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Abstract. An asteroidal triple is a set of three vertices such that there is a path between 
any pair of them avoiding the closed neighborhood of the third. A graph is called AT- 
free if it does not have an asteroidal triple. We show that there is an O ( n  2 - ( ~  + 1)) 
time algorithm to compute the maximum cardinality of an independent set for AT- 
free graphs, where n is the number of vertices and ~ is the number of non edges 
of the input graph. Furthermore we obtain O ( n  2 . ( ~  + 1)) time algorithms to solve 
the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET 
problem on AT-free graphs. We also show how to adapt these algorithms such that 
they solve the corresponding problem for graphs with bounded asteroidal number in 
polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO 
CLIQUES remain NP-complete when restricted to AT-free graphs. 

1 Introduction 

Asteroidal triples were introduced in 1962 to characterize interval graphs as those chordal 
graphs that do not contain an asteroidal triple (short AT) [20]. Graphs not containing an AT 
are called asteroidal triple-free graphs (short AT-free graphs). They form a large class of  
graphs containing interval, permutation, trapezoid and cocomparability graphs. Since 1989 
AT-free graphs have been studied extensively by Corneil, Olariu and Stewart. They have 
published a collection of  papers presenting many structural and algorithmic properties of 
AT-free graphs (see e.g. [6, 7]). Further results on AT-free graphs were obtained in [18, 23]. 

Up to now the knowledge on the algorithmic complexity of  NP-complete ~aph problems 
when restricted to AT-free graphs was relatively small compared to other graph classes. The 
problems TREEWIDTH, PATHWlDTH and MINIMUM FILL-IN remain NP-complete on AT-free 
graphs [ 1, 25]. On the other hand, domination-type problems like CONNECTED DOMINATING 
SET [7], DOMINATING SET [19] and TOTAL DOMINATING SET [19] can be solved by polyno- 
mial time algorithms for AT-free graphs. However there is a collection of classical NP- 
complete graph problems for which the algorithmic complexity when restricted to AT-free 
graphs was not known. Prominent representatives are INDEPENDENT SET, CLIQUE, GRAPH 
k-COLORABILITY, PARTITION INTO CLIQUES, HAMILTONIAN CIRCUIT and HAMILTONIAN PATH. 

A crucial reason for the lack of  progress in designing efficient algorithms for NP- 
complete problems on AT-free ~aphs  seems to be that none of  the typical representations, 
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that are useful for the design of  efficient algorithms on special graph classes, is known to 
exist for AT-free graphs. Contrary to well-known graph classes such as chordal, permutation 
and circular-arc graphs, AT-free graphs do not seem to have a representation by a geometric 
intersection model, an elimination scheme of vertices or edges, small separators, a small 
number of minimal separators etc. However it turns out that the design of all our algorithms is 
supported by a structural property of AT-free graphs, that can be obtained from the definition 
of AT-free graphs rather easily. 

Our approach in this paper is similar to the one used to design algorithms for problems 
such as TREEWIDTH [ 14, 17] MINIMUM FILL-IN [ 17] and VERTEX RANKING [ 18] on AT-free 
graphs. However these algorithms have polynomial running time only under the additional 
constraint that the number of minimal separators is bounded by a polynomial in the number 
of vertices of the graph. (Notice that all three problems are NP-complete on AT-free graphs,) 
Technically, for the three different independent set problems in this paper, we are able to 
replace the set of all minimal separators, used in [14, 17, 18] -which might be 'too large' 
in size - by the 'small' set of  all closed neighborhoods of the vertices of the graph. 

Finding out the algorithmic complexity of INDEPENDENT SET on AT-free graphs is a 
challenging task. Besides the fact that INDEPENDENT SET is a classical and well-studied NP- 
complete problem, the problem is also interesting since, contrary to well-known subclasses 
of AT-free graphs such as cocomparability graphs, not all AT-free graphs are perfect. Thus 
the polynomial time algorithm for perfect graphs of Gr6tschel, Lov~z and Schrijver [11] 
solving the INDEPENDENT SET problem does not apply to AT-free graphs. 

