
Results on Resource-Bounded Measure

Harry Buhrman*1, and Stephen Fenner**2 , and Lance Fortnow***3

1 Cent.rum voor Wiskunde en Informatica
2 University of Southern Maine

3 CWI & The University of Chicago

Abstract. We construct an oracle relative to which NP hasp-measure
o but DP has measure 1 in EXP. This gives a strong relativized negative
answer to a question posed by Lutz [Lut96]. Secondly, we give strong
evidence that BPP is small. We show that BPP has p-measure 0 unless
EXP = !v!A and thus the polynomial-time hierarchy collapses. This con
trasts with the work of Regan et. al. [RSC95], where it is shown that
p /poly does not have p-measure 0 if exponentially strong pseudorandom
generators exist.

1 Introduction

Since the introduction of resource-bounded measure by Lutz [Lut92], many re
searchers investigated the size (measure) of complexity classes in exponential
time (EXP). A particular point of interest is the hypothesis that NP does not
have µ-measure 0. Recent results have shown that many reasonable conjectures
in computational complexity theory follow from the hypothesis that NP is not
small (i.e., /Lp(NP) i- 0), and hence it seems to be a plausible scientific hypoth
esis [D196, Lut96].

In [Lut96J, Lutz shows that if µp(NP) :j:. 0 then BPP is low for d{. He shows
that this even follows from the seemingly weaker hypothesis that /Lp (i11i,J) :j:. 0.
He asks whether the latter assumption is weaker or equivalent to /l·p(NP) :/:- 0.
In this paper we show that, relative to some oracle, the two assumptions are not
equivalent.

We show a relativized world where DP = EXP whereas NP has no P-bi
immune sets. This immediately implies, via a result of Mayordomo [May94a],
that in this relativized world, NP hasp-measure O and DP, and hence df, has
measure 1 in EXP, and thus does not have p-measure O, or even p2-measure 0.

· CRL: http:/ /www.cwi.nl/cwi/people/Harry.Buhrman.html. E-mail:
buhrman@cwi.nl. Partially supported by the Dutch foundation for scientific research
(NWO) by SION project 612-34-002, and by the European Union through Neuro

.. ~OLT ESPRIT Working Group Nr. 8556, and HC&M grant nr. ERB4050PL93-0516.
LRL: http://www.cs.usm.maine.edu(fenner/. Email: fenner@cs.usm.rnaine.edu.
Partially supported by NSF grant CCR 92-09833.

·· · CRL: http://www.cs.uchicago.edu(fortnow. Email: fortnow@cs.uchicago.edu. Sup
ported lll part by NSF grant CCR 92-53582, the Dutch Foundation for Scientific
Research (NWO) and a Fulbright Scholar award.

189

This shows in a very strong way that relativized measure for NP and pNP

differ: /Lp(NP) = 0 whereas µp(pNP[2l) f 0. Here pNP[2J is the class of sets
recognized by polynomial time Turing machines that are allowed two queries to
an NP oracle. We show that our results cannot be improved to pNP[IJ.

Secondly, we investigate the possibility that BPP does not have p--measurc
0. Intuitively BPP is a feasible complexity class close to P and therefore it
should be the case that BPP is small. We give very strong evidence supporting
this intuition. We show that µp(BPP) = 0 unless EXP = MA and thus the
polynomial-time hierarchy collapses.

Since BPP ~ P /poly our result contrasts with the one by Regan, Sivakumar
and Cai [RSC95], where it is shown that µp(P /poly) :/= 0, unless exponentially
strong pseudorandom generators do not exist.

2 Preliminaries

We let E = {O, 1} and identify strings in E* with natural numbers via the
usual binary representation. We fix N 1 , N 2 , ••. to be a standard enumeration of
all nondeterministic polynomial-time oracle Turing machines (NOTMs), where
for each i and input of length n, Ni runs in time ni for all oracles. All our
machines run using symbols 0, 1 and blanks. Fix a deterministic oracle TM M
which accepts some standard :S~-complete language for EXPA for all A ~ E*.
We may assume that M runs in time 2n. We let (·, ·) be the standard pairing
function, and we note that x, y :S (x, y) for all x, y E E*. A set is in DP if it can
be expressed as the difference of two sets in NP.

The notations R, Q, n+ and Q+ denote the real numbers, the rational num
bers, the positive real numbers and the positive rational numbers respectively.

