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Abstract

The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic tran-
sition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and
Mendler in terms of a set functor, which associates to a set its collection of simple probability
distributions. This coalgebraic formulation makes it possible to generalize the concepts of
discrete probabilistic transition system and probabilistic bisimulation to a continuous setting
involving Borel probability measures. A functor M1 is introduced that yields for a metric
space its collection of Borel probability measures. Under reasonable conditions, this func-
tor exactly captures generalized probabilistic bisimilarity. Application of the final coalgebra
paradigm to a functor based onM1 then yields an internally fully abstract semantical domain
with respect to probabilistic bisimulation, which is therefore well-suited for the interpretation
of probabilistic specification and stochastic programming concepts.
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1 Introduction

For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen
and Skou [LS91] is regarded as the basic process equivalence. Their definition was given for
reactive systems. Subsequently, in [GSS95], Van Glabbeek, Smolka and Steffen give variations
on the Larsen-Skou definition dealing with generative and so-called stratified systems. For a
process language with probabilistic choice they prove a hierarchy-result on bisimulation for
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non-probabilistic, reactive, generative and stratified interpretations. Several other probabilis-
tic equivalences are dealt with as well in the literature, e.g., more recently, [Hen95], in which
decidability for finite bisimulations for hybrid automata is studied; [BLFG95], discussing
specification and simulation for stochastic processes; [Seg95], on verification of randomized
distributed algorithms; [BG96], dealing with performance analysis of concurrent systems;
[KN96], presenting a concrete metric process domain for the modeling of probabilistic choice;
and many more. (See the references in the papers mentioned.) In all papers, discrete proba-
bility distributions are used, and hence the transition systems that are treated are in essence
of a finitely branching or image-finite nature.

For the exploration of probabilistic transition systems and stochastic equivalences in the
setting of modeling continuous systems, such as real-time or hybrid systems, one usually
wants to allow more general probability measures than the more limited discrete probability
distributions. The papers [BDEP97, DEP98] are the single proposal into this direction that
we know of. This approach is inspired by early work in [Gir81], on the one hand, and the
recent development of open maps of [JNW96], on the other, and uses stochastic kernels over
Polish spaces as transition systems and spans of zigzag morphism as bisimulations. They
prove that their notion of bisimulation is an equivalence that agrees in the discrete case with
the Larsen-Skou definition, but do not provide a characterization of bisimilarity in terms of
transition steps, i.e., they do not give a continuous analogue for the Larsen-Skou bisimulation.

Here we attack the problem of continuous probabilistic transition systems and bisimulation
by exploiting the transition-systems-as-coalgebras paradigm [RT93, Rut96, JR97]. Using a
minimal amount of category theory (essentially the notions of category and functor), it can be
summarized as follows: Let F : C → C be any functor on a category C. A coalgebra of F is an
object S in C together with an arrow α:S → F(S). It turns out that for many categories and
functors, such a pair (S,α) represents a transition system, the type of which is determined by
the functor F . Vice versa, many types of transition systems can be captured by a functor this
way. For instance, consider the familiar labeled transition systems (S,A,→), consisting of a
set S of states, a set A of actions, and a transition relation→ ⊆ S×A×S (cf. [Kel76, Plo81]).
Put L(X) = P(A×X), the collection of all subsets of A×X, for any set X, and, for f :X → Y ,
define L(f):L(X)→ L(Y ), by L(f)({(ai, xi) | i ∈ I}) = {(ai, f(xi)) | i ∈ I}. It can be easily
shown that L is a functor on the category of sets and functions. A labeled transition system
(S,A,→) can now be represented as an L-coalgebra by defining

α:S → L(S), s 7→ {(a, s′) | (s, a, s′) ∈ →}.

Conversely, any L-coalgebra corresponds to a transition system: If (S,α) is a coalgebra for L,
then (S,A,→), with → ⊆ S × A × S given by (s, a, s′) ∈ → ⇐⇒ (a, s′) ∈ α(s), is clearly a
transition system. (See Section 3 for more details.)

One of the advantages of the coalgebraic view on transition systems is the existence of a
general definition of F-bisimulation, for any functor F (cf. [AM89]). For instance, applying
that definition to the functor L above yields the standard notion of strong bisimulation of
[Mil80, Par81] (cf. Section 3). In general, the coalgebraic theory gives a generic approach to the
definition and description of bisimulation: First define or characterize the transition systems
one is interested in as coalgebras of a suitably chosen functor F . Then obtain a definition of
bisimulation for those systems by applying the categorical definition of F-bisimulation.

The coalgebraic approach is applicable to various kinds of transition systems —see [Rut96]
for many examples— including nondeterministic automata, infinite data structures, and
object-based systems [Rei95, Jac96]. In the present paper, this scheme is used to describe
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discrete and continuous probabilistic transition systems and bisimulations. The functorM1,
that is introduced in the sequel, assigns to an ultrametric space its collection of Borel probabil-
ity measures. It is shown that the corresponding notion ofM1-bisimulation coincides, under
mild conditions, with the continuous analogue of Larsen-Skou bisimulation. This extends a
similar result for the discrete case, which is in fact given first: the functor D, which assigns
to a set the collection of its simple probability distributions, is shown to yield a categorical
characterization of Larsen-Skou bisimulation. Hence, in agreement with general opinion, also
from the coalgebraic point of view the latter equivalence is suggested as the canonical one.

Another appealing aspect of the coalgebraic approach is a canonical way of finding in-
ternally fully abstract domains of bisimulation, where two elements are equal if and only if
they are bisimilar. It follows from a simple but very general argument that final coalgebras
are fully abstract (see Aczel’s final coalgebra model for nonwellfounded sets [Acz88], and
also [RT93]). Here, final means that there exists a unique homomorphism from any coalgebra
to the final one. (One can argue that finality is to the world of coalgebras what initiality
is to the world of algebras, cf. [MG85].) We shall show that it follows from general coal-
gebraic considerations [AR89, Bar93, RT93] that both functors that are considered have a
final coalgebra, which consequently is internally fully abstract with respect to (discrete and
continuous) probabilistic bisimulation. Therefore these final coalgebras can be exploited as
semantic domains for probabilistic bisimulation (an important direction for future research).

As mentioned above, the functor M1 is defined on ultrametric spaces, and the Borel σ-
algebras and associated measures are taken with respect to the metric topology. Our reasons
for considering metric spaces rather than the, in semantical contexts, more standard use of
ordered structures, such as [Jon89, JP89] and [Eda95a, Eda95b], are twofold. Firstly, one can
resort to the rich literature on standard measure theory for metric spaces (see, e.g., [KV84]).
Secondly, we can use the recently developed coalgebraic theory on metric spaces [AR89, RT94],
which seems to be better suited to describe (both ordinary and probabilistic) bisimulation
than the corresponding theory for ordered spaces (cf. [RT94]). We shall see that the functor
involved is locally contractive, from which it follows that it has a final coalgebra. Because of
the coalgebraic definition of bisimulation, we thus obtain an internally fully abstract domain.
Such a full abstractness result has been lacking so far in the literature.

In conclusion, D-bisimilarity and Larsen-Skou bisimilarity coincide for discrete probabilis-
tic transition systems. For the continuous case, the functorM1 captures the generalization of
probabilistic transition systems, and —under conditions— characterizes the associated notion
of probabilistic bisimulation. In both settings a final coalgebra and hence, internally fully ab-
stract domain exists, which can be exploited in the construction of domains for probabilistic
bisimulation semantics.

Acknowledgments We are grateful to Jaco de Bakker, Henno Brandsma, Franck van
Breugel, Prakash Panangaden, the anonymous referees, and, as always, the members of the
Amsterdam Concurrency Group for discussions and comments on this paper.