We present the first polynomial time algorithm solving the NP-complete problem IN- 
DEPENDENT SET, when restricted to AT-free graphs. More precisely, our main result is the 
O(n 2. (N + 1)) algorithm to compute the maximum cardinality of an independent set in an 
AT-free graph. Furthermore we present an O(r~ 2. ( ~  + 1)) time algorithm to solve the prob- 
lem INDEPENDENT DOMINATING SET. A similar algorithm solves the problem INDEPENDENT 
PERFECT DOMINATING SET in time O(r~ 2 �9 ( ~  + 1)) [3]. We also observe that the problems 

CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs. 
A natural generalization of asteroidal triples are the so-called asteroidal sets. Structural 

results for &steroidal sets and algorithms for graphs with bounded asteroidal number were 
obtained in [15, 21]. Computing the asteroidal number (i.e., the maximum cardinality of an 
asteroidal set) turns out to be NP-complete in general, but solvable in polynomial time for 
many graph classes [ 16]. Furthermore the results for problems as TREEWIDTH and MINIMUM 
FILL-IN on AT-free graphs can be generalized to graphs with bounded asteroidal number [ 15]. 
We show how to adapt our algorithms to obtain polynomial time algorithms for graphs 
with bounded asteroidat number solving the problems INDEPENDENT SET, INDEPENDENT 
DOMINATING SET and INDEPENDENT PERFECT DOMINATING SET. 

2 P r e l i m i n a r i e s  

For a graph G = (V, E) we denote IV] by n, [E] by rn and the number of edges of the 
complement of G, which is equal to the number of non edges of G, by ~ .  

Recall that an independent set in a graph G is a set of pairwise nonadjacent vertices. 
The independence number of a graph G denoted by c~(G) is the maximum cardinality of an 
independent set in G. 
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For a graph G = (V, E) and W C V, G[W] denotes the subgraph of G induced by the 
vertices of W; we write a(W) for c~(G[W]). For convenience, for a vertex z of G we write 
G - x instead of G[V \ {x}]. Analogously, for a subset X C_ V we write G - X instead of 
G[V \ X]. We consider components of  a graph as (maximal connected) subgraphs as well 
as vertex subsets. For a vertex x of  G = (If, E), N(x)  = {y E V : {x, y} E E} is the 
neighborhood o f x  and NIx] = N(x)  U {z} is the closed neighborhood ofz .  For W C V, 
N[W] = Uz~w N[x]. 

A set S _ V is a separator of  the graph G = (V, E) if G - S is disconnected. 

Definition 1. Let G = (If, E)  be a graph. A set $2 C_ V is an asteroidat set if for every 
x E C2 the set D \ {x} is contained in one component of  G - NIx]. An asteroidal set with 
three vertices is called an asteroidal triple (short AT). 

Notice that every asteroidal set is an independent set. 

Remark. A triple {x, y, z} of  vertices of  G is an asteroidal triple if and only if for every two 
of these vertices there is a path between them avoiding the closed neighborhood of the third. 

Definition 2. A graph G = (If, E) is called asteroidal triple-free (short AT-free) if G has 
no asteroidal triple. 

It is well-known that the INDEPENDENT SET problem 'Given a graph G and aposifive inte- 
ger k, decide whether a(G) _> k' ,  is NP-complete [9]. The problem remains NP-complete, 
even when restricted to cubic planar graphs [13]. Moreover the independence number is 
hard to approximate within a factor of  n J-" for any constant e > 0 [12]. Despite this dis- 
couraging recen t result on the complexity o f  approximation, the independence number can 
be computed in polynomial time on many special classes of  graphs (see [13]). For example, 
the best known algorithm to compute the independence number of  a cocomparability graph 
has running time O(n + m) [24]. 

The main result of  this paper is an O(n 2- ( ~  + 1)) algorithm to compute the maximum 
cardinality of an independent set in a given AT-free graph. The structural properties enabling 
the design of our algorithms are given in the next three sections. In this extended abstract, 
we restrict ourselves to the cardinality case of  the problems. Nevertheless our algorithms can 
be extended in a straightforward manner such that they solve the corresponding problems 
on graphs with real vertex weights (see [3]). 

