
An n log n Algor i thm for
Online B D D Ref inement*

Nils Klar lund

AT&T Labs Research
600 Mountain Ave.

Murray Hill, NJ 07974
klarlund@research, art. com

A b s t r a c t . Binary Decision Diagrams are in widespread use in verifica-
tion systems for the canonical representation of finite functions. Here
we consider multi-valued BDDs, which represent functions of the form
~o : ~" -+ ~:, where / : is a finite set of leaves.
We study a rather natural online BDD refinement problem: a partition
of the leaves of several shared BDDs is gradually refined, and the equiv-
alence of the BDDs under the current partition must be maintained in
a discriminator table. We show that it can be solved in O(n log n) if n
bounds both the size of the BDDs and the total size of update operations.
Our algorithm is based on an understanding of BDDs as the fixed points
of an operator that in each step splits and gathers nodes.
We apply our algorithm to show that automata with BDD-represented
transition functions can be minimized in time O(n �9 log n), where n is
the total number of BDD nodes representing the automaton. This re-
sult is not an instance of Hopcroft's classical algorithm for automaton
minimization, which breaks down for BDDs because of their path com-
pression property.

1 I n t r o d u c t i o n

Binary Decision Diagrams [3] form the backbone of m a n y symbolic me thods for
verification of hardware and software. BDDs are essentially acyclic a u t o m a t a
whose state spaces are shrunk by a technique called path compression. More
precisely, a BDD is an acyclic, rooted, directed graph tha t represents a funct ion

: B " --+ f f rom v Boolean variables to a finite codomain ~: of leaves. (These
BDDs are somet imes called Mult i -Terminal BDDs to dist inguish them f rom two-
terminal BDDs tha t denote Boolean functions.)

T h e P r o b l e m

We consider the following problem, which is at the heart of the minimiza-
t ion problem for BDD-represented au toma ta . We are given several funct ions

* This work was carried out while the author was with BRICS, Department of Com-
puter Science, Aarhus, Denmark.

108

r : 1~ --~ /2. They can be represented by a shared BDD, which is an acyclic,
directed graph with a distinguished root for each i, where each root induces a
subgraph that constitutes a BDD for r Now given a parti t ion of the leaves (or
codomain), we would like to calculate a function discriminator, which associates
a discriminator value R(i) to each i such that R(i) = R(j) if and only r and
Cj are equivalent under the leaf partition, i.e., if for all u E IB, r is equiv-
alent to Cj(u). Note that the leaf partit ion itself can also be represented by a
discriminator D such that v and v' are equivalent if and only if D(v) = D(v').

The online version of this problem is to maintain the function discriminator
after an online operation specifies an update, which is a further refinement of the
current leaf partition. Initially, the leaf parti t ion consists of only one equivalence
class, i.e., all functions r are equivalent and D and R are a constant functions.

A simple algorithm for the online BDD refinement problem can be based
on the linear time reduction of BDDs [12]: after each refinement operation, the
whole BDD structure can be reduced to a canonical BDD for the functions that
map into equivalence classes. This strategy implies that each node is touched
potentially as many times as the number of operations. Thus an O(n 2) algorithm
arises, if we assume n online operations.

O u r S o l u t i o n

In this paper, we formulate a more efficient algorithm, which runs in time
O(n min(k, log n) + k), where n is the number of nodes in the BDDs and k
is the total size of all update operations. Thus, if n also bounds k, then the
algorithm is O(n log n).

Unfortunately, no simple solution seems to achieve O(nlogn). Instead, our
analysis proceeds roughly as follows.

For BDDs, the Split operation of parti t ion refinement algorithms such as [11]
does not directly yield a parti t ion refining the current one. Rather, the result of
a split operation, which we call a decision partition must be followed by a Grow
operation that gathers all nodes equivalent under path compression. We show
that the canonical BDD representation of r can be obtained as the fixed point
of Grow o Split (even though this composed operator is not monotone). This
characterization is not surprising, since usual BDD algorithms are also able to
calculate a canonical representation in one sweep.

