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A b s t r a c t .  Binary Decision Diagrams are in widespread use in verifica- 
tion systems for the canonical representation of finite functions. Here 
we consider multi-valued BDDs, which represent functions of the form 
~o : ~" -+ ~:, where / :  is a finite set of leaves. 
We study a rather natural online BDD refinement problem: a partition 
of the leaves of several shared BDDs is gradually refined, and the equiv- 
alence of the BDDs under the current partition must be maintained in 
a discriminator table. We show that it can be solved in O(n log n) if n 
bounds both the size of the BDDs and the total size of update operations. 
Our algorithm is based on an understanding of BDDs as the fixed points 
of an operator that in each step splits and gathers nodes. 
We apply our algorithm to show that automata with BDD-represented 
transition functions can be minimized in time O(n �9 log n), where n is 
the total number of BDD nodes representing the automaton. This re- 
sult is not an instance of Hopcroft's classical algorithm for automaton 
minimization, which breaks down for BDDs because of their path com- 
pression property. 

1 I n t r o d u c t i o n  

Binary  Decision Diagrams [3] form the backbone of  m a n y  symbolic  me thods  for 
verification of  hardware and software. BDDs  are essentially acyclic a u t o m a t a  
whose state  spaces are shrunk by a technique called path compression. More 
precisely, a BDD is an acyclic, rooted,  directed graph  tha t  represents a funct ion 

: B " --+ f f rom v Boolean variables to a finite codomain  ~: of  leaves. (These 
BDDs are somet imes  called Mult i -Terminal  BDDs to dist inguish them f rom two- 
terminal  BDDs tha t  denote Boolean functions.)  

T h e  P r o b l e m  

We consider the following problem, which is at  the heart  of  the minimiza-  
t ion problem for BDD-represented au toma ta .  We are given several funct ions 

* This work was carried out while the author was with BRICS, Department of Com- 
puter Science, Aarhus, Denmark. 
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r : 1~ --~ /2. They can be represented by a shared BDD, which is an acyclic, 
directed graph with a distinguished root for each i, where each root induces a 
subgraph that  constitutes a BDD for r Now given a parti t ion of the leaves (or 
codomain), we would like to calculate a function discriminator, which associates 
a discriminator value R(i) to each i such that R(i) = R(j) if and only r and 
Cj are equivalent under the leaf partition, i.e., if for all u E IB, r  is equiv- 
alent to Cj(u). Note that  the leaf partit ion itself can also be represented by a 
discriminator D such that  v and v' are equivalent if and only if D(v) = D(v'). 

The online version of this problem is to maintain the function discriminator 
after an online operation specifies an update, which is a further refinement of the 
current leaf partition. Initially, the leaf parti t ion consists of only one equivalence 
class, i.e., all functions r are equivalent and D and R are a constant functions. 

A simple algorithm for the online BDD refinement problem can be based 
on the linear time reduction of BDDs [12]: after each refinement operation, the 
whole BDD structure can be reduced to a canonical BDD for the functions that  
map into equivalence classes. This strategy implies that  each node is touched 
potentially as many times as the number of operations. Thus an O(n 2) algorithm 
arises, if we assume n online operations. 

O u r  S o l u t i o n  

In this paper, we formulate a more efficient algorithm, which runs in time 
O(n min(k, log n) + k), where n is the number of nodes in the BDDs and k 
is the total size of all update operations. Thus, if n also bounds k, then the 
algorithm is O(n log n). 

Unfortunately, no simple solution seems to achieve O(nlogn). Instead, our 
analysis proceeds roughly as follows. 

For BDDs, the Split operation of parti t ion refinement algorithms such as [11] 
does not directly yield a parti t ion refining the current one. Rather, the result of 
a split operation, which we call a decision partition must be followed by a Grow 
operation that  gathers all nodes equivalent under path compression. We show 
that the canonical BDD representation of r can be obtained as the fixed point 
of Grow o Split (even though this composed operator is not monotone).  This 
characterization is not surprising, since usual BDD algorithms are also able to 
calculate a canonical representation in one sweep. 