3 I n t e r v a l s  

Let G = (If, E) be an AT-free graph, and let x and y be two distinct nonadjacent vertices of  
G. Throughout the paper we use C z (y) to denote the component of G - N[x] containing y, 
and r(x) to denote the number of components of  G - NIx]. 

Definition 3. A vertex z E V \ {x, y} is between x and y if x and z are in one component 
of G - N[y i and y and z are in one component of  G - N[z t. 

Equivalently, z is between x and y in G if there is an x, z-path avoiding N[y] and there 
is a y, z-path avoiding NIx t. 

Definition 4. The interval I = I(x, y) of  G is the set of  all vertices of G that are between 
x and y. 

Thus I(x. y) = CZ(y) n CY(x). 
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4 Splitting intervals 

Let G = (V, E)  be an AT-free graph, let !" = I (x ,  y) be a nonempty interval of G and let 
s E I.  Let/1 = I (x ,  s) and h = I ( s ,  y). 

Lemma 5. The vertices x and y are in different components of  G - N[s]. 

Proof Assume x and y would be in the same component of G - N[s]. Then there is an 
x, y-path avoiding N[s]. However s E I implies that there is an s, y-path avoiding Nix] and 
an s, x-path avoiding N[y]. Thus {s, x, y} is an AT of G, a contradiction. [] 

Corollary 6. Ix M h = 0. 

Proof Assume z E Ix 71 h .  Then z E It implies that there is a component C s of G - N[s] 
containing both x and z. Furthermore z E I2 implies that also y E C a, contradicting 
Lemma 5. [] 

Lemma 7. It C I and [2 C L 

Proof Let z E sr~. Clearly s E f implies s E CZ(y). Thus z E -rt implies z E CZ(y). 
Clearly z E C s (x) since z E If .  By Lemma 5, C ~ (x) is contained in a component of  
G - N[y] and obviously this component contains x. This proves z E I .  Consequently 
f~c_L 

_C I can be shown analogously. E1 

Theorem 8. There exist components C{, C~ . . . .  , C~ of  G - N[s] such that 

t 

z \  N[s] = u Uct. 
i = l  

Proof By Lemma 7, we have I1 C [ \ N[s] and Iz C [ \ N[s]. By Lemma 5, x and y 
belong to different components C 8 (x) and C ~ (y) of G - N[s]. Let z s I \ N[s]. 

Assume z E C s (x). There is a z, y-path avoiding NIx]. This path must contain a vertex 
of N[s], showing the existence of  a z, s-path avoiding N[x]. Hence z E Ix. 

Similarly z E C s (y) implies z E /2 .  
Assume z f~ CS(x) and z f[ C~(y). Since z q~ N[s], z belongs to the component 

C~(z) of G - N[s]. For any vertex p E C~(z), there is a p,z-path avoiding N[z], since 
C~(z) r Cg(x). Since z E I ,  there is a z,y-path avoiding NIx]. Hence there is also a 
p,y-path avoiding Nix]. This shows CS(z) C I \ N[s]. [] 

Corollary9, Ever), component o f  G[I \ (N[s] U/1 U •)] is a component of  G - N[s]. 

5 Splitting components 

Let G = (V, E)  be an AT-free graph. Let C ~ be a component of G - NIx] and let y be a 
vertex of C z. We study the components of  the graph C ~ - N[y]. 

Theorem 10. Let D be a component of  C = - N[y]. Then N[D] f~ (Nix] \ N[y]) = O if and 
only if D is a component of G - N[y]. 
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Proof Let D be a component of C a - N[y] with N[D] (? (Nix] \ N[y]) = ~J. Since no 
vertex of D has a neighbor in NIx] \ N[y], D is a component of G - N[y]. 

Now let D C C z be a component of G - N[y]. Then N[D] M NIx] C_ N[y]. r7 

Corollary 11. Let B be a component o f t  z - N[y]. Then N[B] M (N[x] \ N[y]) # ~ if and 
o,,ly if B c C~(x). 

Theorem 12. L e t  B l  , . . . , Be denote the components of  C ~ - N [ y ]  that are contained in 

CY(x). Then I (x ,  y) = Uit=l B i .  