The Grow operation cannot be used with Hopcroft 's "process the lesser half"
strategy [8], since all decision blocks must be grown as opposed to the situation
in traditional parti t ion refinement algorithms, where the largest blocks created
can be ignored.

Fortunately, the canonical BDD can be calculated under weaker assumptions
about the fixed point operator. The Grow operation can be weakened to an
operation, which we call CGrow since it allows certain blocks resulting from
the normal Grow operation to be coalesced. As a result, information is lost.
Curiously, it turns out that if a parti t ion is a fixed point under Split and CGrow,
then it is also a fixed point under Split and Grow.

109

We use this property in our online algorithm to discard any large block that
arises during the iteration of the fixed point operator. The block is discarded by
being coalesced with another, smaller block, while the expense of calculating it
can be attributed to a third block known also to be small.

C o n s e q u e n c e s a n d C o m p a r i s o n to P r e v i o u s W o r k

It has been known for a long time [8] that deterministic finite-state automata
can be minimized in time O(m. n log n), where n is the number of states and
m is the size of the input alphabet. A recent variation on the standard method
yields a similar bound [2].

BDDs allow automata with n states and 2 ~ letters--each inducing a different
behavior in the au tomaton-- to be represented by graphs of polynomial size in
n; see [5, 7], where also O(n ~) minimization algorithms are presented. The
automaton representation in [5] allows symbolic calculations involving inductive
definitions of sequential circuits, whereas the representation in [7] is the backbone
of a practical implementation of Monadic Second-order Logic on Strings. For a
comparison of these related representations, see [1].

The O(n 2) minimization algorithms are a potential bottleneck for the use of
BDD represented automata. In the Mona project at Aarhus (http: ://www. br ics .
dk/~klarlund/NonaFido), we have observed that for big automata (with thou-
sands of states), the time to minimize using the straightforward algorithm is an
order of magnitude larger than the time spent in constructing the automata.

In this paper, we show that our online BDD refinement algorithm allows
minimization to be carried out in only O(n �9 logn) steps, where n is the size
of the representation. To our knowledge, the only other algorithm for large
alphabets that reach a similar bound is that of [4], where incompletely specified
transition functions are considered. The compression possible with the BDD
representation is exponentially greater.

It should also be noted that when automata are represented with BDDs that
are not path compressed an O(n log n) algorithm follows easily by considering the
automaton as working on words over IB. Path compression, however, seems to be
of major practical significance although the asymptotic gain is only slight [10].

Finally, we mention that online minimization of automata on large, implic-
itly represented state spaces (not alphabets) have been considered in [9]. Online
minimization here refers to incremental exploration of the state space. This al-
gorithm bears a superficial resemblance to ours in that it also alternates between
minimal and maximal fixed point iterations.

Ove rv i ew

In Section 2, we define the online BDD refinement problem. We develop a
theoretical framework for understanding BDDs as fixed points in Section 3. We
show that a weak composed operator suffices for generating the minimum fixed
point. In Section 4, we provide a description of our online algorithm, which is

11o

based on the weak operator . Section 5 discusses the appl icat ion of our a lgor i thm
to a u t o m a t o n minimizat ion.

2 Onl ine B D D R e f i n e m e n t

Notation

Assume we are given a set x0, X l , . . . , x . - 1 of Boolean variables. A truth assign-
ment to these variables is a vector u C l ~ . An assignment prefix u up to i is a
t ru th assignment to variables x 0 , . . , xl. A Binary Decision Diagram or BDD 9
is a rooted, directed graph with the following properties. The root is named ^~.
Each node v in 9 is either an internal node or a leaf. An internal node possesses
an index denoted v.i. Also, it contains edges v �9 0, which points to a node called
the low successor of v, and v �9 1, which points to the high successor. The index
of a successor of v is always greater than the index of v. A leaf has no successors
and no index. Let the set of leaves be s The graph p denotes a function, also
called 9, f rom ll~" -+ 12. To calculate 9 (x) , one starts at the root. I f the root is
a leaf, then the value ~(x) is the root; otherwise, let i be the index of the root.
I f xi is 1 then go to the high successor, and if xi is 0 go to the low successor.
Cont inue in this way until a leaf is reached. This leaf is the value of p(x) . (Since
there may be j u m p s greater than one in the index of some of the variables, some
of the values in the assignment m a y be irrelevant.) In general, if v is a node of
index i and u is a value assignment to xi, �9 , x j, then v �9 u denotes the node
reached by following u f rom v.