The Grow operation cannot be used with Hopcroft 's "process the lesser half" 
strategy [8], since all decision blocks must be grown as opposed to the situation 
in traditional parti t ion refinement algorithms, where the largest blocks created 
can be ignored. 

Fortunately, the canonical BDD can be calculated under weaker assumptions 
about the fixed point operator. The Grow operation can be weakened to an 
operation, which we call CGrow since it allows certain blocks resulting from 
the normal Grow operation to be coalesced. As a result, information is lost. 
Curiously, it turns out that  if a parti t ion is a fixed point under Split and CGrow, 
then it is also a fixed point under Split and Grow. 
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We use this property in our online algorithm to discard any large block that  
arises during the iteration of the fixed point operator. The block is discarded by 
being coalesced with another, smaller block, while the expense of calculating it 
can be attributed to a third block known also to be small. 

C o n s e q u e n c e s  a n d  C o m p a r i s o n  to  P r e v i o u s  W o r k  

It has been known for a long time [8] that  deterministic finite-state automata  
can be minimized in time O(m. n log n), where n is the number of states and 
m is the size of the input alphabet. A recent variation on the standard method 
yields a similar bound [2]. 

BDDs allow automata with n states and 2 ~ letters--each inducing a different 
behavior in the au tomaton-- to  be represented by graphs of polynomial size in 
n; see [5, 7], where also O(n ~) minimization algorithms are presented. The 
automaton representation in [5] allows symbolic calculations involving inductive 
definitions of sequential circuits, whereas the representation in [7] is the backbone 
of a practical implementation of Monadic Second-order Logic on Strings. For a 
comparison of these related representations, see [1]. 

The O(n 2) minimization algorithms are a potential bottleneck for the use of 
BDD represented automata.  In the Mona project at Aarhus (http: ://www. br ics .  
dk/~klarlund/NonaFido), we have observed that  for big automata  (with thou- 
sands of states), the time to minimize using the straightforward algorithm is an 
order of magnitude larger than the time spent in constructing the automata.  

In this paper, we show that  our online BDD refinement algorithm allows 
minimization to be carried out in only O(n �9 logn) steps, where n is the size 
of the representation. To our knowledge, the only other algorithm for large 
alphabets that  reach a similar bound is that of [4], where incompletely specified 
transition functions are considered. The compression possible with the BDD 
representation is exponentially greater. 

It should also be noted that  when automata are represented with BDDs that  
are not path compressed an O(n log n) algorithm follows easily by considering the 
automaton as working on words over IB. Path compression, however, seems to be 
of major practical significance although the asymptotic gain is only slight [10]. 

Finally, we mention that online minimization of automata  on large, implic- 
itly represented state spaces (not alphabets) have been considered in [9]. Online 
minimization here refers to incremental exploration of the state space. This al- 
gorithm bears a superficial resemblance to ours in that  it also alternates between 
minimal and maximal fixed point iterations. 

Ove rv i ew 

In Section 2, we define the online BDD refinement problem. We develop a 
theoretical framework for understanding BDDs as fixed points in Section 3. We 
show that  a weak composed operator suffices for generating the minimum fixed 
point. In Section 4, we provide a description of our online algorithm, which is 
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based on the weak operator .  Section 5 discusses the appl icat ion of  our a lgor i thm 
to a u t o m a t o n  minimizat ion.  