Proof Let I = [(x,  y). First we show that/3/ C I for every i E { I , . . . ,  g}. Let z E Bi. 
There is an x, z-path avoiding N[y], since some vertex in Bi has a neighbor in N i x  I \ N[y]. 
Clearly, there is also a z, y-path avoiding N[x], since z and y are both in C z. This shows 

t that z E I. Consequently Ui=l Bi C I.  

Supposez E I\U~=I Bi. Sincez ~ e Ui=l Bi, the component D of C ~ - N[y] containing 
z does not contain a vertex with a neighbor in Nix] \ N[yJ. Thus z ~ C v (a:), implying z r [, 
a contradiction. [] 

6 Computing the independence number 

In this section we describe our algorithm to compute the independence number of an AT-free 
graph. The algorithm we propose uses dynamic programming on intervals and components. 
All intervals and all components are sorted according to nondecreasing number of vertices. 
Following this order, the algorithm determines the independence number of each component 
and of each interval using the formulas given in Lemmas 13, 14 and 15. 

We start with an obvious lemma. 

Lemma 13. Let G = (V, E) be any graph. Then 

r(z) 
= 1 + m a x  

x E V  
i = l  

where C~ , C~, . . . ,  C~r~(z) are the components o f  G -- N[x  I. 

Applying Lemma t3 to the decomposition given by Theorems 10 and 12, we obtain the 
following lemma. 

Lemma l& Let G = (If, E)  be an AT-free graph. Let x E V and let C z be a component of  
G - N[z]. Then 

a(C ~) = 1 + max (oL(I(x, y)) + Z a(D~)), 
yEC ~ 

where the D~ "s are the components o f  G - N[y  I contained in C ~ 

Applying Lemma 13 to the decomposition given by Theorem 8, we obtain the following 
lemma. 
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Lemma I5. Let G = (V, E) be an AT-free graph. Let [ = I(x, y) be an interval of G. If 
I = q) then a(I) = O. Otherwise 

= 1 + m z  + y)) + 
i 

where the C] 's are the components of G - N[s] contained in I (x, y). 

Remark. Notice that the components D r and C~ as well as the intervals I(:c, s) and I(s, y) 
on the right-hand side of  the formulas in Lemma 14 and Lemma 15 are proper subsets of  
C z and I ,  respectively. Hence a ( C  x) (resp. c~(I)) can be computed by table look-up to 
components and intervals with a smaller number of vertices. 

Consequently we obtain the following algorithm to compute the independence number 
a(G) for a given AT-free graph G = (I7, E) ,  which is based on dynamic programming. 

Step 1 For every x E V compute all components C~:, C~: , . . . ,  C,Z(x) o f G  - NIx]. 
Step 2 For every pair of  nonadjacent vertices x and 7t compute the interval I ( z ,  y). 
Step 3 Sort all the components and intervals according to nondecreasing number of vertices. 
Step 4 Compute c~(C) and a(I)  for each component C and each interval I in the order of  

Step 3. 
Step 5 Compute a (G) .  

Theorem 16. There is an O(n 2 . ( ~  + 1)) time algorithm to compute the independence 
number of a given AT-free graph. 

Proof. The correctness of our algorithm follows from the formulas of Lemmas 13, 14 and 
15 as well as the order of  the dynamic programming. 

We show how to obtain the stated time complexity. Clearly, Step 1 can be implemented 
such that it takes O (n (n + rn)) time using a linear time algorithm to compute the components 
of the graph G - Nix] for each vertex x of  G. For each component of G - NIx], a sorted 
linked list of all its vertices and its number of  vertices is stored. For all nonadjacent vertices 
x and y there is a pointer P(x,  y) to the list of  C:C(y). Thus in Step 2, an interval I(x, y) 
can be computed using the fact that I ( x , y )  = CX(y) n 6w(x). Hence a sorted vertex list 
of I(X, y) can be computed in time O(n) for each interval. Consequently the overall time 
bound for Step 2 is O(n. ( ~  + 1)). There are at most n 2 components and at most n 2 intervals 
and each has at most n vertices. Thus using the linear time sorting algorithm bucket sort, 
Step 3 can be done in time O(n2). 

