (for a
usual RAM) that outputs a path whose length is e-close to the shortest paths
length and which time complexity is polynomial in the complexity of represen-
tation of obstacles and in log % The problem of constructing a shortest path in
R? even amidst polyhedral obstacles is known to be NP-hard [CR87].

1.3 Previous results.

The problem of minimizing the number of links of a polygonal path amidst
polygonal obstacles and the total turn was studied in the case when obstacles
are polygonal, see e. g. [MRW92], [HS94], [CGM*95], and section 4.4.2 in [MS95].
A more complicated problem of minimizing the length of minimum-link paths is
considered in [MPA92]. In [HS94] the authors consider also the problem of con-
structing a minimum-link path for a given class of homotopy, again for polygonal
obstacles. However, no article known to us does contain rigorous reasoning about
classes of homotopy.



1.4 Our result.

Our contribution to the minimum-link problem consists of, firstly, considering
the problem for semi-algebraic obstacles and, secondly, in presenting rather a
universal method of rigorous reasoning about paths in relation to classes of ho-
motopy in algorithmic context. The method implies a subroutine for fast testing
of homotopicity of two paths.

We prove that for any class of homotopy containing a shortest path without self-
intersections and represented by such a path one can construct a minimum-link,
minimum-turn path spending polytime to construct a single link of the path.
(The requirement of being not self-intersecting is not very restrictive.) And the
same is valid for constructing a globally (thus regardless of a class of homotopy)
minimum-link, minimum-turn path. In contrast with usual shortest path, where
an e-approximation to the length can be found by a usual RAM in time polyno-
mial in the length of input and that of 1/¢ (or even of log(1/¢) for 2-dimensional
case), the problem of approximation of minimum-link paths is more delicate and
is not considered here.

2 Shortest and Minimum-Link Paths of a Given
Homotopy Class

The basic observation of [HKSS94] (though not stated explicitly) is that the
shortest paths between two algebraic points s and ¢ , of all classes of homotopy
can be represented by a graph of polynomial size with edges weighted by the
lengths of pieces of locally convex algebraic curves. The lengths of these pieces
can be transcendental. But up to this point the graph can be found in polytime
by a RAM (the weights can be computed on an extended real RAM which allows
to compute integrals of algebraic functions). Every class of homotopy has exactly
one shortest path. We will consider only shortest paths without self-intersections
just to simplify the constructions.

2.1 Structure of minimum length paths.

Let S be a semi-algebraic set. We assume (without loss of generality) that the
two end points s and ¢ of our paths are inside a square which boundaries are
obstacles, and that the points lie in the free space, but for technical reasons are
viewed as infinitely small obstacles.

Denote by B(X,r) the open ball centered at X and of radius r, and by B(X,r)
its closure.

A path v intersects the boundary A at its point X € A if for all small enough
e > 0 there is a closed quasi-segment ¢ C AN B(X,¢) such that B(X,5) \ o
consists of two connected components each containing points of 1.

It is clear that a shortest path in the free space is a rectilinear segment. If its end
meets an obstacle the segment must be locally supporting at the point of contact
with the obstacle. Topologically it means that no small enough extension of the
segment beyond the point of contact intersects the boundary. One can also define
this property in Tarski algebra. A segment o = [¢~,0"] is (locally) supporting
to the boundary A at a point X € AnNo if for every small enough € > 0 either



to the left of or to the right of 0. = [X —e(0t —07), X +e(0c™ —0 )] there are
no points of the obstacles in B(X,e?). ”To the left” and ”to the right” can be
easiliy described in algebraic terms (e. g. in terms of the sign of an appropriate
linear function).

A supporting segment [X, Y] is mazimum to the right (to the left) if any its
extension to the right (respectively, to the left) intersects obstacles. By an exten-
sion to the right we mean a segment of the form [X,Y +e(Y — X)], an extension
to the left is similar. A supporting segment is mazimum if it is maximum in both
directions.