2 Onl ine  B D D  R e f i n e m e n t  

Notation 

Assume we are given a set x0, X l , . . .  , x . - 1  of  Boolean variables. A truth assign- 
ment to  these variables is a vector u C l ~ .  An  assignment prefix u up to i is a 
t ru th  assignment  to variables x 0 , . . ,  xl. A Binary Decision Diagram or BDD 9 
is a rooted,  directed graph  with the following properties.  The  root  is named  ^~. 
Each node v in 9 is either an internal node or a leaf. An internal  node possesses 
an index denoted v.i. Also, it contains edges v �9 0, which points  to a node called 
the low successor of v, and v �9 1, which points  to the high successor. The  index 
of a successor of v is always greater than  the index of v. A leaf has no successors 
and no index. Let the set of leaves be s  The  graph  p denotes a function,  also 
called 9, f rom ll~" -+ 12. To calculate 9 (x) ,  one starts  at the root.  I f  the root  is 
a leaf, then the value ~(x)  is the root;  otherwise, let i be the index of  the root.  
I f  xi is 1 then go to the high successor, and if xi is 0 go to the low successor. 
Cont inue in this way until  a leaf is reached. This  leaf is the value of  p(x) .  (Since 
there may  be j u m p s  greater than  one in the index of some of  the variables, some 
of the values in the assignment  m a y  be irrelevant.) In general, if v is a node of 
index i and u is a value assignment  to xi, �9 , x j, then v �9 u denotes the node 
reached by following u f rom v. 

The  BDD ~ defines a par t i t ion - ~  of  assignment  prefixes given by u -~,  u ~ 
i f n g . u  = ^p  - u  ~. 

We shall consider the case where the leaves are used to differentiate between 
finer and finer par t i t ions  of  It~ ~ . The  par t i t ion  is given by a leaf discriminator 
D : s --+ N. Two assignments  x and y are then equivalent if D o ~ ( x )  = D o g ( y  ). 

BDDs  m a y  also be shared. For example,  we use ~ = 9 0 , "  " , Pn-1  to denote  
a directed graph with roots  n~i such tha t  the nodes reachable f rom each root  
const i tute  a BDD.  If  D is a d iscr iminator  for the leaves, then we say tha t  R : 
[n] -+ N is a function discriminator for D o ~o if D o 9i = D o 9 j  if[ R(i) = R( j ) .  

Note tha t  if D is a constant  discr iminator  (i.e. if D is a constant  funct ion) ,  
then all D o 9i are equivalent. 

T h e  P r o b l e m  

The  BDD online refinement problem is to ma in ta in  a funct ion discr iminator  R 
for D o ~  when D is upda ted  piecemeal. Each upda te  opera t ion specifies a par t ia l  
mapp ing  E : s -~ N, which defines the change to D. Thus,  if 

D(v) if v ~ d o m a i n ( E )  
D'(v) = E(v) if v E d o m a i n ( E )  

then the new value of D is D ~. In order for the new D to specify a par t i t ion  
refining the one given by the current D, we require tha t  the range of  E is disjoint 



111 

from the range of the current D. The t ime requirements of our algori thm will 
prevent it from updat ing all values R(i) with each iteration. Thus, we require 
as an additional output  after each update  operation the list of i for which R(i) 
has changed. The desired functionality can be summarized as follows. 

B D D  Online Ref inement  Problem 
I n p u t :  n shared BDDs ~ with leaves s and discriminator D, 
which is initially a constant function. 
Maintained : A functional discriminator R of length n. 
Update: A partial mapping  E : 1: --+ N such that  r a n g e ( E )  does 
not intersect the current leaf discriminator.  The leaf discrimina- 
tor D is updated according to E as explained above. After e a c h  
update  operation, the contents of R discriminates D o ~.  The size 
of operation E is the size of d o m a i n ( E ) .  
O u t p u t :  A list of numbers i for which R(i) has changed. 

In Section 4, we prove: 

Theorem 1 Multiple BDD Online Refinement can be solved in t ime O(n min(k, 
log n) + k), where n is the number  of nodes in the BDDs and k is the total  size 
of all operations. Thus, if n also bounds k, then the algorithm is O(n log n). 

3 A Theore t i ca l  F r a m e w o r k  for B D D s  

This section develops a theory of how BDDs arise as fixed points. The main 
insight is the formulation of composed operators that  refine part i t ions and that  
carry out path  compression. We show that  canonical BDDs arise as fixed points 
of such operators; in particular, a weak operator is exhibited that  calculates the 
proper fixed point even as it seemingly loses information. 