The bottleneck for the time complexity of  our algorithm is Step 4. First consider a 
component C ~ of G - N[x] and a vertex y E C x. We need to compute the components 
of G - N[y] that are contained in C z. Each component D of G - N[y] except CU(x) is 
contained in C x if and only if D N C z r 9. Thus the components D of G - N[y] with 
D C C z are exactly those components of  G - N[y] addressed by P(y, z) for some z E C z. 
Thus all such components can be found in time O(IC~I) for fixed vertices x and y E C z. 
Hence the computation of a ( C )  for all components C takes time ~{:~,~}~/~ O(ICZ(y)I) = 

+ 1)). 
Now consider an interval t = I(x ,  y), and a vertex s E I. We need to add up the 

independence numbers of  the components C~ of  G - IV[s I that are contained in/ ' .  The 
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components of G - N[y] that are contained in I are exactly those components addressed by 
P(y,  z) for some z E I, except CS(x)  and CS(y). Thus all such components can be found 
in time O([I(x, Y)I) for a fixed interval I ( x ,  y) and s E I (x ,  y). Hence the computation of 
a(I)  for all intervals [ takes time ~{~,u}~E Y'~et(x,u) O([I(X, y)[) = O(n 2" ( ~  + 1)). 

Clearly Step 5 can be done in O(n 2) time. Thus the running time of our algorithm is 
o ( ~  ~- �9 ( ~ +  1)). 

7 Independent domination 

The approach used to design the presented polynomial time algorithm to compute the 
independence number for AT-free graphs can also be used to obtain a polynomial time 
algorithm solving the INDEPENDENT DOMINATING SET problem on AT-free graphs. The best 
known algorithm to solve the weighted version of the problem on cocomparability graphs 
has running time O(n 2"376) [4]. 

Definition 17. Let G = (V, E)  be a gaph. Then ,5' C_ V is a dominating set of G if every 
vertex of V \ S has a neighbor in S. A dominating set S C_ V is an independent dominating 
set of G if S is an independent set. 

We denote by ^/i(G) the minimum cardinality of an independent dominating set of the 
graph G. Given an AT-free graph G, our next algorithm computes M(G). It works very 
similar to the algorithm of the previous section. 

We present only the formulas used in Step 4 and 5 of the algorithm (which are similar to 
those in Lemma 13, Lemma 14 and Lemma 15). 

Lemma 18. Let G = (V, E)  be a graph. Then 

7i(G) = I + min ( Z 'Ti(C~:)) '  
x E V  

j= l  

where C~, C~, . . . , C~x(~) are the components o f  G - NIx]. 

Lemma 19. Let G = (V, E)  be an AT-free graph. Let x E V and let G ~ be a component o f  
G - Nix]. Then 

M(C z) = 1 + min ( T i ( I ( x , y ) ) +  Z^/ i (D~))  
yEC': 

J 

where the D y ' s are the components o f  G - N[y] contained in C z, 

Lemma 20. Let G = (V, E)  be an AT-free graph. Let I = I (x ,  y) be an inten,al. I f I =  0 
then "7i(I) = 0. Otherwise 

C s 7i(I) 1 + min ( '~i(I(x,s))  + 7 i ( t ( s , y ) )  + Z ~ / i (  j ) ) ,  
sEI  

J 

where the C~ 's are the components o f  G - N[s] contained in I (x ,  y). 
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Design and analysis of  the algorithm is done similar to the previous section. We obtain 
the following theorem. 

Theorem 21. There exists an O( n 2 . ( ~  + 1)) time algorithm to compute the independence 
domination number ~/i o f  a given AT-free graph. 

In the full version [3] we also show how to obtain an O(n z . ( ~  + 1)) algorithm to 
compute a minimum cardinality independent perfect dominating set for AT-free graphs. 

8 Bounded asteroidal number 

In this section we show that the independence number of  graphs with bounded asteroidat 
number can be computed in polynomial time. 