2 Mathematical Preliminaries

Basic measure theoretic definitions (See, e.g., the standard textbook [Rud66].) A σ-algebra
Σ on a set X is a collection of subsets which contains X and is closed under complement and
countable union. Elements E of Σ are called measurable subsets of X. Trivially, the powerset
P(X) is a σ-algebra for X. If X is a topological space, the Borel σ-algebra B(X) is defined
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as the least σ-algebra containing all open sets.
A function µ: Σ → [0, 1], where Σ is a σ-algebra on a set X, is called a Σ-probability

measure if µ(X) = 1 and µ is σ-additive, i.e., µ(
⋃

i∈I Ei) =
∑

i∈I µ(Ei) for any countable
disjoint collection of measurable sets {Ei|i ∈ I}. For X a topological space, a Borel probability
measure is a probability measure on X taken with respect to the Borel σ-algebra B(X). For
x ∈ X, the Dirac-measure δx is given by δx(E) = 1 if x ∈ E, and δx(E) = 0 otherwise. A
function µ:X → [0, 1] is called a simple probability distribution if there exist n distinct points
x1, . . . , xn, n>0, such that µ(x1)+ · · ·+µ(xn) = 1 and µ(x) = 0 for x /∈ {x1, . . . , xn}. The set
{x1, . . . , xn} is called the support of µ. D(X) denotes the collection of all simple probability
distributions on X. For E ⊆ X, µ[E] is short for

∑
x∈E µ(x). This way, a simple probability

distribution corresponds to a convex linear combination of Dirac-measures.

Metric spaces (See, e.g., the monograph [BV96].) A pair (M,d) with M a nonempty set
and d:M2 → [0, 1] is called an ultrametric space if, for all x, y, z ∈ M : d(x, y) = d(y, x),
d(x, y) = 0 ⇔ x = y, and d(x, z) ≤ max{d(x, y), d(y, z)}. The last expression is referred
to as the strong triangle inequality. For metric spaces M1,M2, a function f :M1 → M2 is
called nonexpansive if d2(f(x), f(y)) ≤ d1(x, y), for all x, y ∈ M . The function f is called
κ-contractive in case d2(f(x), f(y)) ≤ κ · d1(x, y), for all x, y ∈ M , where κ is a constant
with 0 ≤ κ < 1. The collection of all nonexpansive mappings from M1 to M2 is denoted by
M1→1 M2. We use the notation O, or more explicit O(M), for the collection of all open
subsets of M .

Binary relations For a binary relation R ⊆ S × T we use π1 and π2 for the projections of R
on S and T , respectively. R is called total if the two projections π1 and π2 are surjective.
We say that R is z-closed if, for all s, s′ ∈ S, t, t′ ∈ T , R(s, t) ∧ R(s′, t) ∧ R(s′, t′) ⇒ R(s, t′).
If we put, for n ∈ N, R0 = R, Rn+1 = { (s, t′) ∈ S × T | ∃s′ ∈ S, t ∈ T :R(s, t) ∧ Rn(s′, t) ∧
R(s′, t′) }, and R∗ =

⋃
n∈NRn, we have that R∗ is the least z-closed binary relation on S × T

containing R. (Note that Rn(s, t) iff ∃s0, . . . , sn, t0, . . . , tn: s0 = s∧ tn = t∧∀i ≤ n:R(si, ti)∧
∀i < n:R(si+1, ti).) Below we will employ, for s ∈ S, the notation F (s) = {t ∈ T | R(s, t)}
and, for U ⊆ S, F [U ] =

⋃
s∈U F (s), and, likewise, for t ∈ T , E(t) = {s ∈ S | R(s, t)}, and,

for V ⊆ T , E[V ] =
⋃

t∈V E(t). Please note the different usage of brackets in E[·] and F [·]
yielding subsets of S and T , compared to the notation µ[·], introduced above, yielding, for a
simple probability distribution µ, a real number.

3 Coalgebras

We briefly recall the basic notions and facts of coalgebra, which is a general theory of (tran-
sition and dynamical) systems, phrased in the language of category theory. For an overview
of the theory of coalgebras, containing many references and examples, see [Rut96].

Let C be either the category of sets and functions, or the category of ultrametric spaces
and nonexpansive mappings. (These are the only categories playing a role in this paper.) Let
F : C → C be a functor. An F-coalgebra is a pair (S,α) consisting of an object S in C together
with an arrow α:S → F(S) in C, called a coalgebra structure on S. A homomorphism between
two F-coalgebras (S,α) and (T, β) is an arrow f :S → T in C such that F(f) ◦ α = β ◦ f .

An F-bisimulation between two F-coalgebras (S,α) and (T, β) is a relation R ⊆ S×T for
which there exists a coalgebra structure γ:R → F(R) such that the projections π1:R → S
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and π2:R → T are homomorphisms: α ◦ π1 = F(π1) ◦ γ and β ◦ π2 = F(π2) ◦ γ. We then
say that R is an F -bisimulation for α and β. The arrow γ is called mediating for α and β.
We write x ∼ y (‘x and y are F-bisimilar’) whenever there exists an F -bisimulation R with
(x, y) ∈ R.

R

F(R)

γ

π1 π2

F(π1) F(π2)
F(S)

S

α

F(T )

T

β

Example Let us elaborate the above definitions for the example of the functor L presented in
the introduction. Let Set be the category of sets and functions. For a fixed set A, the functor
L:Set→ Set was given by L(X) = P(A ×X), and L(f)(V ) = { (a, f(x)) | (a, x) ∈ V }, for
a set X, f :X → Y , and V ∈ P(A×X).

Let (S,α) and (T, β) be two L-coalgebras, so α:S → L(S) and β:T → L(T ). Below we
will use a more suggestive notation like s

a→α s′ instead of (a, s′) ∈ α(s). By definition, a
function f :S → T is an L-coalgebra homomorphism iff it satisfies L(f) ◦ α = β ◦ f , that is

{ (a, f(s′)) | s a→α s′ } = { (a, t′) | f(s) a→β t′ },

for all s ∈ S. Equivalently,

s
a→α s′ ⇒ f(s) a→β f(s′), and f(s) a→β t′ ⇒ ∃s′ ∈ S: s a→α s′ ∧ f(s′) = t′.

Next consider an L-bisimulation R ⊆ S × T for (S,α) and (T, β), with coalgebra structure
γ:R→ L(R). Then L(π1) ◦ γ = α ◦ π1 and L(π2) ◦ γ = β ◦ π2 are equivalent with

(s, t) a→γ (s′, t′)⇒ s
a→α s′ and s

a→α s′ ⇒ ∃t′ ∈ T : (s, t) a→γ (s′, t′),
(s, t) a→γ (s′, t′)⇒ t

a→β t′ and t
a→β t′ ⇒ ∃s′ ∈ S: (s, t) a→γ (s′, t′),

for all (s, t) ∈ R. It follows that if R(s, t) then

s
a→α s′ ⇒ ∃t′ ∈ T :R(s′, t′) ∧ t

a→β t′ and t
a→β t′ ⇒ ∃s′ ∈ S:R(s′, t′) ∧ s

a→α s′.

This is precisely the familiar notion of strong bisimilarity for labeled transition systems
of [Mil80, Par81]. Thus R is a strong bisimulation for (S,α) and (T, β). Conversely, if
R ⊆ S × T is a strong bisimulation for (S,α) and (T, β), we define γ:R → L(R), for (s, t)
and (s′, t′) in R, by

(s, t) a→γ (s′, t′) ⇐⇒ s
a→α s′ ∧ t

a→β t′.