2.1 Resource Bounded Measure

Classical Lebesque measure is an unusable tool in complexity classes. As these
classes are all countable, everything we define in such a class has measure 0. Yet,
we might wish to have a notion of "abundance" and "randomness" in complexity
classes. Lutz [Lut87, Lut90] introduced the notion of resource bo·unded measure,
and gave a tool to talk about these notions inside complexity classes.

Definition 1. A martingale d is a function from E* to n+ with the property
that d(wO) + d(wl) = 2d(w) for every w EE*.

Definition 2. A p--martingale is a martingale d : E* H Q+ that is polynomial
time computable.

Definition 3. A martingale d succeeds on a language A if

limsupd(XA[O .. . n -1]) = +oo
ne-+oo

We write S00 [d] ={A Id succeeds on A}

190

Definition 4. Let X be a class of languages.

__ .1:' hasp-measure o (Jip(X) = O) iff there exists a p-martingale d such that
.r c;:; 5x•[d]. _

- .r hasp-measure 1 (JLp(X) = 1) iff µp(X) = 0
.1:' hasp-measure 0 in EXP (µp(XIEXP) = 0) iff µp(X n EXP) = 0

- .Y has µ-measure 1 in EXP (µp(XjEXP) = 1) iff µp(X n EXP) = 0

One often defines measure in EXP using p2-rneasure where the martingale
can use 2tog0 <1 l n time. All of our results also hold in this weaker model.

3 Measure of NP versus Measure of pNP

In this section we concentrate on the question posed by Lutz [Lut96]. We show
that relative to some oracle µp(NP) = 0 does not imply that µp(pNP) = 0. We
do this in a very strong way by constructing an oracle such that NP does not
contain P-bi-immune sets and DP = EXP.

Theorem 5. There exists an oracle A such that, relative to A, NP has no
P-bi-immnne sets and DP == EXP.

Proof. We will code EXP into DP on one "side" of the oracle and prevent P-bi
immunity on the other, i.e., strings in L'*O = {xO Ix EL'*} will be used to code
EXP into DP, while strings in L'*l = {xl I x E L'*} will code the information to
find an infinite subset of each NP set or its complement. Some diagonalization
will also be necessary to force certain NP computations.

To mix coding with diagonalization, we employ a simplified version of the
trick used to construct an oracle for pNP = NEXP [BT94, FF95]. For each x, we
reserve two potential regions-left and right-in which to code MA (x), only one
of which will actually be used. To code correctly in a region we must let exactly
one string in the region enter A. We will code in the left region unless we have
to diagonalize against some NP machine, which may necessitate adding several
strings of the left region to A.. If this happens, we scrap the left region and code
in the right region, but we can do this only if our diagonalization hasn't already
put strings of the right region into A..

We now proceed with the formal treatment. For every x E L'* with lxl = n
and b E L', we call s an (x, b, left)-coding string (respectively, an (x, b, right)
r:orli:ng string) ifs= xybOO (respectively, s = xyblO) for some y E E* of length
3n. \Ve identify left and right with 0 and 1, respectively. We build the oracle A
in stages, each successive stage extending a finite portion of A's characteristic
function. If o:: E* -+ E is some partial characteristic function, N an oracle
machine, and :z: EE*, then the computation No:(x) is defined as usual, except
that when N makes any query outside domain(a), it is answered negatively. As
is customary, we regard o: as a set of ordered pairs. If /3 is another characteristic

191

function, we write /3 t a: to mean that f3 extends a:. Finally, define the "tower
of 2's" function t(n) for n ;::: O by

Stage -l.
0:_1:=0.
End Stage.

Stage n ;::: 0.

t(O) = 1
t(n + 1) = 2t(n).

We are given O:n-l · Set a::=a:n-l ·

1. (Forcing an NP computation) If n =J. t(k) for any k, then set

dn:= {right if a(s) = 1 for some (x, b, left)-coding strings with lxl = n,
left otherwise,

and go to step 2. Otherwise, let n = t(k) for some k = (i,j). If there exists
a minimal f3 t a such that both
(a) Nf (On) has an accepting path in which all queries are in domain(,B), and
(b) for no x with lxl ;::: n and no (x, b, right)-coding strings does /3{s) = 1,
then set a.:=/3 U {(on' 1, 1)} and set dn:=right (note that ,Bis only defined on
strings no longer than ni). Otherwise, set a:=a.U{ (on' 1, O)} and set dn:=left.

2. (Preserving computations of M) For all x of length n, run M°'(x), and ex
tend a: with just enough O's to "cover" all queries made by M 0 (x) not in
domain(a.).