Definition22. The asteroidal number of a graph G is the maximum cardinality of  an 
asteroidal set in G. 

Hence a graph is AT-free if and only if its asteroidal number is at most two. Furthermore 
the asteroidal number of  a graph G is bounded by a(G),  since every asteroidal set is an 
independent set. 

Definition23. Let 52 be an asteroidal set of  G. The lump L(52) is the set of vertices v such 
that for all x E f2 there is a component of  G - N[x] containing v and 52 \ {x}. 

Let 52 = { x l , . , . ,  x,,} be an asteroidal set of cardinality ~ > 2 and consider the lump 
L = L(52). 

Let s be an arbitrary vertex in L. In this section we show how N[s] splits the lump 
analogous to Theorem 8. 

Consider the components of  G -  N[s]. These components partition f2 into sets f21,. �9 52~-, 
where each 52i is a maximal subset of  f2 contained in a component of G - N[s]. 

Lemma24. For each i = 1 , . . . ,  "r, the set ;2~ = ;2~ U { s } is an asteroida[ set in G. 

Proof Consider x E ;2i, Then, by definition, f2 \ {z} and s are contained in one component 
of G - N[x]. Hence, f2* \ {z} is contained in one component of G - N[x]. This proves the 
claim. 

Lemma25,  Let z E L be in some component C* of  G - N[s] that contains no vertices o f  
52. Then C ~ C L. 

Proof Let p E C* \ {z}, There is a p, z-path avoiding N[x] for any vertex x E f2. This 
proves the claim. 

First we consider the case where "r = 1, i.e., where f2 is in one component of G - N[s]. 
Then Q U {s} is an asteroidal set. 

Lemma 26. If  f2 is contained in one component C of  G - N[s], then L( Q U {s}) = L (q C. 
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Proof Clearly L(I2 u {s}) C L n C. Let z E L A C and consider a vertex z E I2. Clearly, 
there is an x, z-path avoiding N[s], since z and x are in the component C of G - N[s] .  
Hence z is in the component o f / 2  of  G - N[s]. Consider any other vertex y E s (Such 
vertices exist since/2[ > 2). There exists a z, y-path avoiding N[z] since z E L. But also, 
there exists a Y, s-path avoiding N[x] since/2 U {s} is an asteroidal set. Hence z is in the 
component of (/2 U {s}) \ {x} of G - Nix]. [] 

Now we consider the case where v > 1. Let Li = L(/2i u {s}) for i = 1 . . . . .  7-. Clearly, 
L~ n Lj  = 0 for every i # j.  

Lemma 27. Assume r > 1 and let C be the component of  G - N[s] containing s Then 
L~ = L N C .  

Proof First let z E LM C. Then for all x and y in/2i there is a z, x-path avoiding N[s] since 
z E C (showing that z and/2i are in one component of  G - N[s]), and there is a z, x-path 
avoiding N[y] since z E L. For y '  E .Qj for any j ~ i there is a z, y'-path avoiding NIx], 
since z E L. Such a path contains a vertex of  N[s], and consequently there is a z, s-path 
avoiding NIx]. This shows that z, s and/2~ \ {x} are in one component of G - NIx  I and 
hence L f3 C _C L~. 

Now let z E L i .  This clearly implies z 6 C. For a vertex y E/23, j # i, s and the set 
I"2 \ {y} are in one component of  G - N[y] since s E L. There is an s, z-path avoiding N[y] 
since y and z belong to different components o f G  - N[@ Consequently, z and ~ \ {y} are 
in one component of  G - N!y]. 

For a vertex x E/2i,  there is a component of  G - N[z] containing s and S2 \ {x}, since 
s E L. Since z ELi ,  there is an s, z-path avoiding N[z]. Hence also z is in this component 
of G - NIx] and therefore L~ C_ L N C. [3 

Theorem28. There exist components Ct ,  . . .  , Ct o f  G - N[s] which contain no vertex o f  
1"2 such that 

' 0 L \  V[s] : U c, u 
i = l  j = l  

Proof. Let G , - - - ,  Ct be the components of  G - N[s] which contain a vertex of L but no 
vertex of/2.  Then by Lemma 25 we have U~=l Ci c L \ N[s], and by Lemmas 26 and 27 

7. L we have Uj=I J C L \ N[s]. 
Now let l E L \ N[s]. If  I is in a component containing/2i, 1 < i < r, then l E L i  by 

Lemma 26 or 27. Otherwise there is an index i, 1 < / < t such that / E Ci. This completes 
the proof. 