It can be easily proved that R is a L-bisimulation for (S,α) and (T, β) with mediating func-
tion γ. (More details, and many more examples, can be found in [Rut96].) 2

An F-coalgebra (D, δ) is called final if there exists for any F -coalgebra (S,α) a unique
homomorphism from (S,α) to (D, δ). We have the following result.

Theorem 3.1 (Internal full abstractness) For a final F-coalgebra (D, δ) and x, y ∈ D, x = y
if and only if x ∼ y.
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The proof is easy, see [RT93] or [Rut96, Thm 9.2]. The main difficulty in obtaining full
abstractness lies in the construction of a final coalgebra, which in general is non-trivial.

Functors F that preserve weak pullbacks, a categorical property discussed in the Appendix,
are particularly well behaved. For such functors, unions and relational compositions of F -
bisimulations yield F-bisimulations again. As a consequence, bisimilarity is an equivalence
relation. There is also the following generalization of Theorem 3.1.

Theorem 3.2 (Full abstractness) Let F be a functor preserving weak pullbacks, (S,α) an
F-coalgebra, (D, δ) a final F-coalgebra, and f :S → D the unique homomorphism from (S,α)
to (D, δ). For any x, y ∈ S, f(x) = f(y) if and only if x ∼ y.

The proof of Theorem 3.2 is again simple, and can be found in [RT93] or [Rut96, Thm 9.3].
The same applies to the properties of F-bisimulations mentioned above, which are proved
(for functors on Set) in [Rut96, Thm 5.4 and Thm 5.5].

4 A coalgebraic interpretation of Larsen-Skou bisimulation

Starting from the definitions of a discrete probabilistic transition system and probabilistic
bisimulation as proposed in the literature, we will consider generalizations of discrete prob-
abilistic transition systems as coalgebras of a functor D on the category Set of sets and
functions. We will show that D-bisimilarity implies probabilistic bisimilarity, and, using the
notion of z-closure, that probabilistic bisimulation and totality imply D-bisimilarity. Further-
more it is shown how this leads to the existence of a fully abstract domain.

Definition 4.1 [LS91, GSS95] A discrete probabilistic transition system is a tuple (Pr, Act, µ)
where Pr is a nonempty set of processes, Act is a given set of actions, and the mapping
µ: Pr×Act× Pr→ [0, 1] is a so-called transition probability function, i.e., µ(P, a, ·) is either
the zero-map, or a simple probability distribution, for all P ∈ Pr, a ∈ Act.

A probabilistic bisimulation for a discrete probabilistic transition system is an equiva-
lence ‘≡’ on Pr such that

P ≡ Q⇒ µ[P, a,E] = µ[Q, a,E],

for all P,Q ∈ Pr, a ∈ Act, and equivalence classes E ∈ Pr/≡. Two processes P and Q are
said to be probabilistic bisimilar if some probabilistic bisimulation contains the pair (P,Q).

In Section 2 we introduced the notation D(S) for the collection of all simple probability
distributions over a set S. In fact, D can be extended to a Set-functor by defining, for a
mapping f :S → T , a function D(f):D(S)→ D(T ) which maps a simple distribution µ on S
to D(f)(µ) defined, for t ∈ T , by D(f)(µ)(t) = µ[f−1({t})].

Let 0 represent termination. Note that a probabilistic transition system is just a mapping
µ: Pr×Act→ D(Pr) + {0} or, equivalently, a function

µ: Pr→ (Act→ (D(Pr) + {0}) ).

In other words, a probabilistic transition system is precisely a coalgebra of the functor
Act → (D(·) + {0}). Applying the category theoretical machinery as described in Section 3
now gives us the coalgebraic notion of bisimulation. We will show that it corresponds to
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(actually generalizes) the notion of probabilistic bisimulation of Definition 4.1, thus providing
categorical evidence for the Larsen-Skou bisimulation as the canonical process equivalence for
discrete probabilistic transition systems.

For clarity of presentation we suppress, for the moment, the action component of a prob-
abilistic transition system, and also do not bother about termination. Thus we consider
coalgebras of the functor D itself. (As a consequence, in the sense of Definition 4.2, the
relation S × T is always a bisimiulation for D.) It turns out that, the presence of labels and
termination does not make any essential difference for the technical content of what follows.
Before we relate probabilistic bisimulation with D-bisimulation, we first give a generalization
of Definition 4.1, by allowing bisimulations between different transition systems, which are
not necessarily equivalence relations.

Definition 4.2 Let α:S → D(S), β:T → D(T ) be two (stripped) discrete probabilistic
transition systems. A binary relation R ⊆ S × T is called a probabilistic bisimulation for
α, β iff R(s, t) ⇒ α(s)[U ] = β(t)[V ], for all s ∈ S, t ∈ T and U ⊆ S, V ⊆ T such that
π−1

1 (U) = π−1
2 (V ). Two elements s ∈ S, t ∈ T are said to be probabilistic bisimilar if some

probabilistic bisimulation contains the pair (s, t).

Note that if R is an equivalence relation, then π−1
1 (U) = π−1

2 (V ) if and only if U =
⋃

i∈I Ei =
V , for some collection of equivalence classes {Ei | i ∈ I } of R. Thus in this case, the condition
on U and V in Definition 4.2 amounts to the assumption of E being an equivalence class in
Definition 4.1, or, following the terminology of [Hen95], U and V are the same ‘≡’-block.
This shows that Definition 4.1 is a special instance of Definition 4.2 (‘modulo’ the presence
of labels and termination).

Next we relate the notion of D-bisimulation to the notion of probabilistic bisimulation of
Definition 4.2. Recall, from Section 3, that a homomorphism for two D-coalgebras (S,α),
(T, β) is a function f :S → T such that D(f) ◦ α = β ◦ f . Also recall that a D-bisimulation
is a relation R ⊆ S × T together with a mapping γ:R → D(R) such that D(π1) ◦ γ = α ◦ π1

and D(π2) ◦ γ = β ◦ π2. More specifically, for (s, t) ∈ R it holds that γ(s, t)[π−1
1 ({s′})] =

α(π1(s, t))(s′) = α(s)(s′), and, symmetrically, γ(s, t)[π−1
2 ({t′})] = β(t)(t′), for all s′ ∈ S,

t′ ∈ T .

Lemma 4.3 Let α:S → D(S) and β:T → D(T ) be two discrete probabilistic transition
systems. Let R be a D-bisimulation for α, β. Then R is a probabilistic bisimulation for α, β.
Proof Let γ:R→ D(R) be mediating for α, β, i.e., α ◦ π1 = D(π1) ◦ γ and β ◦ π2 = D(π2) ◦ γ.
Suppose R(s, t) and π−1

1 (U) = π−1
2 (V ). We then have

α(s)[U ] = α(π1(s, t))[U ] = D(π1)(γ(s, t))[U ] = γ(s, t)[π−1
1 (U)] =

(∗)
= γ(s, t)[π−1

2 (V )] = D(π2)(γ(s, t))[V ] = β(π2(s, t))[V ] = β(t)[V ]

exploiting the definitions of D(π1),D(π2), and at (∗) the assumption on U and V . 2

The reverse of the above lemma is more intricate. We will first use the concept of z-closure
and associated properties as developed in Section 2.