3. (Coding computations of M) For all x E E* of length n, let y E E* be the
lexicographically least string (if one exists) such that IYI = 3n and neither
the (x, 0, dn)-coding string nor the (x, 1, dn)-coding string corresponding to
y is in domain(a). If M"' accepts, set a::=a. U {(xyldnO, l)}; otherwise, set
a.:=a: U {(xyOdnO, l)}.

4. Set O:n to be a extended with just enough O's to cover all remaining (x, b, d)
coding strings for all b EE, d E {left,right}, and x of length n.

End Stage.

Let A be such that XA extends O:n for all n (XA (x) = 0 for any x r/. Un o:n).
For any B ~ E*, define the language LB by

{
1 if either B contains an (x, 1, right)-coding string, or

LB(x) = B contains no (x,O,d)-coding strings for any d E {left, right},
0 otherwise.

Clearly LB E coDP•B. We now show that LA(x) = MA(x) for all x E E*, and
' A hence coDp,A = EXPA = DP• .

Pick an n large enough, and fix an input x of length n. In Step 3 of Stage
n, such a y must exist: there are at most 2n · (2n+ 1 - 1) (x, b, d)-coding strings

192

cpiNied bv M on inputs of length :S n, because of the running time of M, and
l0ss than °71 . nlog· n < 2(Iog nl 2 total strings queried by the Ni in Step 1 of Stages
O through n. Thus there are less than 23n (x, b, d)-coding strings in domain(a)
at Step :l of Stage n.

The fact that
(1)

is now easily seen: first we observe that no (x, b, right)-coding string (for any
b E ~) gets .into A in Steps 1 or 2 of any stage. Thus we have two cases:

d,, :::: lE'ft: For any b E I; and d E {left, right}, the only (x, b, d)-coding string
that ever enters A does so in Step 3 of Stage n. This unique string is an
(:r, 1, left)-coding string if M A(x) accepts, and is otherwise an (x, 0, left)
coding string; thus, (1) is satisfied.

d,, = right: Exactly one (x, b, right)-coding string enters A. It is an (x, 1, right)
coding string iff MA(x) accepts. Again, (1) is satisfied.

It remains to show that NPA has no pA_bi-immune sets. This will be done if
wi: can show that for any L E NPA, there exist pA sets Q and R with Q infinite,
such that L n Q = R (or at least the symmetric difference of L n Q and R is
finite). Let L = L(N/') for some fixed i. Let

Q ={On I (:lj)n = t((i,j))},

R = Q n {on I on'1 EA}.

The sets Q and R are clearly in pA. Pick n = t((i, j)) for j large enough so that
t((i,j) + 1) = 2" > ni, and consider Step 1 of Stage n. If (3 exists, then NiA(on)
accepts and on' 1 E A., so on E R. If no such /3 exists, then on ~ R. To see that
:\';4 (O") rejects, we simply observe that d11 = dn+l = · · · = dn•-i = dn• = left, so
no (x, b, right)-coding strings enter A in any of the stages n through n i. Therefore,
A preserves our conditions on the nonexistence of /3, and so Nl (On) rejects.

Corollary 6. There exists an oracle relative to which NP has p-measure 0 and
DP :::: EXP (and thus has p-measure 1 in E and in EXP).

We actually get something more from the construction above: relative to A,
we have EXP~ (NP n coNP)/1. That is, EXP can be computed in NP n coNP
with one bit of advice for strings of length n, namely dn. On input x of length n,
an NPA. machine accepting L(M A) (respectively L(M A)) simply checks if there
is some (x, 1, d,,)-coding string (respectively, some (x, 0, dn)-coding string) in A.

A natural question is whether Theorem 5 and Corollary 6 are tight. It could
still happen that /tp(NP) = 0 and µp(pNP[1l) =f. 0. The next theorem discards
this possihility.

Theorem 7. If {tp(pNP[I)) =f. 0 then µp(NP) =f. 0.

193

Proof. µp(pNP[l]) f 0 implies that SAT is weakly :Siu-complete for EXP. Ambos
Spies, Mayordomo, and Zheng [ASMZ96] have shown that the weakly <''. -
completeness notion coincides with weakly ::;~,-completeness for EXP. H-;~·:e
SAT is weakly ::;~,-complete for EXP and thus µp(NP) f. O.

Corollary 8. Relative to the oracle constructed in Theorem 5 it holds that DP =
coDP f. pNP[l J.

4 BPP likely has measure 0

In this section we investigate the consequences of BPP not having p-measure
0. We will see that this is unlikely since it would collapse the polynomial-time
hierarchy. Hence we provide strong evidence that µp(BPP) = O.