Theorem 28 enables us to generalize Lemmas 15 and 20 in the following way. 

Lemma 29. Let L = L( /2) be a lump o f  G. I f  L = ~ then ~( L ) = M(L) = 0. Otherwise 

t 7. 

a(L)= 1 + max ( E a ( C j )  + E a ( L i ) ) ,  
sEL 

j = t  i=1 

t 7" 

M(L) = I +min ( E M ( C j )  + E',/i(L,~)), 
sEL 

j = l  k = l  



769 

where CI . . . .  , Ct are the components o f  G -  N[s] which contain no vertex ofs L1, . . . , LT 
are the lumps L( I2i + s) as used in Lemma 24. 

Together with Lemmas 13 and t4, t8 and 19, the formulas of Lemma 29 lead to 
recursive algorithms computing c~(G) and 3'i(G) for a graph G. For any positive integer k, 
these algorithms can be implemented to run in time O(n k+2) for all gaphs with asteroidal 
number at most k. Analogously to the proof of Theorem 16, the time complexity is now 
dominated by the term ~].~ ~a~z,(JT) O(tL(K2)I) = O(nk+z), where the sum is taken over 
all asteroidal sets f2 of G and all s E L(O). 

As before, our algorithms for graphs with a bounded asteroidat number can be extended 
to the weighted cases of the problems and the corresponding algorithms have the same 
timebounds. 

9 Conclusions 

In this paper we have shown that the independence number as well as the independence 
domination number of an AT-free graph can be computed in time O(n 2. ( ~  + 1)). The same 
approach can be used to obtain an O(n 2 . ( ~  + 1)) algorithm to solve the INDEPENDENT 
PERFECT DOMINATING SET problem on AT-free graphs. We have shown how to adapt the 
algorithm computing the independence number in such a way that the new algorithm com- 
putes the independence number of a graph with a bounded asteroidal number in polynomial 
time. 

In the full version [3] we show how to extend our algorithms for the problems INDEPEN- 
DENT SET and INDEPENDENT DOMINATING SET to AT-free graphs with real vertex weights. 
Both algorithms run in time O(n  2. ( ~  + 1)). Furthermore our algorithms can also be mod- 
ified such that they compute a maximum weight independent set and a minimum weight 
independent dominating set in time O(n  2. ( ~  + 1)). 

Contrary to the independent set problems considered so far, the NP-complete graph 
problems CLIQUE and PARTITION INTO CLIQUES, that are closely related to INDEPENDENT 
SET, both remain NP-complete when restricted to the class of AT-flee ~aphs. Concerning 
CLIQUE recall that Poljak has shown that INDEPENDENT SET remains NP-complete on triangle- 
flee ~aphs [9]. Consequently CLIQUE remains NP-comptete on gaphs with independence 
number at most two, and thus on AT-free graphs. Similarly, it follows from a recent result 
due to Maffray and Preissman (showing that GRAPH k-COLORABILITY remains NP-complete 
when restricted to triangle-free graphs [22]), that the problem PARTITION INTO CLIQUES 
remains NP-complete on AT-free graphs. 

Consequently CLIQUE and PARTITION INTO CLIQUES are the first NP-complete graph prob- 
lems (known to us) which are NP-complete on AT-flee graphs, but solvable in polynomial 
time on the class of cocomparability graphs. The latter graph class is the largest well-studied 
subclass of AT-free graphs which is also a class of perfect graphs. 

It would be interesting to find out the algorithmic complexity of the following well-known 
NP-complete graph problems when restricted to AT-free graphs: GRAPH k-COLORABILITY, 
HAMILTONIAN CIRCUIT, HAMILTONIAN PATH. These three problems are all known to have 
polynomial time algorithms for cocomparability graphs [8, 10]. 
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