A simple path is locally convex if the angle function of its tangent vector is
monotone.

The (tangent) angle function of a smooth piece of the path is a function of,
say, length parameter, giving for any point of this piece the (oriented) angle
between the tangent vector at this point and some fixed direction.

For a junction point of two smooth pieces one can take as the value of the
angle function the corresponding one-side limit of this function for any of these
pieces.

A path is globally conver if it is a part of the boundary of its convex hull.
Clearly, when a quasi-segment of a shortest path touches the obstacles and goes
along the boundary, this piece of boundary must be locally convex, as well as
the quasi-segment on the whole.

In the general case a shortest path is not globally convex, even its locally
convex quasi-segment can be not convex because of a too big rotation (imagine
a spiral corridor turning several times around some point). The path can change
its convexity (i. e. the type of monotonicity of its angle function), but only via
an inflection segment, i. e. a maximum rectilinear piece of the path such that
small enough preceeding and subsequent pieces of the path are separated by the
straight line determined by the segment.

The closure of pieces of the path between two consecutive inflection segments
are monotone; we call a quasi-segment of a path monotone if for some its small
extension (on the path) its angle func- tion is monotone.

It was shown in [HKSS94] that every shortest path ¢ consists of a polynomial
number of semi-algebraic quasi-segments such that each of them is either an in-
flection segment of ¢ locally supporting to A at its both ends, or a semi-algebraic
monotone quasi-segment which is constituted of pieces of A or of rectilinear seg-
ments between such pieces, the latter being locally supporting to the boundary
at both its ends (imagine going around a circular saw blade as obstacle).

The first and the last segments of the shortest paths under consideration will
be treated as inflection segments.

Let ¢ be a shortest path. Its standard alternating representation (or de-
composition) is the following (finite) sequence D, of quasi-segments: the quasi-
segments D, (2k — 1), k > 1, are the consecutive inflection segments of ¢; each
quasi-segment D, (2k), k > 1, is the monotone quasi-segment of ¢ constituted
by the right end of D,(2k — 1), left end of D,(2k + 1) and by the piece of ¢
between these ends (this piece may be empty).



2.2 Graph of shortest paths.

We can represent the shortest paths of all homotopic classes as a graph G = Gg,
as it was done in [HKSS94] or in a ‘dual’ form as follows.

As vertices V' of the graph we take s, ¢t and all points that are endpoints of
segments, that are locally supporting to the obstacles at these endpoints, and
which interior lies in the free space. Denote S¢=, A\ V. Two vertices X and YV
of V' are connected by an edge if they are two endpoints of a locally supporting
segment mentioned above (and this segment is considered as the ‘realization’ of
the edge) or if this is not the case, but X and Y consitute two endpoints of a
locally convex connected component of S¢. Denote by E the set of just defined
edges. As we do not use lengths, neither of the mentioned connected components
nor of the segments, the graph can de found in polytime by a RAM.

2.3 Representation of Homotopy Classes.

We speak about paths between s and £ that are homotopic in the free space.
Generators. The plane is supposed to be oriented.

As generators of the fundamental group of coS we take cuts that are in a way
dual to usual generators as circles [ST80]. (We do not know whether this type
of generators was explicitly mentioned elsewhere although it appears to be quite
convenient for algorithmical needs.)

Choose in every connected component of the obstacles a point, and launch from
it a curve homeomorphic to a ray (we will call these curves cuts) such that all
the cuts are pairwise disjoint and go to infinity. Attribute to each cut a letter.
The set of cuts constitutes a set of generators of a free group.

Now one can define the homotopic type of a path in the plane as follows. Consider
the consecutive intersections of the path with the cuts. We assume, without loss
of generality, that the path intersects the cuts in isolated points. This sequence
of intersections defines the following word: if the ith intersection is with a cut
a in the clockwise direction then the ith letter of the word is «, otherwise
a~!. Reduce the word as an element of the corresponding free group to the
incontractible (irreducible) one. Thus for every path ¢ in the plane and for every
set of generators F' we have defined the word 25 (¢) that can be considered as
a representation of the class of homotopy of 3 (thereby, there is a bijective
correspondence between the classes of homotopy and the elements of the free
group).