Lemma 4.4 If R ⊆ S × T is a probabilistic bisimulation for α:S → D(S), β:T → D(T ),
then so is R∗, the z-closure of R.
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Proof We have, by definition, R∗ =
⋃
{Rn | n ∈ N } with Rn as in Section 2. Therefore the

lemma directly follows from the implication

Rn(s, t)⇒ α(s)[U ] = β(t)[V ]

for n ∈ N (and U, V such that π−1
1 (U) = π−1

2 (V )), which can be shown by induction on n: [0]
Clearly, R0 = R by definition and R is a probabilistic bisimulation. [n+1] Suppose Rn+1(s, t).
Pick t′ ∈ T , s′ ∈ S such that R(s, t′), Rn(s′, t′) and R(s′, t). We then have α(s)[U ] = β(t′)[V ],
α(s′)[U ] = β(t′)[V ] and α(s′)[U ] = β(t)[V ], since R is a probabilistic bisimulation and by the
induction hypothesis. So α(s)[U ] = β(t)[V ], which was to be shown. 2

So, if s ∈ S and t ∈ T are probabilistic bisimilar, we can assume —without loss of generality—
that there exists a z-closed probabilistic bisimulation containing (s, t). We will need, for
technical reasons, that R is total. This is implied by the common assumption of transition
systems to have a distinguished initial state and considering reachable states only.

Theorem 4.5 Let R ⊆ S × T be a probabilistic bisimulation for α:S → D(S) and β:T →
D(T ). Moreover, assume R to be z-closed and total. Then R is a D-bisimulation.
Proof Let (s, t) ∈ R. We define γ:R → D(R) as follows. Let γs,t be short for γ(s, t), and
put

γs,t(s′, t′) =


0 if β(t)[F (s′)] = 0

α(s)(s′) · β(t)(t′)
β(t)[F (s′)]

otherwise.

(The notation F (s) was introduced in Section 2: F (s) = { t ∈ T | R(s, t) }. Also E(t) = { s ∈
S | R(s, t) }.) By z-closedness of R it follows from R(s′, t′) that π−1

1 (E(t′)) = π−1
2 (F (s′)) and

hence α(s)[E(t′)] = β(t)[F (s′)]. Therefore the above definition of γs,t is symmetric in s and t.
We will check that γs,t is a simple probability distribution. First we claim

γs,t[{s′} × F (s′)] = α(s)(s′). (4.1)

This can be seen as follows: By z-closedness of R we have π−1
1 (E[F (s′)]) = π−1

2 (F (s′)). We
distinguish two cases: Suppose β(t)[F (s′)] = 0. Then, by definition, γs,t[{s′} × F (s′)] = 0,
and, since R is a probabilistic bisimulation it holds that

0 ≤ α(s)(s′) ≤ α(s)[E[F (s′)]] = β(t)[F (s′)] = 0.

(Totality of R implies s′ ∈ E[F (s′)].) So it follows that α(s)(s′) = 0. Now suppose
β(t)[F (s′)] 6= 0. Then we have

γs,t[{s′} × F (s′)]

=
∑

t′′∈F (s′)
α(s)(s′) · β(t)(t′′)

β(t)[F (s′)]

=
α(s)(s′) · β(t)[F (s′)]

β(t)[F (s′)]

= α(s)(s′).
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This proves the claim. By equation (4.1) we have γs,t[R] =
∑

s′∈S γs,t[{s′} × F (s′)] =∑
s′∈S α(s)(s′) = 1.
We check that γ is mediating for α, β. The equality α◦π1 = D(π1)◦γ is a direct consequence

of (4.1). For showing β ◦π2 = D(π2) ◦ γ a similar argument can be applied using the property
γs,t[E(t′)× {t′}] = β(t)(t′). Conclusion: R is a D-bisimulation. 2

The format of the definition of γ(s, t) is reminiscent of the discrete probability distributions
of [JL91]. It is however not clear how their notion of probabilistic specification extends to the
continuous setting of Section 5.

It is straightforward to adapt the above line of reasoning to a functor D′ given by D′ =
Act → (D(·) + {0}). The discrete probabilistic transition systems of Definition 4.1 are in
1–1 correspondence with the coalgebras of this functor, and the notion of D′-bisimulation
coincides with that of probabilistic bisimulation of Definition 4.1 (for total relations R).

We can now benefit from some general insights in the theory of coalgebras, by applying
(a minor variation on) a result from Barr.

Theorem 4.6 The functor D′ (and also D) has a final coalgebra.
Proof Let α:S → D′(S) be a D′-coalgebra, and s an element in S. The subcoalgebra generated
by s, denoted by 〈s〉, is defined as the smallest subcoalgebra of (S,α) containing s. It can be
constructed by starting with the set {s}, then adding the finitely many elements s′ for which
α(s)(a)(s′) is strictly positive (note that α(s)(a) is a simple probability distribution), and so
on. Assuming that the set Act is countable, it follows that at each of the countably many
stages of this construction, only countably many elements are added. Thus the set 〈s〉 is
countable. Since (S,α) and s were arbitrary, we have proved that the functor D′ is bounded :
the size of any D′-coalgebra generated by a singleton is bounded (by the cardinal number ω).

Now we can apply a general result from the theory of coalgebras, which is proved in
[Rut96, Thm 10.4], based on a result of [Bar93]. It simply states that any bounded functor
has a final coalgebra. Since D′ is bounded, it has a final coalgebra. 2

The final coalgebra for D′ is nontrivial. The final coalgebra for D, though, is degenerate: it
equals the one element set. Due to the absence of labels and a concept of termination as
present for D′, all elements in any two D-coalgebras are probabilistically bisimilar.

Let P be the final D′-coalgebra, so P ∼= Act → (D(P) + {0}). (Note that final coalgebras
are always fixed points. See, e.g., [Rut96, Thm 9.1].) The following is now immediate by
Theorem 3.1.

Corollary 4.7 The system P is internally fully abstract with respect to the original notion
of probabilistic bisimulation of Definition 4.1.

The functor D preserves weak pullbacks, which is proved in the Appendix. As an immedi-
ate consequence, also the functor D′ does. Therefore, probabilistic transition systems and
bisimulations are well behaved: unions and compositions are bisimulations again, and the
bisimilarity relation is an equivalence relation. Furthermore, there is the following instantia-
tion of Theorem 3.2.

Theorem 4.8 (Full abstractness) Let (S,α) be a discrete probabilistic transition system, and
f :S → P the unique homomorphism from S to P. For any x, y ∈ S, f(x) = f(y) if and only
if x ∼ y.
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5 M1-Bisimilarity for Probabilistic Transition Systems

The previous section illustrates that in a discrete probabilistic setting, a coalgebraic inter-
pretation of probabilistic transition systems and bisimulation can be given, which reflects the
usual ‘direct’ approach. One of the advantages of the abstract coalgebraic approach is that it
can fairly easily be generalized to the continuous setting of stochastic systems. We will now,
in fact, allow probability measures to play the role of the simple distributions in the definition
of a probabilistic transition system.

Probability measures only make sense in the context of a σ-algebra. When the collection Pr
of processes comes equipped with a topology —as is the case if the set of processes is endowed
with an order or a metric structure— the natural choice for this σ-algebra is the Borel σ-
algebra B(Pr), i.e. the least σ-algebra containing all the open sets of processes. As mentioned
in the introduction, we use ultrametric spaces because of a combination of the following two
reasons: the technical advantage of a close relationship between standard measure theory
and metric topology, and the availability of a final coalgebra theorem in the metric setting,
leading to a fully abstract domain for general probabilistic bisimulation. (We note that the
second point would also apply to the order-theoretic case. See [RT93].)

The generalization of the notion of a discrete probabilistic transition system and the
associated concept of bisimulation as proposed by Larsen and Skou is as follows.

Definition 5.1 A (general) probabilistic transition system is a tuple (Pr, Act, µ) where Pr is
any ultrametric space of processes, Act is a given set of actions, and µ: Pr×Act×B(Pr)→ [0, 1]
is a so-called (general) transition probability function, i.e., µ(P, a, ·) is either the zero-map,
or a Borel probability measure, for all P ∈ Pr, a ∈ Act.