T h e  Canonical B D D  We define the canonical BDD for function r : F -+ D, 
where D is finite, as follows. A partial assignment u from i to j is a t ruth 
assignment to variables x i , . . .  , xj. The partial  assignment u may be narrowed 
to a partial  assignment from i ~ to j~, where i < i ~ < j~ _< j .  I t  is denoted u[i'..S]. 
If only a prefix of u up to i ~ - 1 is cut off, we write u[i'..]. An extension v of 
u up to j is a partial  assignment from i + 1 to j .  A full extension is one that  
assigns up to g - 1. For any assignment prefix u up to i, we may consider the 
residue function Cu : v I ~ r  where v ~ is a full extension. Define u ,-~r u '  
if Cu = Cu,. The equivalence class of u is denoted [u]r In particular,  if u --~r u ~ 
then u and u ~ are assignment prefixes up to some i, which is called the index of 
the equivalence class [11]r = [u']r 

The equivalence classes of ,-~r correspond to the states of a canonical au toma-  
ton that  upon reading a value assignment is in a state designating the value of 
r 

The path compression of BDDs can now be understood as a least fixed point 
calculation that  involves coalescing equivalence classes. If  [u0]r = [ul]r then 
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[u]r and [u0]r = [ul]r are coalesced. Note that  if also [v0]r = [v1r for some 
v, then this identity still holds after [u]~0 and [u0]r = [ul]r are coalesced. Thus 
there is a unique least fixed point reached by repeatedly coalescing ,~r classes. 
The equivalence classes of the resulting part i t ion ~ is the canonical BDD for ~b. 
Each such new equivalence class M consists of a number  of equivalence classes 
of ~ r  When M contains internal nodes, the index M.i  of M is defined as the 
highest index of an old class. It can be seen that  there is at most  one old class 
in M of highest index. The high successor M.1, defined if the index is less than 
~, is the equivalence class of u - 1, where u is a prefix of maximal  length in M.  
The low successor is defined similarly. 

L e m m a  1 Consider i and assignment prefix u up to j < i. The following are 
equivalent: 

1. The residue function ,Ca.,, is the same function for all extensions v up to i. 
2. u ~V~ u �9 v for all extensions v up to i. 
3. u ,.~r u �9 v for some extension v up to i. 

The equivalence --=~, which is derived from the BDD viewed as a graph, 
refines the equivalence ~ ,  which is derived from the function represented by 
the BDD. 

L e m m a  2 ~.~ refines ~ .  

P a r t i t i o n s  o f  B D D  N o d e s  A partition 7 ) of a BDD p is a set of non-empty,  
disjoint subsets or blocks of nodes, whose union is the set of all nodes. Alter- 
natively, P may be viewed as an equivalence relation -~,  defined by v -~,  v' iff 
3B E 1) : v, v ~ C B. Since any assignment prefix u leads to a unique node ~o, _~, 
induces an equivalence relation on assignment prefixes that  is also denoted = ~ .  

To simplify matters ,  we assume in the following that  all partitions are over 
the same BDD ~. Also for simplicity, we shall often write "P for - 9 .  

For a part i t ion Q, we may  we define a discriminator labeling D of the leaves 
of ~ such that  for leaves v and v', D(v) -= D(v') iff v -@ v'. The canonical BDD 
for the function D o r is denoted ~Q.  Note tha t  this BDD is dependent only 
on the parti t ion of the leaves defined by Q - - n o t  the part i t ion of internal nodes. 
These distinctions will be further elaborated on in the next section. Note here 
that  the parti t ion of internal nodes may  not even induce a BDD on equivalence 
classes. We usually regard the canonical BDD ~@ as a part i t ion of the nodes of 

D e c i s i o n  P a r t i t i o n s  An impor tant  part  of our algorithm is to work with par- 
titions that  become refinements of canonical parti t ions only after certain nodes 
have been moved around. 

A node v is a decision node if it is a leaf or it has at least one successor 
outside its own block. Any other node is redundant. A decision partition AJ of a 
part i t ion Q specifies a parti t ion of the decision nodes of each block B in Q into 
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decision blocks such that  any decision block M either contains internal nodes of 
the same index or contains only leaves. If for each block B, all decision nodes 
of B are gathered in just  one decision block, then 54 is said to be the stable 
decision partition. 