For technical reasons one can consider larger representations taking more points
or launching more cuts from each point. The mentioned representation can then
be obtained as a homomorphic image of such extended one.

3 Canonical Minimum-Link Polygon of a Homotopy
Class.

Our construction of a minimum-link minimum-turn polygon for a given class of
homotopy is described below. The construction is rather natural, the key problem
is a rigorous proof of correctness of the construction; the situations that may
appear are more diverse that one usually could imagine.



3.1 Canonical polygon.

Suppose that the shortest path ¢ of a homotopy class is given, and it has
no self-intersections. We describe an algorithm that constructs a minimum-link
minimum-turn polygon belonging to the same homotopy class as the path. This
polygonal line will be called the canonical polygon of the homotopy class or of
the shortest path ¢.

The canonical polygon will contain some extension of every inflection segment of
the shortest path and will envelop in a minimum way each its monotone quasi-
segment up to the next inflection segment.

The canonical polygon is defined by iterations of procedure NxtSeg, described
below, until reaching the point ¢ . The initial data are constituted by s , by the
first segment of the shortest path which is an inflection segment, and by the
subsequent monotone quai-segment that controls the process of extension of the
first segment.

The procedure NxtSeg constructs the next segment of the canonical polygon
starting with its current argument which consists of a current segment ¢ =
[07,07], and of a monotone quasi-segment D of ¢ ‘controlling’ the construction
of the polygon such that o™ lies on DN A (and o is supporting to the obstacles
at o). The procedure produces an extension & of the segment ¢ which is ap-
pended to the canonical polygon, a segment ¢; emanating from its last endpoint
and supporting to the boundary, and a ‘controlling’ quasi-segment D, (k1) that
may stay unchanged.

3.2 Algorithm for constructing the canonical polygon.

The algorithm CanonPolyg for constructing the canonical polygon has as input
two points s and £ and the shortest path ¢ of some class of homotopy going from
s to t . As its result the algorithm outputs the canonical polygon connecting the
same two points and homotopic to ¢.

The algorithm starts with the first segment emanating from s (that is an in-
flection one) and tries to advance it as far as possible not leaving the class of
homotopy. This is done by the algorithm NxtSeg. The iteration of the latter
until the point ¢ is reached, constitutes the algorithm CanonPolyg. Having fin-
ished one application of NxtSeg the algorithm CanonPolyg gets from NxtSeg a
segment & that it appends to the canonical polygon, and a segment o; and a
number k; that it uses as input for NxtSeg at the subsequent iteration.
Algorithm NxtSeg proceeds as follows, see Figure 1. Suppose that we have ad-
vanced up to some segment o with the last point 0% belonging to A and to a
quasi-segment D = D&) which is not inflection one. Denote by R, the ray

determined by vector ¢~ o' and starting at . Consider points X € R,. Such
a point may determine the longest segment [X, Y], where Y lies on D after o™,
that is locally supporting to D N'A at Y and that does not intersect obstacles.
It is unique due to the local convexity of D and absence of self-intersections of

®.
Taking o as initial value of X we move point X along the the ray R, towards



oo until one of the following (not disjoint) events happens:

(a) The ray R, intersects at X the straight line determined by the subse-
quent inflection segment D, (k + 1).

(b) The segment [X,Y] meets an obstacle at a point Z € [X,Y).
The first event that happens determines X and Y. The interior of the trian-
gle determined by the segments [0, X], [X,Y] and the piece of D between o™
and Y is free of obstacles. We extend o from o~ to X and append the latter
segment to our polygon, and the take [X,Y] as the segment to play the role of
o for the next iteration. If it contains an inflection segment D, (k + 1) we set
D =D,(k+2).
We write this algorithm in a more rigorous form, see Figure 1, to obtain its mod-
ification needed to construct globally minimum-link paths in the last section.