A probabilistic bisimulation for a probabilistic transition system (Pr, Act, µ) is an equiv-
alence ‘≡’ on Pr such that every equivalence class E ⊆ Pr of ‘≡’ is measurable, and

P ≡ Q ⇒ µ(P, a,E) = µ(Q, a,E)

for all P,Q ∈ Pr, a ∈ Act, and E ∈ Pr/≡. Two processes P and Q in Pr are said to be
probabilistic bisimilar if there exists a probabilistic bisimulation containing the pair (P,Q).

Note that the equivalence classes E of ‘≡’ must be measurable, since only then the values
µ(P, a,E) and µ(Q, a,E) are well-defined.

For reasons of presentation, we dispense, for a moment, with the actions and with the
treatment of termination. They can be added again later. (Note that according to Defini-
tion 5.2, the Cartesian product S × T is admitted as a M1-bisimulation.) In this way, a
probabilistic transition system becomes a function α:S →M1(S) whereM1(S) denotes the
collection of all Borel probability measures. In the reformulation of the related notion of prob-
abilistic bisimulation we give, as before, first a slightly more general definition of bisimilarity
of systems with different carriers.

Definition 5.2 Let α:S → M1(S) and β:T → M1(T ) be two probabilistic transition
systems. A relation R ⊆ S × T is called a probabilistic bisimulation for α, β iff R(s, t) ⇒
α(s)(U) = β(t)(V ) for all s ∈ S, t ∈ T and U ∈ B(S), V ∈ B(T ) such that π−1

1 (U) =
π−1

2 (V ). Two elements s ∈ S, t ∈ T are said to be probabilistic bisimilar iff some probabilistic
bisimulation contains the pair (s, t).
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As for D in the previous section,M1 can be regarded as a functor, now on the category UMS
of ultrametric spaces and nonexpansive mappings. For this purpose, M1(M) should first of
all be endowed with a metric structure. (For a similar result in the context of evaluations,
see, e.g., [BK97].)

Lemma 5.3 Let (M,d) be an ultrametric space. Put Oε = {O ∈ O | ∀x ∈ O:Bε(x) ⊆ O },
for ε > 0. Let the distance d on M1(M), induced by d on M , be given by

d(µ, ν) = inf{ ε > 0 | ∀O ∈ Oε:µ(O) = ν(O) }.

Then (M1(M), d) is an ultrametric space.
Proof SinceM is an ultrametric space it holds that, for any X ⊆M , M \ (

⋃
x∈X Bε(x)) =⋃

x∈M\X Bε(x), and Oε ⊆ Oε′ , for ε ≥ ε′. We check the various conditions of an ultrametric
for the function d on M1(M).

The symmetry condition for d is clear. Trivially, d(µ, µ) = 0, for any µ ∈ M1(M). Now,
suppose d(µ, ν) = 0. By ultrametricity of M , Oε is a σ-algebra: Clearly, M ∈ Oε; for
O ∈ Oε, O =

⋃
x∈O Bε(x), and it holds that M \ O = M \ (

⋃
x∈O Bε(x)) =

⋃
x∈M\O Bε(x),

hence M \O ∈ Oε; for (Oi)i in Oε obviously
⋃

i Oi ∈ Oε. The measures µ and ν coincide on
the algebra

⋃
{ Oε | ε > 0 }, and hence on the σ-algebra generated by it (see [Kec95, p106]).

Any open set can be obtained as countable union of Oq with Oq ∈ Oq, q ∈ Q. Hence, the
σ-algebra generated by this collection is precisely the Borel σ-algebra of M . So, µ and ν
coincide on B(M) and µ = ν.

The strong triangle inequality is verified as follows: Let µ, ν, ρ ∈ M1(M) and pick ε > 0
such that max{d(µ, ρ), d(ρ, ν)}<ε. Then we have d(µ, ρ), d(ρ, ν)<ε, hence ∀O ∈ Oε: µ(O) =
ρ(O) ∧ ρ(O) = ν(O). Thus ∀O ∈ Oε: µ(O) = ν(O). So d(µ, ν) ≤ ε. By taking the infimum
over all ε>0 satisfying max{d(µ, ρ), d(ρ, ν)}<ε it follows that d(µ, ν) ≤ max{d(µ, ρ), d(ρ, ν)}.
2

Consider, as a concrete example, the set of strings A = {ε, a, ab, abc} supplied with the Baire-
distance, thus d(ε, w) = 1 for w ∈ { a, ab, abc }, d(a,w) = 1

2 for w ∈ { ab, abc }, d(ab, abc) = 1
4 .

Let δa, δab be the Dirac measures for a and ab, respectively. Since d(a, ab) = 1
2 it follows that

for any ε > 1
2 and O ∈ Oε, a ∈ O ⇐⇒ ab ∈ O and, consequently, δa(O) = δab(O) (viz. either

both 0 or both 1). For O = B1/2(a) we have a ∈ O, ab /∈ O. So δa(O) = 1 6= 0 = δab(O).
Therefore we have that d(δa, δab) = inf{ ε | ε > 1

2 } = 1
2 .

Next we have to determine the action ofM1 on nonexpansive functions.

Lemma 5.4 Let M,N be two ultrametric spaces and let f :M → N be a nonexpansive
mapping. Define, for µ ∈M1(M), the functionM1(f)(µ):B(N)→ [0, 1] byM1(f)(µ)(V ) =
µ(f−1(V )). Then M1(f):M1(M)→M1(N) is well-defined and nonexpansive.
Proof The well-definedness of M1(f), i.e. the fact that M1(f)(µ) is a Borel probability
measure on N for any µ ∈M1(M) is standard. The nonexpansiveness ofM1(f) is based on
the fact that O ∈ Oε(N) ⇒ f−1(O) ∈ Oε(M), for any ε > 0: For, suppose O ∈ Oε(N) and
x, y ∈M such that x ∈ f−1(O) and d(x, y) < ε, then f(x) ∈ O and d(f(x), f(y)) < ε by non-
expansiveness of f . Since O ∈ Oε(N) it follows that f(y) ∈ O and, consequently, y ∈ f−1(O).
Now, let µ, ν ∈M1(M). Suppose d(µ, ν) < ε for some ε > 0, i.e. ∀O ∈ Oε(M): µ(O) = ν(O).
Pick O ∈ Oε(N). Note that f−1(O) ∈ Oε(M). So, by definition ofM1(f)(µ) andM1(f)(ν),
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M1(f)(µ)(O) = µ(f−1(O)) = ν(f−1(O)) =M1(f)(ν)(O). Taking the infimum over ε yields
that d(M1(f)(µ),M1(f)(ν)) ≤ d(µ, ν), and it follows that M1(f):M1(M) → M1(N) is a
nonexpansive mapping. 2

As an aside,M1(f) would not be nonexpansive whenM1(M) andM1(N) are supplied with
the distance of uniform convergence dF inherited from the function spaces B(M)→ [0, 1] and
B(N)→ [0, 1]. Then we would have, for µ, ν ∈M1(M), by definition of the distance dF ,

dF (µ, ν) = sup{ |µ(U)− ν(U)| | U ∈ B(M) }.

If we then consider, for example, the identity mapping id on the set A = { ε, a, ab, abc }
mentioned above, we have, for the Borel set {a},

M1(id)(δa)({a}) = δa({a}) = 1 andM1(id)(δab)({a}) = δab({a}) = 0.

So dF (M1(id)(δa),M1(id)(δab)) = 1 and, with respect to the metrics involved here, M1(id)
would not be nonexpansive. However, as Lemma 5.4 shows, with respect to the distance
introduced in Lemma 5.3, M1(id) is nonexpansive. As a remark, the construction does not
apply to the metric, but not ultrametric, space R endowed with the Euclidean distance, which
can possibly complicate the exploitation of the theory developed here in concrete applications.