The BDD ~ defines a par t i t ion - ~ of assignment prefixes given by u -~, u ~
i f n g . u = ^p - u ~.

We shall consider the case where the leaves are used to differentiate between
finer and finer par t i t ions of It~ ~ . The par t i t ion is given by a leaf discriminator
D : s --+ N. Two assignments x and y are then equivalent if D o ~ (x) = D o g (y).

BDDs m a y also be shared. For example, we use ~ = 9 0 , " " , Pn-1 to denote
a directed graph with roots n~i such tha t the nodes reachable f rom each root
const i tute a BDD. If D is a d iscr iminator for the leaves, then we say tha t R :
[n] -+ N is a function discriminator for D o ~o if D o 9i = D o 9 j if[R(i) = R(j) .

Note tha t if D is a constant discr iminator (i.e. if D is a constant funct ion) ,
then all D o 9i are equivalent.

T h e P r o b l e m

The BDD online refinement problem is to ma in ta in a funct ion discr iminator R
for D o ~ when D is upda ted piecemeal. Each upda te opera t ion specifies a par t ia l
mapp ing E : s -~ N, which defines the change to D. Thus, if

D(v) if v ~ d o m a i n (E)
D'(v) = E(v) if v E d o m a i n (E)

then the new value of D is D ~. In order for the new D to specify a par t i t ion
refining the one given by the current D, we require tha t the range of E is disjoint

111

from the range of the current D. The t ime requirements of our algori thm will
prevent it from updat ing all values R(i) with each iteration. Thus, we require
as an additional output after each update operation the list of i for which R(i)
has changed. The desired functionality can be summarized as follows.

B D D Online Ref inement Problem
I n p u t : n shared BDDs ~ with leaves s and discriminator D,
which is initially a constant function.
Maintained : A functional discriminator R of length n.
Update: A partial mapping E : 1: --+ N such that r a n g e (E) does
not intersect the current leaf discriminator. The leaf discrimina-
tor D is updated according to E as explained above. After e a c h
update operation, the contents of R discriminates D o ~. The size
of operation E is the size of d o m a i n (E) .
O u t p u t : A list of numbers i for which R(i) has changed.

In Section 4, we prove:

Theorem 1 Multiple BDD Online Refinement can be solved in t ime O(n min(k,
log n) + k), where n is the number of nodes in the BDDs and k is the total size
of all operations. Thus, if n also bounds k, then the algorithm is O(n log n).

3 A Theore t i ca l F r a m e w o r k for B D D s

This section develops a theory of how BDDs arise as fixed points. The main
insight is the formulation of composed operators that refine part i t ions and that
carry out path compression. We show that canonical BDDs arise as fixed points
of such operators; in particular, a weak operator is exhibited that calculates the
proper fixed point even as it seemingly loses information.

T h e Canonical B D D We define the canonical BDD for function r : F -+ D,
where D is finite, as follows. A partial assignment u from i to j is a t ruth
assignment to variables x i , . . . , xj. The partial assignment u may be narrowed
to a partial assignment from i ~ to j~, where i < i ~ < j~ _< j . I t is denoted u[i'..S].
If only a prefix of u up to i ~ - 1 is cut off, we write u[i'..]. An extension v of
u up to j is a partial assignment from i + 1 to j . A full extension is one that
assigns up to g - 1. For any assignment prefix u up to i, we may consider the
residue function Cu : v I ~ r where v ~ is a full extension. Define u ,-~r u '
if Cu = Cu,. The equivalence class of u is denoted [u]r In particular, if u --~r u ~
then u and u ~ are assignment prefixes up to some i, which is called the index of
the equivalence class [11]r = [u']r