Theorem 9. If /tp(BPP) i- 0 then EXP= MA.

Since MA E Ef n IIf (BM89], EXP = MA implies that PH = E~.
We use the following Theorem from Babai, Fortnow, Nisan a~d Wigder

son [BFNW93] stating that if EXP f. MA then BPP can be simulated in subex
ponential time for infinitely many input lengths.

Theorem 10 [BFNW93J. If EXP f. MA then for all L E BPP, and for all c

there exists a set L' E DTIME(2n') such that for infinitely many n, L n E" =
L'nE".

We will see that if BPP can be simulated in subexponential time for in
finitely many input lengths, then it has p-measure 0. Taking this together with
Theorem 10 yields that EXP f. MA implies that µp(BPP) = 0, which proves
Theorem 9.

Theorem 11. If for all languages L E EPP there exists an c < 1 and a set

L' E DTIME(2"') such that for infinitely many n, L n En = L' n E". then

µp(BPP) = 0.

Proof. (Sketch) We will construct a martingale that succeeds on all sets in BPP
that runs in time n k for some fixed k. Let L E BPP and let Mu be the machine
that runs in subexponential time and accepts L'. If we are betting on strings of
length n such that L n .r;n = L' n .r;n then we can use Mu to predict exactly
the next bit, and hence we win 2n times. The problem however is that we do
not know for which n, Mu is going to be correct. We overcome this problem by
the following strategy.

Assume that our initial capital is 1. We reserve 2-n to bet against the strings
of length n, using ML' to predict the next bit (i.e. whether the next string of
length n is in L'). We bet everything won so far on the strings of length n to
the outcome of ML'. At the last string of length n we set aside what (if any) we
have won betting on the strings of length n.

194

Observe that if n is a length such that Ln.L'n = L'n.L'n then we win 22" *2-n
and this is greater than n. So for infinitely many n we add n to our capital and
hence the lim-inf of this martingale goes to infinity.

To make the construction work uniformly for all L E BPP we simulate all
the DTIME(2n) machines with a single DTIME(22n) machine allocating 2-i of
our initial capita.I to machine i (see [Lut92, May94b]).

Acknowledgment

\Ve thank Leen Torenvliet for comments on an earlier version and Dieter van
Melkebeek for helpful discussions on the writeup of the proof of Theorem ll.

References

[ASMZ96] K. Ambos-Spies, E. Mayordomo, and Xizhong Zheng. A comparison of
weak completeness notions. In Proeceedings of Eleventh Annual Conference
on Computational Complexity, pages 171 - 178, 1996.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponen
tial simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307-318, 1993.

[BM89] Laszlo Babai and Shlomo Moran. Proving properties of interactive proofs
by a generalized counting technique. Information and Computation,
82(2):185-197, August 1989.

[BT94] Buhrman and Torenvliet. On the cutting edge of relativization: The re
source bounded injury method. In Annual International Colloq1>ium on
Automata, Languages and Programming, pages 263-273, 1994.

[FF95] S. Fenner and L. Fortnow. Beyond pNP = NEXP. In STAGS 95, volume
900 of Lecture Notes in Computer Science, pages 619-627. Springer, 1995.

[LM96J J. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating complete
ness notions if NP is not small. Theoretical Computer Science, 164(1-
2):141-163, 1996.

[Lut87] J. Lutz. Resource-Bounded Category and Measure in Exponential Complex
ity Classes. PhD thesis, Department of Mathematics, California Institute
of Technology, 1987.

[Lut90] .J. Lutz. Category and measure in complexity classes. SIAM J. Com.put.,
19(6):1100-1131, December 1990.

[Lut92] J. Lutz. Almost everywhere high non uniform complexity. J. Computer and
System Sciences, 44:220--258, 1992.

[Lut96] J. Lutz. Observations on measure and lowness for Llf, In STAGS 96,
volume 1046 of Lecture Notes in Computer Science, pages 87 - 98. Springer,
1996.

[May94a] E. Mayordomo. Almost every set in exponential time is p-bi-immune. The
oretical Comp1der Science, 136(2):487-506, 1994.

[May94b] E. Mayordomo. Contributions to the study of resource-bounded meas1;re.
PhD thesis, Universitat Politecnica de Catalunya, 1994.

[R.SC95] K. Regan, D. Sivakumar, and J. Cai. Pseudorandom generators, measure
theory, and natural proofs. In 36th Annual Symposium. on Foundations of
Computer Science, pages 26 - 35, 1995.