By the previous lemmas we can viewM1 as a functor on UMS, the category of ultrametric
spaces with nonexpansive mappings. Following the coalgebraic paradigm, M1 induces a
notion ofM1-bisimulation. One half of the relationship ofM1-bisimulation and probabilistic
bisimulation can be shown directly.

Lemma 5.5 Let α:S →M1(S), β:T →M1(T ) be two probabilistic transition systems. Any
M1-bisimulation R for α and β is also a probabilistic bisimulation for α, β.
Proof Similar to the proof of Lemma 4.3. 2

Below we show that the reverse of Lemma 5.5 holds, under reasonable conditions. The
technicality to be dealt with concerns the proper generalization of the measurability condition
of the equivalence classes E.

For a probabilistic bisimulation ‘≡’ in the sense of Definition 5.1 we have a partitioning of
the carrier into equivalence classes and of ‘≡’ into squares of equivalence classes. Moreover,
these subsets are measurable by assumption. So, we have ≡ =

⋃
i∈I Ei × Ei with each Ei

measurable. Similarly, for the general set-up, we want a decomposition R =
⋃

k∈K Ek × Fk

where the Ek and Fk are Borel sets in S and T , respectively. Additionally, for measure
theoretical considerations, we will assume the number of rectangles Ek×Fk that constitute R
to be countable.

Definition 5.6 A binary relation R ⊆ S × T on two ultrametric spaces S and T is said to
have a Borel decomposition iff R =

⋃
k∈K Ek × Fk where { Ek | k ∈ K }, { Fk | k ∈ K } are

countable partitions of Borel sets of S and T , respectively.

Discrete probabilistic bisimulations are examples of relations that are Borel decomposable. If
α is a simple probability distribution over s1, . . . , sn and β over t1, . . . , tm then R can be parti-
tioned into Cartesian products of finite sets and the (measurable) rectangle S \{s1, . . . , sn}×
T \ {t1, . . . , tm}. Note that for R z-closed, we have in fact R =

⋃
{ E(t) × F (s) | (s, t) ∈ R }

but, in general, E(t)× F (s) need not be measurable.
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In the construction of a mediating probabilistic transition system γ:R → M1(R), for a
given probabilistic bisimulation R, we can again assume that R is z-closed. Since no measure
theoretical considerations are involved, the proof of this is literally as for Lemma 4.4.

Lemma 5.7 If R ⊆ S×T is a probabilistic bisimulation for α:S →M1(S), β:T →M1(T ),
then so is R∗, the z-closure of R. 2

We now have arrived at the main result. Using notations of Section 2, we have

π−1
1 (U) = (U × F [U ]) ∩R and π−1

2 (V ) = (V ×E[V ]) ∩R. (5.2)

Moreover, if R has a Borel decomposition R =
⋃

k∈K Ek × Fk, it holds that

F [U ] ∩ Fk = Fk if U ∩ Ek 6= ∅, and E[V ] ∩ Ek = Ek if V ∩ Fk 6= ∅. (5.3)

These facts will be employed in the calculations for the proof of the next theorem.

Theorem 5.8 Let α:S → M1(S), β:T → M1(T ) be two probabilistic transition systems.
Let R be a probabilistic bisimulation for α, β in the sense of Definition 5.2. Assume that R
is z-closed. If R has a Borel decomposition, then R is an M1-bisimulation for α, β.
Proof Let {Ek × Fk | k ∈ K } be a Borel decomposition of R. Suppose R(s, t) holds. Since
R is a probabilistic bisimulation for α, β we have α(s)(Ek) = β(t)(Fk). In particular,

α(s)(Ek) = 0 ⇐⇒ β(t)(Fk) = 0, (5.4)

for all k ∈ K. Let K ′ ⊆ K be the subset of indices for which β(t)(Fk) is nonzero. Let γs,t be
short for γ(s, t), and put

γs,t((U × V ) ∩R) =
∑

k∈K′
α(s)(U ∩ Ek) · β(t)(V ∩ Fk)

β(t)(Fk)
(5.5)

for U ∈ B(S), V ∈ B(T ). Note that the denominators occurring in equation (5.5) do not
depend on the sets U and V . We check that γs,t is a Borel probability measure. One readily
verifies that γs,t is σ-additive. The latter follows from the σ-additivity of the product measure
α(s) × β(t) and the observation that disjointness on R can be propagated to disjointness
on S × T . Moreover, by a straightforward calculation relying on the totality-assumption⋃

k∈K Ek = S, γs,t(R) = γs,t((S × T ) ∩ R) = 1. It follows that equation (5.5) uniquely
determines a Borel measure on R.

We claim that γs,t is mediating for α(s) and β(t): On the one hand we have, for U ∈ B(S),

M1(π1)(γs,t)(U)

= [def. M1, eq. (5.2)] γs,t((U × F [U ]) ∩R)

= [def. γ]
∑

k∈K′
α(s)(U ∩ Ek) · β(t)(F [U ] ∩ Fk)

β(t)(Fk)

= [eq. (5.3)]
∑

k∈K α(s)(U ∩Ek)

= [σ-add.,
⋃

k Ek partition of S] α(s)(U),
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and, on the other hand, for V ∈ B(T ),

γs,t(π−1
2 (V ))

= [eq. (5.2), def. γ]
∑

k∈K′
α(s)(E[V ] ∩ Ek) · β(t)(V ∩ Fk)

β(t)(Fk)

= [eq. (5.3), β(t) strict]
∑

k∈K′
α(s)(Ek) · β(t)(V ∩ Fk)

β(t)(Fk)

(∗)
= [R prob. bisim.]

∑
k∈K′ β(t)(V ∩ Fk)

= [as before] β(t)(V ).

At (∗) we have used that R is a probabilistic bisimulation and the observation that π−1
1 (Ek) =

Ek × Fk = π−1
2 (Fk). Since the rectangles U × V generate γs,t, it follows that M1(π1)(γs,t) =

α(s) = α(π1(s, t)) and, by symmetry, that M1(π2)(γs,t) = β(t) = β(π2(s, t)). 2

In the remainder of this section, we shall again use some general insights from the theory of
coalgebras, this time by applying a result from [AR89, RT93]. By currying, a probabilistic
transition system (Pr, Act, µ) can be interpreted as a map µ: Pr→ (Act→ (M1(Pr) + {0})).
The special element 0 corresponds to the zero-map (that is allowed by Definition 5.1). So,
from the coalgebraic point of view, probabilistic transition systems are coalgebras of the
functor Act→ (M1(·) + {0}).

In turns out that we are only able to show the existence of a final coalgebra when we
consider an adaptation of M1, say M′1, which delivers Borel probability measures with so-
called compact support, i.e., measures that vanish outside a compact set. More precisely, for a
metric space M , µ:B(M)→ [0, 1] is said to have a compact support if there exists a compact
subset K ⊆ M such that U ∩ K = ∅ ⇒ µ(U) = 0, for all U ∈ B(M). Let M′1(M) denote
the collection of all Borel probability measures of an ultrametric space M with a compact
support. Similarly as forM1, the newM′1 extends to a functor on UMS.