The equivalence classes of ,-~r correspond to the states of a canonical au toma-
ton that upon reading a value assignment is in a state designating the value of
r

The path compression of BDDs can now be understood as a least fixed point
calculation that involves coalescing equivalence classes. If [u0]r = [ul]r then

112

[u]r and [u0]r = [ul]r are coalesced. Note that if also [v0]r = [v1r for some
v, then this identity still holds after [u]~0 and [u0]r = [ul]r are coalesced. Thus
there is a unique least fixed point reached by repeatedly coalescing ,~r classes.
The equivalence classes of the resulting part i t ion ~ is the canonical BDD for ~b.
Each such new equivalence class M consists of a number of equivalence classes
of ~ r When M contains internal nodes, the index M.i of M is defined as the
highest index of an old class. It can be seen that there is at most one old class
in M of highest index. The high successor M.1, defined if the index is less than
~, is the equivalence class of u - 1, where u is a prefix of maximal length in M.
The low successor is defined similarly.

L e m m a 1 Consider i and assignment prefix u up to j < i. The following are
equivalent:

1. The residue function ,Ca.,, is the same function for all extensions v up to i.
2. u ~V~ u �9 v for all extensions v up to i.
3. u ,.~r u �9 v for some extension v up to i.

The equivalence --=~, which is derived from the BDD viewed as a graph,
refines the equivalence ~ , which is derived from the function represented by
the BDD.

L e m m a 2 ~.~ refines ~ .

P a r t i t i o n s o f B D D N o d e s A partition 7) of a BDD p is a set of non-empty,
disjoint subsets or blocks of nodes, whose union is the set of all nodes. Alter-
natively, P may be viewed as an equivalence relation -~, defined by v -~, v' iff
3B E 1) : v, v ~ C B. Since any assignment prefix u leads to a unique node ~o, _~,
induces an equivalence relation on assignment prefixes that is also denoted = ~ .

To simplify matters , we assume in the following that all partitions are over
the same BDD ~. Also for simplicity, we shall often write "P for - 9 .

For a part i t ion Q, we may we define a discriminator labeling D of the leaves
of ~ such that for leaves v and v', D(v) -= D(v') iff v -@ v'. The canonical BDD
for the function D o r is denoted ~Q. Note tha t this BDD is dependent only
on the parti t ion of the leaves defined by Q - - n o t the part i t ion of internal nodes.
These distinctions will be further elaborated on in the next section. Note here
that the parti t ion of internal nodes may not even induce a BDD on equivalence
classes. We usually regard the canonical BDD ~@ as a part i t ion of the nodes of

D e c i s i o n P a r t i t i o n s An impor tant part of our algorithm is to work with par-
titions that become refinements of canonical parti t ions only after certain nodes
have been moved around.

A node v is a decision node if it is a leaf or it has at least one successor
outside its own block. Any other node is redundant. A decision partition AJ of a
part i t ion Q specifies a parti t ion of the decision nodes of each block B in Q into

113

decision blocks such that any decision block M either contains internal nodes of
the same index or contains only leaves. If for each block B, all decision nodes
of B are gathered in just one decision block, then 54 is said to be the stable
decision partition.

T h e Split O p e r a t o r We say that the behavior of an internal node v with
respect to a partit ion Q is the pair ([v. 0]•, [v- 1]Q); the behavior of a leaf v is
just itself.