NxtSeg(input: o, k; output: &, o1, k1):
-- This procedure extends o to & which will be appended to Q;
-- constructs the next segment o1 to be extended by the subsequent iteration;
-- finds the next controlling monotone quasi-segment D, (k1) that can be ei-
ther D, (k) or D, (k + 2),
-- the current controlling monotone quasi-segment being represented by
D, (k).
1: Let D= D,(k); 8= D,(k+1).
Denote by R, the ray emanating from ¢ in the direction defined by vector
o o7; and by RY its right ‘infinite’ end.
2: Construct the followmg three points X1, X2, X3 € R,:
a: If R, intersects the straight line determined by the inflection segment 3,

then X, is the point of this intersection, otherwise X; = R}.
bl: X, is the first point of intersection of R, with the obstacles. It always

exists as the obstacles are inside a square.

b2: In the graph of shortest paths look for segments ¢ = [X', Y] such that ¢
is supporting to D at Y' € DN A, € is supporting to A at X', £ separates
obstacles at X' and Y', the point X' is at the same side of R, as Y. Choose

¢ for which the angle between X'Y" and ¢~ ¢ is maximum. If there are
several such segments take the longest one. Extend it towards R, then X3
is the point of its intersection with R, .

3: Take as X the point in {Xi, X2, X3} that is the closest to ¢T. Having
found X take as Y the point on D to the right of ot such that ¥ #
ot, [X,Y] is the longest segment locally supporting to D at Y and not
intersecting obstacls;

4: if [X,Y] contains 8 then ki :=k + 2 else ki := k;

5: return (6 :=[0",X]; o1 :=[X,Y]; k1)

Fig. 1. NxtSeg algorithm



4 Link and turn optimality of the canonical polygon.

Here we sketch proofs of the main properties of the canonical polygon.

Theorem 1 (Link and turn optimality of the canonical polygon.)
The canonical polygon is minimum-link and minimum-turn.

This theorem is a direct consequence of Corollary 1 and Lemma 2 below.

4.1 Choice of Generators.

Assume that segments of any polygon P under consideration are numbered in
the direction from s to t starting with 1. The kth segment of a polygon P will
be denoted P(k), and the number of segments of P by #P.

A segment P(k), 2 < k < #P — 1, is called monotone if the segments P(k — 1)
and P(k + 1) are situated at the same side of the straight line determined by
P(k), and is called inflection otherwise.

Without loss of generality we assume that the boundary A everywhere bounds
some non empty interior of the obstacles, maybe infinitely thin, thus a point of
the boundary can be always moved ‘slightly’ inside obstacles.

Let 0 = [0 ,07"] be a link of the canonical polygon @ of a shortest path .
Its end ot is a blocking point if any extension of o beyond this point in the

direction 0”0 intersects the obstacles. A pair («, ) of points of ¢ is a pair of
its points of rigidity if a, 8 € A, (3 lies on ¢, and either « is a blocking point of
the preceding segment o' of @ or the obstacles at o and 3 are separated by o.
The latter means that for some € > 0 the (non empty) sets (B(a,e) N S) \ Ly
and (B(B,e) N S) \ L,, where L, is the straight line determined by o, lie on
opposite sides of L, .

Points of rigidity of a segment will be used in constructions below as starting
points of some cuts, and we wish that at this points the cuts do not intersect the
segment. For this reason they will be always presumed to be ‘slightly’ pertur-
bated, that is, a pair («, 8) will be replaced by a pair (a/, 5") of points situated
inside the obstacles close enough to («, 3) (respectively) and to the boundary
(to leave them on the appropriate side of o, the perturbated point of a block-
ing point must be on the side opposite to the side of 3). The meaning of ‘close
enough’ will be clear from the context.