Lemma 5.9 Let the functor M′1 on UMS be given as follows:

M′1(M) = { µ ∈M1(M) | µ has compact support }
M′1(f) = λµ.λV. µ(f−1(V ))

for ultrametric spaces M,N and f :M → N nonexpansive. Then M′1 is well-defined.
Proof The only thing to check is that M′1(f)(µ) has a compact support for f :M → N
nonexpansive and µ ∈ M′1(M). So suppose µ ∈ M′1(M) and K ⊆ M is compact with the
property U ∩K = ∅ ⇒ µ(U) = 0, for all U ∈ B(M). Since f is continuous, the direct image
f [K] is compact in N . Note that M′1(f)(µ) vanishes outside f [K], i.e. V ∩ f [K] = ∅ ⇒
M′1(f)(µ)(V ) = 0, since, for V ∈ B(N) such that V ∩ f [K] = ∅, we have M′1(f)(µ)(V ) =
µ(f−1(V )) = 0 as V ∩ f [K] = ∅ implies f−1(V ) ∩K = ∅. 2
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The functor M′1 is the key building block of the functor F below that captures general
probabilistic transition systems. Lemma 5.10 collects the relevant properties of M′1. Some
preparatory metric definitions and facts are presented first.

For two subsets X,Y ⊆ M of an ultrametric space M , the Hausdorff-distance dH(X,Y )
is given by

dH(X,Y ) = inf{ ε | ∀O ∈ Oε:O ∩X = ∅ ⇐⇒ O ∩ Y = ∅ }.

We will employ the following result: If M is a complete ultrametric space, then the col-
lection Pco(M) of all compact subsets of M supplied with the Hausdorff-distance is also a
complete metric space. (For a proof of this fact the reader may consult, e.g., [BV96], Ap-
pendix A.).

For a Borel probability measure µ with compact support we define its support spt(µ) by

spt(µ) =
⋂
{K ⊆M | K compact, µ vanishes outside K }.

For any open O ∈ O(M) we then have the equivalence µ(O) = 0 ⇐⇒ spt(µ) ∩O = ∅. (See,
e.g., [Rud66, p57].)

Lemma 5.10

(a) If M is a complete ultrametric space, then M′1(M) is complete too.

(b) The functor M′1 on UMS is locally nonexpansive, i.e., for all ultrametric spaces M,N
the mapping (M→1 N)→ (M′1(M)→1M′1(N)) such that f 7→ M′1(f) is nonexpansive
with respect to the distance dF of uniform convergence.

Proof

(a) Suppose (µi)i is a Cauchy-sequence inM′1(M). Put O′ =
⋃
{Oε | ε > 0 }. For O ∈ Oε,

the sequence (µi(O))i is eventually constant. Define µ:O′ → [0, 1] by µ(O) = limi µi(O).

We claim that µ vanishes outside a compactum K ⊆M : Put Ki = spt(µi). If d(µi, µj)<
ε, then µi(Bε(x)) = 0 ⇐⇒ µj(Bε(x)) = 0, so Bε(x) ∩Ki = ∅ ⇐⇒ Bε(x) ∩Kj = ∅,
for any x ∈ M . Hence dH(Ki,Kj) ≤ ε. It follows that (Ki)i is a Cauchy sequence in
Pco(M). Put K = limi Ki. For O ∈ Oε and i such that j ≥ i implies dH(Kj ,K) < ε
and d(µj , µ) < ε we have O ∩K = ∅ ⇐⇒ ∀j ≥ i:O ∩Kj = ∅ ⇐⇒ ∀j ≥ i:µj(O) =
0 ⇐⇒ µ(O) = 0.

Next we verify that µ is σ-additive. Clearly, µ is finitely additive, since all µi are.
Suppose (Oi)i is a disjoint sequence in O′ such that

⋃
i Oi ∈ O′. Put O′ = M \ (

⋃
i Oi).

By ultrametricity O′ is open. Now { Oi | i ∈ N } ∪ {O′} is a disjoint cover of K. Thus
the index set I such that I = { i | Oi ∩K 6= ∅ } is finite. Therefore,∑

i µ(Oi)

= [µ(Oi) = 0 for i /∈ I]
∑

i∈I µ(Oi)

= [finite additivity] µ(
⋃

i∈I µ(Oi))

= [(
⋃

i/∈I Oi) ∩K = ∅] µ(
⋃

i∈i Oi) + µ(
⋃

i/∈I Oi)

= [finite additivity] µ(
⋃

i Oi).
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Now, by general measure theoretic considerations, µ extends uniquely to a Borel prob-
ability measure of with support K.

(b) Let f, g:M → N be nonexpansive. To show, dF (M′1(f),M′1(g)) ≤ dF (f, g). Sup-
pose, dF (f, g) < ε, µ ∈ M′1(M) and O ∈ Oε(N). Note, f−1(O) = g−1(O). Therefore
M′1(f)(µ)(O) = µ(f−1(O)) = µ(g−1(O)) =M′1(g)(µ)(O). Consequently we have that
d(M′1(f)(µ),M′1(g)(µ)) ≤ ε inM′1(N) and dF (M′1(f),M′1(g)) ≤ dF (f, g) follows. 2

Lemma 5.10 paves the way of using the functor M′1 in our categorical set-up. It is the
main ingredient in the functor Act → (M′1(·)/2 + {0}) on UMS. The coalgebras of this
functor are general probabilistic transition systems. To ensure the technical property of
local contractiveness (see, e.g., [RT93]), we have put in the scaling functor ·/2. The functor
·/2:UMS → UMS maps a space M to the space with the same underlying set but now
with all distances multiplied by a factor 1

2 . This operation is harmless from a semantical
point of view. The usage of M′1, though, does narrow the type of transition systems falling
within the framework. However, we stress that the established relationship of coalgebraic
and probabilistic bisimulation, still carries through for the modified setting. Additionally, for
the class of transition systems, now captured by the functor Act → (M′1(·)/2 + {0}), the
existence of a final coalgebra is guaranteed.

Theorem 5.11 Let the functor F :UMS→ UMS be given by F = Act→ (M′1(·)/2+ {0}).
Then the following holds:

(a) F is locally contractive, i.e., for some κ, 0 ≤ κ < 1, and all ultrametric spaces M
and N , the function FM,N : (M→1 N) → (F(M)→1F(N)) given by FM,N(f) = F(f)
is κ-contractive.

(b) If M is complete, then F(M) is complete.

(c) The functor F has a final coalgebra.

Proof The presence of ‘·/2’ in the definition of F results in (a). The other constituent
functors are locally nonexpansive. Only for part (b) the assumption of measures having a
compact support is necessary. Part (b) is an immediate consequence of Lemma 5.10. Finally,
part (c) follows from (a) and (b), and (a minor variation of) [RT93, Thm 4.8]. 2

Let Q be the final F-coalgebra: Q ∼= Act → (M′1(Q)/2 + {0}). From Theorem 3.1 and 5.11
we then immediately obtain the following result.

Corollary 5.12 The system Q is internally fully abstract with respect to probabilistic bisim-
ulation.

Next we would like to apply Theorem 3.2 to generalize the above internal full abstractness
result, similar to Theorem 4.8 for the discrete case. We do not know, however, whether F
preserves weak pullbacks. This is to be investigated further, notably in view of the results of
[BDEP97, DEP98], which seem to be closely related to this question.
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6 Conclusion and future research

In this paper, a framework is proposed for probabilistic transition systems, involving general
probability measures, and an associated notion of probabilistic bisimulation. Most research
reported in the literature so far deals with discrete probabilistic transition systems, employing
simple probability distributions only. The use of Borel measures allows for an extension of
this to a setting for which discreteness and image-finiteness are too restrictive.

Following the transition-systems-as-coalgebras paradigm, the categorical set-up provides a
characterization of the Larsen-Skou bisimulation in terms of a set functor. For the continuous
case, a similar result is shown for a functor on the category of ultrametric spaces. Moreover,
exploiting parts of the theory of coalgebras, both for the discrete case and for the continuous
case, internally fully abstract domains are constructed.