Given Q, we can form a decision parti t ion M = Split(Q) as follows. For
every block /3, put all decision nodes v with the same index and the same
behavior in the same decision block. All leaves in B are also put into a decision
block. Formally, 54 is defined as

{ M ~ k 0 t 3 B , B0,BI E 5 4 : 3 i :
M = {v I v E B and v is a leaf} or
M = {v I v.i = i and v C B, v0 e /30 , and v I G B1}}

Parti t ion Q is stable if Split(Q) is the stable decision partition.
Note that if Q is stable, then both successors of any internal decision node

are outside its own block--for if some block B contained a decision node v with
only one successor not in B, then by following the other successor, we would
reach another node in /3 (which may be a decision node or a redundant node);
by continuing, we would eventually reach a decision node in B that is either a
leaf or both of whose successors are outside/3 and in both cases, this node would
have a different behavior than that of v, and that would contradict that Q is
stable.

Note also that "~e is stable.

T h e Grow O p e r a t o r Let A4 be a decision parti t ion for a parti t ion Q. For
any node v in a block B and any extension u, there will be a first decision
node w in some decision block M along the path induced by following nodes
from v according to u. In this case, we say that extension u from v hits M. In
particular, if v E M, then any extension hits M.

If M is a decision block of B, then its closure, denoted CI(Q, M), is the
set of nodes in B all of whose extensions hit M. This set can also be defined
inductively by growing the decision block: initially, let CI(Q, M) be the decision
block and add any node both of whose successors are in CI(Q, M) until there
are no more such nodes. Note that if M and M' are different decision blocks,
then CI(Q, M) and CI(Q, M') are disjoint.

For each block B, let the remainder, denoted Rein(Q, 54, B), be defined as
B minus all nodes in CI(M), where M is contained in B, i.e. Rem(Q, All, B) =
B\ UMeA,t,MCB Cl(Q, M). Then, all sets CI(Q, M), M E 54, together with
Rein(Q,]v[, B-), B E Q, form a partition, called Grow(Q, .A4). Since, Grow(Q, M)
is gotten from Q by carving out closures of decision blocks, Grow(Q, M) refines
Q. Note that Q is stable if and only if it is a fixed point under Grow o Split.

114

Sometimes it is convenient to assume that Split(Q) really stands for (Q,
Split(Q)). Then, we refer to the composed operator Grow o Split(Q) as an
abbreviation of Grow(Q, Split(Q)).

It is not necessarily the case that i f P refines Q, then Growo Split(P) refines
Grow o Split(Q). This non-monotonicity can be illustrated by the following
example, where the original partitions are shown in solid lines and the additional
subdivisions introduced by the Grow o Split operator are shown in dotted lines:

Q and
Grow o S p l i t (Q)

/

"P and
Grow o S p l i t (P)

Here, P refines Q, but the two top-most nodes are equivalent in Growo Split(P),
but not in Grow o Split(Q).

L e m m a 3 Let P be a stable parti t ion and let v - ~ v ~, where v is of index i
and v ' of index j with i < j. Then for any extension u from v, v. u -=~ v ~. u[j..].

Let 34 be a decision parti t ion of Q. We say that P refines 34 if whenever v
and v' in are different decision blocks of 34, they are in different blocks of 7).

L e m m a 4 Let stable P refine Q and 3d, where 3,t is a decision parti t ion of Q.
Then P refines Grow(Q, 34).

L e r a m a 5 If stable P refines Q, then P refines Split(Q).

P r o p o s i t i o n 1 If stable P refines Q, then P refines Grow o Split(Q).

Proposition 2 If Q = Grow o Split(Q), then Q refines ,~Q.

Proposition 3 If ~Q refines Q and if Q' = (Grow o Split)i(Q) is stable, then
Q~ is ~Q.

T h e CGrow O p e r a t o r The CGrow operator is defined as Grow(Q, 34) except
that for each block B of Q, Rein(Q, 2~4, B) may or may not be coalesced with
some designated CI(Q, M), where M is a decision block in B. Thus the oper-
ation is not fully specified, but whether coalescing takes place or not and with
which CI(Q, M) will be inconsequential for establishing the following general
properties. Note that Grow o Split(Q) refines CGrow o Split(Q). Even though
information is dropped by CGrow, a fixed point involving CGrow is also a fixed
point involving Grow:

115

Proposition 4 If CGrow o Split(Q) = Q, then Grow o Split(Q) = Q.