T h e  Split O p e r a t o r  We say that  the behavior of an internal node v with 
respect to a partit ion Q is the pair ([v. 0]•, [v- 1]Q); the behavior of a leaf v is 
just  itself. 

Given Q, we can form a decision parti t ion M = Split(Q) as follows. For 
every block /3, put  all decision nodes v with the same index and the same 
behavior in the same decision block. All leaves in B are also put  into a decision 
block. Formally, 54 is defined as 

{ M ~ k 0 t 3 B ,  B0,BI  E 5 4 : 3 i :  
M = {v I v E B and v is a leaf} or 
M = {v I v.i = i and v C B, v0 e /30 ,  and v I G  B1}} 

Parti t ion Q is stable if Split(Q) is the stable decision partition. 
Note that if Q is stable, then both successors of any internal decision node 

are outside its own block--for if some block B contained a decision node v with 
only one successor not in B, then by following the other successor, we would 
reach another node in /3  (which may be a decision node or a redundant node); 
by continuing, we would eventually reach a decision node in B that  is either a 
leaf or both of whose successors are outside/3 and in both cases, this node would 
have a different behavior than that  of v, and that  would contradict that  Q is 
stable. 

Note also that  "~e is stable. 

T h e  Grow O p e r a t o r  Let A4 be a decision parti t ion for a parti t ion Q. For 
any node v in a block B and any extension u, there will be a first decision 
node w in some decision block M along the path induced by following nodes 
from v according to u. In this case, we say that extension u from v hits M. In 
particular, if v E M, then any extension hits M. 

If M is a decision block of B, then its closure, denoted CI(Q, M), is the 
set of nodes in B all of whose extensions hit M. This set can also be defined 
inductively by growing the decision block: initially, let CI(Q, M) be the decision 
block and add any node both of whose successors are in CI(Q, M) until there 
are no more such nodes. Note that  if M and M' are different decision blocks, 
then CI(Q, M) and CI(Q, M') are disjoint. 

For each block B, let the remainder, denoted Rein(Q, 54, B), be defined as 
B minus all nodes in CI(M), where M is contained in B, i.e. Rem(Q, All, B) = 
B\ UMeA,t,MCB Cl(Q, M). Then, all sets CI(Q, M), M E 54, together with 
Rein(Q, ]v[, B-), B E Q, form a partition, called Grow(Q, .A4). Since, Grow(Q, M )  
is gotten from Q by carving out closures of decision blocks, Grow(Q, M)  refines 
Q. Note that  Q is stable if and only if it is a fixed point under Grow o Split. 
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Sometimes it is convenient to assume that  Split(Q) really stands for (Q, 
Split(Q)). Then, we refer to the composed operator Grow o Split(Q) as an 
abbreviation of Grow(Q, Split(Q)). 

It is not necessarily the case that  i f P  refines Q, then Growo Split(P) refines 
Grow o Split(Q). This non-monotonicity can be illustrated by the following 
example, where the original partitions are shown in solid lines and the additional 
subdivisions introduced by the Grow o Split operator are shown in dotted lines: 

Q and 
Grow o S p l i t ( Q )  

/ 

"P and 
Grow o S p l i t ( P )  

Here, P refines Q, but the two top-most nodes are equivalent in Growo Split(P), 
but not in Grow o Split(Q). 

L e m m a  3 Let P be a stable parti t ion and let v - ~  v ~, where v is of index i 
and v ' of index j with i < j.  Then for any extension u from v, v. u -=~ v ~. u[j..]. 

Let 34 be a decision parti t ion of Q. We say that  P refines 34 if whenever v 
and v' in are different decision blocks of 34, they are in different blocks of 7 ). 

L e m m a  4 Let stable P refine Q and 3d, where 3,t is a decision parti t ion of Q. 
Then P refines Grow(Q, 34). 

L e r a m a  5 If stable P refines Q, then P refines Split(Q). 

P r o p o s i t i o n  1 If stable P refines Q, then P refines Grow o Split(Q). 