To study the interaction of the canonical polygon ) with another polygon of the
same class of homotopy we consider two consecutive segments oy and o; of Q)
and choose generators of the fundamental group as described below. R
Denote by ( the articulation point of oy and o1, i.e. { = aar = o7, and by ¢
the convex (not greater m) angle determined by oy and o, that are considered
as emanating from (.

We distinguish 4 cases depending on the type of segments oo and oy, see Fig-
ure 2:

(InfInf) 09 and o7 are both inflection segments;

(InfMon) oy is an inflection segment and o; is a monotone one;



(Monlinf)

(MonMon)

Fig. 2. Choice of generators.

(MonMon) o and o7 are both monotone segments;

(MonInf) o9 is an monotone segment and oy is an inflection one.

To choose the points determining the tails of cuts we start from o; and go
towards o;". Choose two points a and 3 of rigidity of oy, @ being before 3. If
the previous segment has a blocking point, and o¢ is monotone then « is such
a point. Choose two points v and § of rigidity of ;. Again if o9 has a blocking
point, and o; is monotone then « is such a point. We suppose that if v is a
blocking point then it is on the side of oy opposite to 3. ‘Slightly’ perturbate
these points as it was described above, preserving the notations for them.

For the pairs (a, 3) and (v, d) we define 2 cuts in the following way, see Figure
2.

Cut go immediately crosses oo and goes along oy, infinitely close to it, up to 3,
then goes to infinity inside (.

Cut gg goes along oy, infinitely close to it (between oy and g, ), in the direction



to «, then crosses og just before a, and after that goes to infinity outside Z
If v is outside ¢ then cut g, immediately crosses o1, and goes along o1, infinitely
close to it, up to 4, and after that goes to infinity inside E
If «y is inside ¢ then cut g, immediately crosses o, and goes along o1, infinitely
close to it, up to ¢, and after § goes to infinity outside 6 .
If ¢ is outside ¢ then cut g5 goes along o, infinitely close to it (between oy and
g~) , in the direction to -, then crosses o1 just before -y, and after that goes to
infinity insideAZ.
If § is inside ¢ then cut gs goes along o1, infinitely close to it (between o7 and
g~) up to v, crosses oy just before v, and goes to infinity outside Z
All the other cuts are chosen so that they do not touch the piece of () between «
and 3, the mentioned points included. Without loss of generality consider that
the cut g, is crossed by o¢ counter clockwise (see Figure 2).
Denote by V' the word describing the homotopy type, i. e. the intersection with
the chosen cuts, of prefix (0, of @ from s to «, the latter point excluded. And
by W denote the word of intersection with the cuts of the suffix of @) from ¢ to
t , the former point excluded. Thus, the word describing the homotopy type of
Q is of the form VUW | where U is constituted only by letters from

E:df {ga;gglagﬁagglagvagf;l;gd;g(;l}.
Moreover, we consider that other cuts are chosen in such a way that the last
letter V' as well as the first letter of W are not from X.
For example, for the case (InfInf) the homotopy type of ) in terms of the chosen
generators is of the form Vg;lgggvga_lW.

4.2 Proof of Theorem 1.

The link minimality of the canonical polygon follows from Lemma 1.

Lemma 1 For any polygon P and the canonical polygon Q of the same class of
homotopy, for every k, 1 < k < #Q there exists m such that k < m, and

(a) P(m) intersects Q(k) in a point X lying between any two rigidity points of
Q(k),

(b) the prefit Qx of Q starting at s and ending at X and the prefiz Px of P
starting at s and ending at X have the same homotopic type,

(¢) P(m) arrives at crossing with Q(k) from the side opposite to any point «
that can constitute a pair (o, B) of points of rigidity of Q(k).

Proof. We proceed by induction on the number k of segments of (). The case
k =1 is evident.

Suppose the lemma is valid for the first & segments of Q).