Theorem 2 If~@ refines Q and if Q~ = (CGrow o Split)i(Q) is stable, then Q~
is ~@.

Our concept of leaf parti t ion can then be understood as a decision parti t ion
g of the current canonical parti t ion Q. The only non-trivial decision blocks of
a leaf parti t ion are those that contain leaves. A canonical equivalence relation
~e is defined as before for ~Q.

Theorem 2 then can be formulated:

Theorem 2' If ~E refines Q and if Q' = CGrow o (Split o CGrow)i(Q,g) is
stable, then Q~ is the canonical partit ion ~E.

4 O n l i n e A l g o r i t h m

The online problem in Section 2 can be solved by maintaining the canonical
parti t ion by means of a node discriminator for all nodes, not only the roots.
In this way, we may focus on the refinement problem for a single BDD, since
multiple BDDs can be embedded within a single one by introducing dummy
variables near the root. The modified problem is:

Single BDD Online Refinement Problem
I n p u t : A BDD ~ with leaves • and constant discriminator D.
M a i n t a i n e d : For each node v, the discriminator value D(v) is
maintained so that D expresses the canonical parti t ion ~E.
U p d a t e : A partial mapping E : /2 -+ N such that r a n g e (E) A
r a n g e (D) = {}. E and the current parti t ion of leaves determine
a leaf partit ion g.
O u t p u t : A list of nodes for which D(v) has changed.

As an example, consider the BDD in Figure 1. The leaf parti t ion at this stage
has been refined into two decision blocks. The canonical parti t ion with respect
to this decision parti t ion is indicated by dotted lines. An update operation E
might split the two leaves in the left most block, and as a result, the four nodes
in the left, bot tom corner would each become a singleton equivalence class.

The basic problem encountered when trying to construct a fast algorithm
is that after nodes have been split, it is necessary to calculate equivalence um
der path compression--corresponding to our notion of growing decision blocks.
There is now evident way of carrying out the grow phase, which must proceed
bottom-up, without touching nodes more than O(log n) times. Our notion of
coalesced growth opens an escape hatch that allows the process to be halted at
certain critical moments.

Our algorithm works as follows. The canonical parti t ion .,~ induced by
the leaf parti t ion g refines the current partit ion Q expressed by D. Therefore,
according to Theorem 2 ~, we can apply the combined operator Split o CGrow
until a new fixed point Q/ i s reached. Then, QI is the canonical parti t ion ~c-

116

XT 0

~ 8

r

?%_
t - - - - - -

I

, o I 11~ 0 / x

'/ k ,

,'%..1 0 /

t - - -

- - I

F i g u r e 1. A canonical BDD

To make this abstract description into an algorithm, we must, choose data
structures and explain how the split aad grow operations are implemented. We
also must explain how we choose the coalescing of blocks in CGrow.

Each discriminator value d represents a block that we denote by d. We
maintain a doubly-linked list L(d) of all v in d. A decision parti t ion is specified
for a block doxd by explicit decision blocks and a implicit decision block. They are
carved out of the block dold as follows. Each explicit decision block is represented
by a discriminator value d, and all nodes in the decision block d are placed in
the list L(d), which is carved out of L(do~d). Later, when the decision blocks
are grown, these discriminator values will denote their closures. In addition, the
implicit decision block consists of all decision nodes in the block not appearing
in an explicit decision block. The algorithm will in a gradual fashion convert
the implicit decision nodes to explicit ones carrying some distinct discriminator
value dimp~ic.it reserved for the explicit version of the implicit block.

The algorithm uses a mapping new(dold) that records the set of discriminator
values for the decision blocks in dotd.

Initially, we call the CGrow algorithm with decision blocks of leaves and new
initialized according to E.