Proposition 2 If Q = Grow o Split(Q), then Q refines ,~Q. 

Proposition 3 If ~Q refines Q and if Q' = (Grow o Split)i(Q) is stable, then 
Q~ is ~Q. 

T h e  CGrow O p e r a t o r  The CGrow operator is defined as Grow(Q, 34) except 
that  for each block B of Q, Rein(Q, 2~4, B) may or may not be coalesced with 
some designated CI(Q, M), where M is a decision block in B. Thus the oper- 
ation is not fully specified, but whether coalescing takes place or not and with 
which CI(Q, M) will be inconsequential for establishing the following general 
properties. Note that  Grow o Split(Q) refines CGrow o Split(Q). Even though 
information is dropped by CGrow, a fixed point involving CGrow is also a fixed 
point involving Grow: 
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Proposition 4 If CGrow o Split(Q) = Q, then Grow o Split(Q) = Q. 

Theorem 2 If~@ refines Q and if Q~ = (CGrow o Split)i(Q) is stable, then Q~ 
is ~@. 

Our concept of leaf parti t ion can then be understood as a decision parti t ion 
g of the current canonical parti t ion Q. The only non-trivial decision blocks of 
a leaf parti t ion are those that  contain leaves. A canonical equivalence relation 
~e  is defined as before for ~Q. 

Theorem 2 then can be formulated: 

Theorem 2' If ~E refines Q and if Q' = CGrow o (Split o CGrow)i(Q,g) is 
stable, then Q~ is the canonical partit ion ~E. 

4 O n l i n e  A l g o r i t h m  

The online problem in Section 2 can be solved by maintaining the canonical 
parti t ion by means of a node discriminator for all nodes, not only the roots. 
In this way, we may focus on the refinement problem for a single BDD, since 
multiple BDDs can be embedded within a single one by introducing dummy 
variables near the root. The modified problem is: 

Single BDD Online Refinement Problem 
I n p u t :  A BDD ~ with leaves • and constant discriminator D. 
M a i n t a i n e d  : For each node v, the discriminator value D(v) is 
maintained so that  D expresses the canonical parti t ion ~E. 
U p d a t e :  A partial mapping E : /2 -+ N such that  r a n g e ( E )  A 
r a n g e ( D )  = {}. E and the current parti t ion of leaves determine 
a leaf partit ion g. 
O u t p u t :  A list of nodes for which D(v) has changed. 

As an example, consider the BDD in Figure 1. The leaf parti t ion at this stage 
has been refined into two decision blocks. The canonical parti t ion with respect 
to this decision parti t ion is indicated by dotted lines. An update operation E 
might split the two leaves in the left most block, and as a result, the four nodes 
in the left, bot tom corner would each become a singleton equivalence class. 

The basic problem encountered when trying to construct a fast algorithm 
is that  after nodes have been split, it is necessary to calculate equivalence um 
der path compression--corresponding to our notion of growing decision blocks. 
There is now evident way of carrying out the grow phase, which must proceed 
bottom-up, without touching nodes more than O(log n) times. Our notion of 
coalesced growth opens an escape hatch that  allows the process to be halted at 
certain critical moments. 

Our algorithm works as follows. The canonical parti t ion .,~ induced by 
the leaf parti t ion g refines the current partit ion Q expressed by D. Therefore, 
according to Theorem 2 ~, we can apply the combined operator Split o CGrow 
until a new fixed point Q/ i s  reached. Then, QI is the canonical parti t ion ~c-  
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F i g u r e  1. A canonical BDD 

To make this abstract description into an algorithm, we must, choose data  
structures and explain how the split aad grow operations are implemented. We 
also must explain how we choose the coalescing of blocks in CGrow. 

Each discriminator value d represents a block that  we denote by d. We 
maintain a doubly-linked list L(d) of all v in d. A decision parti t ion is specified 
for a block doxd by explicit decision blocks and a implicit decision block. They are 
carved out of the block dold as follows. Each explicit decision block is represented 
by a discriminator value d, and all nodes in the decision block d are placed in 
the list L(d), which is carved out of L(do~d). Later, when the decision blocks 
are grown, these discriminator values will denote their closures. In addition, the 
implicit decision block consists of all decision nodes in the block not appearing 
in an explicit decision block. The algorithm will in a gradual fashion convert 
the implicit decision nodes to explicit ones carrying some distinct discriminator 
value dimp~ic.it reserved for the explicit version of the implicit block. 