Consider the non trivial case when the kth segment is not the last one, then it
has a consecutive one. Denote the kth and (k + 1)st segments of @ by oo and
o1 respectively. Choose the cuts to represent homotopies as described above.
Let P(mg) be the last segment of P which crosses () at a point X lying be-
tween « and [ and satisfies the induction hypothesis. It enters o from the side
opposite to «, and Qx and Px have homotopy type represented by the word



Vg, tgs. Within the choice of generators, the homotopy type of @ is of the form
Vg tggGW, where V, G and W are of the type described above. In particular,
if o1 is monotone then G = g;lg(;, and if o is inflection then G = gn,ggl. Let
G =g'g", where g’ and ¢g" are defined as has been just described depending on
the case under consideration.

Now, to assure the demanded homotopy type the polygon P must realize g' (that
is to cross g, from the appropriate side) and then realize g".

Suppose that such a crossing is done outside of [y,d]. Note that each pair of
cuts, (9a,9s) and (g, gs) determine a cut of the plane up to an infinitely narrow
corridor between points « and 8 (and, respectively, v and §) with ‘walls’ con-
stituted by the corresponding pieces of g, and gg (respectively, of g, and gs).
And the segment P(mg) has entered X in a ‘half’ plane determined by (g4, 93)-
To enter the other ‘half’ plane without crossing [, ] it must go through the
corridor from the side of 3, but this is an obstacle, so this is impossible. Because
of a similar reason it is impossible to penetrate in the corridor from the side of
a.

Now, the point X is in the intersection of two ‘half’ planes determined by (gq, g3)
and (g, gs). To respect the homotopy type the polygon P must realize an inter-
section with cuts that gives ¢'g”.

Suppose that o7 is an inflection segment (the case when it is monotone is com-
pletely similar). Is it possible to have g,g; ' without crossing [gy, gs]? Clearly
not, because to do it the polygon P must penetrate the corridor between g, and
gs that is impossible.

Thus, P must cross (g, gs) from the side opposite to v, and the last such crossing
must have the homotopy type Vg, 'gsG. Clear, this crossing can not be realized
by P(my), but by a further segment of P.

O

Corollary 1 FEvery canonical polygon is minimum-link.

Corollary 2 For any minimum-link polygon P and the canonical polygon @ of
the same class of homotopy, for any k the kth segments of Q and P are either
both monotone or inflection ones, and the kth segments of P and @) intersect
each other.

Corollary 1 is a straightforward consequence of Lemma 1, (a) and its condition
on m.

Corollary 2 is implied by Lemma 1 and minimality of P. The latter imposes an
intersection of P(k) and Q(k).

Lemma 2 For any minimum-link polygon P and the canonical polygon @Q of
the same class of homotopy, and for any point X of intersection of an inflection
segment of the canonical polygon Q) with the corresponding (i.e. having the same
number) inflection segment of P, the total turn of Qx is not greater than the
the total turn of Px, where Qx and Px are the prefives of respectively Q@ and P
between s and X .

Proof. It is sufficient to compare turns between two consecutive inflection
segments of the canonical polygon @) and that of the corresponding segment of



another minimum-link polygon P, and to take into consideration Lemma 1, (c).
Let op and o7 be two consecutive inflection segments of the canonical polygon
Q. Tt is obvious, that the total turn of all monotone segments between oy and
o1 is equal to the total turn from oy to o7 (it can be arbitrarily large). The
basic observation is illustrated on the Figure 3: & and & are segments of P
corresponding to @ (in the sense of Lemma 1). The angles to compare are ¢
(total turn modulo 7 from oy to 01), and ¢ (total turn modulo 7 from &y to &;).
Clearly, ¢ < 1, because the triangle XY Z is inside of the triangle XY'V.

O

Fig. 3. Comparing total turns.

5 Algorithm of Global Search and its Complexity.

Now we describe a wave algorithm which constructs a minimum-link path be-
tween s and ¢t . It is based on the standard idea, as, for example, in Dijkstra’s
shortest path algorithm.