Further investigations of the proposed notion of Borel decomposition should clarify how
the latter relates to the use of Polish spaces as in [BDEP97]. We expect that the technical
result obtained there, on the existence of weak pullbacks, applies also to our setting. Other
related work includes [BK97] where discrete probabilistic bisimulation is discussed in the con-
text of CCS extended with probabilistic choice, and [Mos97] where coalgebraic logics also
based on functors, including our functor D, are studied. Connections with modal logics are
considered by Larsen and Skou and by Desharnais et al. as well. Another direction for future
research concerns the usage of the domains obtained as final coalgebra of a functor involv-
ingM′1. Once a suitable continuous process language is identified (such as PCCS [GJS90] for
the discrete case), the domain Q of Section 5 (or a variation thereof) may serve a promising
candidate for its modeling. We expect that a nonuniform extension of the CSP-style language
treated by Seidel [Sei95] can be interpreted in this model. Also, the relationship with other
work of the research group at Oxford, in particular on weakest precondition semantics, can
now be studied using the dualities as studied in [Bon96]. Finally, we hope that the pro-
cess equivalences and fully abstract domains proposed in this paper may contribute to the
semantical study of dynamical and hybrid systems.
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Appendix

We shall discuss (weak) pullbacks in the category Set of sets and functions, and prove that
the functor D:Set→ Set, defined on a set S by

D(S) = {µ:S → [0, 1] | µ is a simple probability distribution}

and on a function f :S → T by D(f)(µ)(t) = µ[f−1({t})], for µ in D(S) and t in T , preserves
weak pullbacks.

A pullback of functions f :S → T and g:U → T is a triple (P, k:P → S, l:P → U) with
f ◦ k = g ◦ l such that for any set X and functions i:X → S and j:X → U with f ◦ i = g ◦ j
there exists a unique (so-called mediating) function h:X → P with k ◦ h = i and l ◦ h = j. In
Set, a pullback of functions f :S → T and g:U → T always exists: the set

P = {〈s, u〉 ∈ S × U | f(s) = g(u)},

with projections π1:P → S and π2:P → U , is a pullback of f and g.
A weak pullback is defined in the same way as a pullback, but without the requirement

that the mediating function be unique. Equivalently, for any s in S and u in U such that
f(s) = g(u) there exists a (not necessarily unique) element p in P with k(p) = s and l(p) =
u. A functor F :Set → Set preserves weak pullbacks if applying F to a weak pullback
(P, k:P → S, l:P → U), of functions f :S → T and g:U → T , yields again a weak pullback:
(F (P ), F (k):F (P ) → F (S), F (l):F (P ) → F (U)), now of the functions F (f):F (S)→ F (T )
and F (g):F (U) → F (T ).
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We show that D preserves weak pullbacks. Let (P, k:P → S, l:P → U) be a weak
pullback of functions f :S → T and g:U → T . Let µ in D(S) and ν in D(U) be two simple
probability distributions with D(f)(µ) = D(g)(ν). We have to establish the existence of a
distribution π in D(P ) such that D(k)(π) = µ and D(l)(π) = ν. Let the finite support of µ
and ν be given by

S0 = {s ∈ S | µ(s) > 0}, U0 = {u ∈ U | ν(u) > 0}.

It follows from D(f)(µ) = D(g)(ν) that f(S0) = g(U0): For the inclusion from left to right,
consider f(s), for s in S0. Because

ν[g−1({f(s)}] = D(g)(ν)(f(s)) = D(f)(µ)(f(s)) = µ[f−1({f(s)})] ≥ µ(s) > 0,

there exists u in U0 with g(u) = f(s). Thus f(S0) ⊆ g(U0). The reverse follows by symmetry.
It follows from f(S0) = g(U0) and the fact that P is a weak pullback that

P ′ = {p ∈ P | ∃s ∈ S0 ∃u ∈ U0, f(s) = g(u) and k(p) = s and l(p) = u}

is a subset of P with k(P ′) = S0 and l(P ′) = U0. Let P0 be a finite subset of P ′ obtained by
removing ‘duplicates’, where p is a duplicate of p′ if k(p) = k(p′) and l(p) = l(p′). Then also
k(P0) = S0 and l(P0) = U0.

We shall next use the max-flow min-cut theorem from graph theory to establish the
existence of a simple probability distribution π:P → [0, 1] with support in P0, such that
D(k)(π) = µ and D(l)(π) = ν. (See also [Mos97], where the same functor D is considered,
for a proof ‘from first principles’.) Let us first briefly recall this theorem (for further details
see, for instance, [Bol79, p47]). Let G = 〈N , E〉 be a finite directed graph with nodes N and
edges E ⊆ N ×N . Let 0 and 1 be two nodes in N called source and sink . A flow from 0 to
1 is any function d: E → [0, 1] such that for all nodes x different from 0 and 1:∑

y∈Γ+(x) f(x, y) =
∑

z∈Γ−(x) f(z, x),

where Γ+(x) = {y ∈ N | 〈x, y〉 ∈ E}, Γ−(x) = {z ∈ N | 〈z, x〉 ∈ E}. The value of a flow d is
given by∑

y∈Γ+(0) f(0, y) −
∑

y∈Γ−(0) f(y, 0).

The flow through any edge will be bounded by its capacity , which is specified by a function
c: E → [0, 1]. A cut is a subset N ⊆ N with 0 ∈ N and 1 6∈ N . The capacity of a cut N is
defined as∑

{c(〈x, y〉) | x ∈ N and y 6∈ N}.

It is easy to see that there exists a cut whose capacity is minimal, and that there exists a
flow with maximal value. Also that the value of this maximal flow is at most the value of the
minimal cut. The max-flow min-cut theorem says that this trivial inequality is, in fact, an
equality.

Next consider the finite directed graph G = 〈N , E〉 with nodes N = {0, 1} ∪ S0 ∪ U0 and
edges E = {Ex | x ∈ S0 ∪ U0 ∪ P0}, where Es = 〈0, s〉, Eu = 〈u, 1〉, and Ep = 〈k(p), l(p)〉, for
s in S0, u in U0, and p in P0, respectively. (We assume S0, U0, P0 to be disjoint.) Note that
for all s ∈ S0 there exists u ∈ U0 and an edge 〈s, u〉 ∈ E , and vice versa. Let the capacity
c: E → [0, 1] be defined by c(Es) = µ(s), c(Eu) = ν(u), and c(Ep) = 1.
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The capacity of the cut N = {0} is Σ{µ(s) | s ∈ S0} = 1. If we try to obtain a cut
whose value is smaller than 1 by including s in N , for some s in S0—thus trying to reduce the
capacity by the value µ(s)—then we are forced to include all u ∈ g−1({f(s)}) as well, since
for any such u there exists p ∈ P0 with k(p) = s and l(p) = u, and hence an edge 〈s, u〉 with
capacity 1. For the possible reduction by µ(s) we thus obtain an addition of ν[g−1({f(s)})]
which is, as we have seen above, at least µ(s). By a similar argument one can show that
adding any u in U0 to N will not reduce its capacity. It follows that N is a minimal cut.

By the max-flow min-cut theorem, there exists a flow function d: E → [0, 1] with (maximal)
value 1. It follows (from the definition of flow function) that d(Es) = µ(s) and d(Eu) = ν(u).
As a consequence, defining π:P → [0, 1] by π(p) = d(Ep), if p ∈ P0, and 0, otherwise, gives
us the distribution we are looking for: The function π is a simple probability distribution (P0

is finite, π[P0] = 1), and, for s in S0,

D(k)(π)(s) = π[k−1({s})] =
∑
{ π(p) | p ∈ P0 and k(p) = s }

=
∑
{ d(Ep) | p ∈ P0 and k(p) = s } = d(Es) = µ(s).

So D(k)(π) = µ. Similarly one shows that D(l)(π) = ν. We conclude that the simple
distribution π has the desired property and that D preserves weak pullbacks.
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