The algorithm uses a mapping new(dold) that  records the set of discriminator 
values for the decision blocks in dotd. 

Initially, we call the CGrow algorithm with decision blocks of leaves and new 
initialized according to E.  

The CGrow phase is implemented for each decision block L(d) by adding the 
nodes in L(do~d) for which both successors are already in L(d); such nodes are 
removed from L(dota). To locate nodes that  should be considered for inclusion 
in a closure, we assume that  the BDD is equipped with a backwards pointer 
structure such that  the parents of any node can be sequentially accessed. This 
process of exploring parents is done in a tightly controlled manner  according to 
the sizes of the lists L(d) tbr d C new(do~d). When a parent has been explored 
from both the left and right successor, and both are in the same closure, then the 
parent is moved into this closure as well. The exploration of a closure finishes 
when all parents of all nodes in the closure have been explored. 
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The CGrow phase returns a list of all nodes possessing a successor whose 
discriminator has changed. These nodes are the explicit decision nodes of the 
next iteration. 

The Split algorithm calculates the new discriminator of the nodes in this list 
according to their behavior. It also calculates the value of new. 

Main  Idea 

The main idea behind the CGrow phase is that all unfinished closures are grown 
in parallel steps, where each step consists of exploring yet another parent of 
a node in the closure until either (a) a closure becomes too big, say half the 
size of dora, or (b) until only one closure is unfinished or (c) until all closures 
are finished. In case (a) and (b), the closure in question is coalesced with the 
remainder by moving nodes back to dold. (If the conversion of implicit decision 
nodes is not yet finished, the step for the implicit block is simply to convert 
another node to L&,~p~c, ~ . When all nodes have been converted, this deciSion 
block is treated as an ordinary one.) In case (a), all remaining closures are then 
finished and they will all be small since a big one already was found. In case (b), 
all closures, possibly except the last one (if it was finished), will by the absence 
of the condition in case (a) be small. 

In case (a), the work involved in building the aborted closure can be charged 
to a small, finished closure. For this argument to be correct, it is crucial that the 
work done is the same (to within a constant factor) for all the closures grown in 
parallel. 

In case (b), there may be no small, finished closure to charge the wasted work 
to. This situation occurs when there is only one decision block to begin with. 
In this case, the work involved will be proportional to the size of the decision 
block, and it can be assumed to be part of the work involved in building the 
decision block. The algorithm makes sure that the original discriminating value 
dold of the whole block is maintained despite a possible new value assigned to 
the decision block. In this way, only blocks that are really split may result in 
further splitting. 

In case (c), all blocks will be small. The work done in building a closure is 
not proportional to the size of the closure, since each parallel step consists of 
exploring a parent (of which there may be unboundedly many).  But each parent 
has only two successors, and so, the work of visiting the parent can be charged 
to the closure of the child from which it is explored (unless the work is at tr ibuted 
to another block as a result of the abandonment of a closure calculation). Thus, 
every time a parent is explored from the same successor, it will be done when 
the resulting closure the successor resides in is at most half as big as the last 
time. 

In the full paper, we provide a more detailed description, a complexity anal- 
ysis, and a discussion about how hashing can be avoided. 

T h e o r e m  11 The Single BDD Online Problem can be solved in time O(n rain(k, 
log n) + k), where n is the number of nodes in the BDDs and k is the total size 
of all operations. Thus, if n also bounds k, then the algorithm is O(n log n). 
Theorem "1 follnwa frnm ThPnrgrn 1 t 
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5 Minimizing BDD Represented Automata 

In the full paper, we explain how to obtain: 

C o r o l l a r y  1 Minimization is O(n log n) for BDD-represented automata,  where 
n bounds the number of states and the number of BDD nodes. 
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