The algorithm starts from the graph of the shortest paths, denote it by G =
(V,E). It advances simultaneously along all the paths constructing the corre-
sponding canonical polygons link by link. The number of links gives the current
value of weight, and the algorithm builds only polygons of the minimum weight.
As landmarks of this search it takes inflection segments which direct the wave



propagation and permit to determine a quasi-segment for applying slightly mod-
ified NxtSeg algorithm to calculate the link distance of the front of the current
wave from s .

To make this idea more precise denote by Ginsi = (Vinsi, Eing) the following
graph of inflection segments that will control the procedure. Let V;, ¢ be the set
of all pairs [zy] of vertices of G corresponding to inflection segments [z, y] (note
that a segment cannot be a monotone segment for one path and be an inflection
segment for another path). Two vertices [uz] and [yz] form an edge of Ej,p
iff the points « and y are connected by a path in G constituting a monotone
quasi-segment. If two inflection segments are incident, i. e. have a common end
point, then we consider them to be connected by an edge whose weight is 1.
This quasi-segment connecting the vertices will be called the realisation of the
edge, and will be denoted by D(I") for an edge I'. One can remark that the
canonical polygon is defined by consecutive inflection segments independently of
its other parts as stated in Lemma 3.

Lemma 3 For any two adjacent vertices [uv] and [xy] of Ginyr and whatever
be simple paths ¢ and ¥ of G containing as subpath the path from u via v via
D([uv][zy]) via x to y, the pieces of their canonical polygons that lie between u
and y are equal.

The piece of canonical polygon mentioned in Lemma 3 can be constructed by
NxtSeg algorithm slightly modified in the following way.

Denote the modified version NxtSegM. This algorithm is applied each time when
the global algorithm finds an edge («,3) of Ginp to analyse. NxtSegM starts
from « being directed by the quasi-segment corresponding to («, ), i.e. by
D(a, ). It has as arguments a segment o and the quasi-segment D = D(q, )
that is supposed to be not an inflection segment. The quasi-segment D can be
empty if « and 3 are incident. The algorithm returns a segment playing the role
of o for the next iteration. One can recognize when it has finished the piece of
canonical polygon between « and f3; this happens when o contains 3.
NxtSegM has an input o, D, § and as output o, where D = D(a, 3) is a monotone
quasi-segment directing the canonical polygon, and o is a segment as in NxtSeg.
The description of

NxtSegM (input : o, D, 3;output : o) can be obtained from the description of
NxtSeg by expunging the initial comments in lines 3-5, the operators 1 and 4,
and by deleting 6 and k in operator 5.

To uniformize the description of the algorithm of global search append to Gy,
two vertices [ss ]| and [tt] and connect them by zero-weight edges with all
vertices corresponding to inflection segments of G emanating from s and ¢
respectively.

The algorithm MnLnkPath which construct a minimum-link polygon, and in
fact all such polygons in a usual compressed form, proceeds as follows:

(a) All the edges of G,z are classified as ”with calculated weight” and ”with
not yet calculated weight”. Initially, the only edges with calculated weight equal
to 0, are those that emanate from [ss ] and [tt ].

(b) The algorithm advances as in Dijkstra’s algorithm, starting from s but only



via edges of Gy, with calculated weights. Having reached ¢ it stops.

(c) The algorithm keeps a set of reached vertices with calculated weights which
constitute the front of the wave. For each edge outgoing from such a vertice «
it calculates its weight by constructing one segment of the canonical polygon,
and hence augments its weight by one for all edges with not yet calculated
weights. When canonical polygon reaches the corresponding inflection segment,
the weight is calculated. If after this adding of 1 the set of edges with calculated
weights has augmented, the algorithm make one step of the Dijkstra algorithm,
maybe advancing from front vertices one edge farther to not explored vertices.
And iterates this procedure.

One can represent minimum-link paths by pointers which permit extract one
such path in time polynomial in the number of its links.

Theorem 2 Algorithm MnLnkPath constructs a minimum-link path in time
polynomial in the number of links of the path.

Theorem 3 A minimum-link path with minimum turn can be found in time
polynomial in the number of links of the path.
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