The CGrow phase is implemented for each decision block L(d) by adding the
nodes in L(do~d) for which both successors are already in L(d); such nodes are
removed from L(dota). To locate nodes that should be considered for inclusion
in a closure, we assume that the BDD is equipped with a backwards pointer
structure such that the parents of any node can be sequentially accessed. This
process of exploring parents is done in a tightly controlled manner according to
the sizes of the lists L(d) tbr d C new(do~d). When a parent has been explored
from both the left and right successor, and both are in the same closure, then the
parent is moved into this closure as well. The exploration of a closure finishes
when all parents of all nodes in the closure have been explored.

t 1 7

The CGrow phase returns a list of all nodes possessing a successor whose
discriminator has changed. These nodes are the explicit decision nodes of the
next iteration.

The Split algorithm calculates the new discriminator of the nodes in this list
according to their behavior. It also calculates the value of new.

Main Idea

The main idea behind the CGrow phase is that all unfinished closures are grown
in parallel steps, where each step consists of exploring yet another parent of
a node in the closure until either (a) a closure becomes too big, say half the
size of dora, or (b) until only one closure is unfinished or (c) until all closures
are finished. In case (a) and (b), the closure in question is coalesced with the
remainder by moving nodes back to dold. (If the conversion of implicit decision
nodes is not yet finished, the step for the implicit block is simply to convert
another node to L&,~p~c, ~ . When all nodes have been converted, this deciSion
block is treated as an ordinary one.) In case (a), all remaining closures are then
finished and they will all be small since a big one already was found. In case (b),
all closures, possibly except the last one (if it was finished), will by the absence
of the condition in case (a) be small.

In case (a), the work involved in building the aborted closure can be charged
to a small, finished closure. For this argument to be correct, it is crucial that the
work done is the same (to within a constant factor) for all the closures grown in
parallel.

In case (b), there may be no small, finished closure to charge the wasted work
to. This situation occurs when there is only one decision block to begin with.
In this case, the work involved will be proportional to the size of the decision
block, and it can be assumed to be part of the work involved in building the
decision block. The algorithm makes sure that the original discriminating value
dold of the whole block is maintained despite a possible new value assigned to
the decision block. In this way, only blocks that are really split may result in
further splitting.

In case (c), all blocks will be small. The work done in building a closure is
not proportional to the size of the closure, since each parallel step consists of
exploring a parent (of which there may be unboundedly many). But each parent
has only two successors, and so, the work of visiting the parent can be charged
to the closure of the child from which it is explored (unless the work is at tr ibuted
to another block as a result of the abandonment of a closure calculation). Thus,
every time a parent is explored from the same successor, it will be done when
the resulting closure the successor resides in is at most half as big as the last
time.

In the full paper, we provide a more detailed description, a complexity anal-
ysis, and a discussion about how hashing can be avoided.

T h e o r e m 11 The Single BDD Online Problem can be solved in time O(n rain(k,
log n) + k), where n is the number of nodes in the BDDs and k is the total size
of all operations. Thus, if n also bounds k, then the algorithm is O(n log n).
Theorem "1 follnwa frnm ThPnrgrn 1 t

118

5 Minimizing BDD Represented Automata

In the full paper, we explain how to obtain:

C o r o l l a r y 1 Minimization is O(n log n) for BDD-represented automata, where
n bounds the number of states and the number of BDD nodes.

Acknowledgments
Thanks to Robert Paige and Theis Rauhe for their careful reading of an earlier version
of this paper, for pointing out errors, and for exploring the possible existence of a
simpler n log n BDD online refinement algorithm. The example of non-monotonicity
of the composed operator in Section 3 was suggested by Robert Paige to illustrate an
error in the earlier version. Michael Yannakakis kindly pointed out the reference [2].

References

1. D. Basin and N. Klarlund. Beyond the finite in hardware verification. Submitted.
Extended version of: "Hardware verification using monadic second-order logic,"
CAV '95, LNCS 939, 1996.

2. Norbert Blum. An o(n log n) implementation of the standard mothod for minimiz-
ing n-state finite automata. Information Processing Letters, 1996.

3. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing surveys, 24(3):293-318, September 1992.

4. A. Cardon and M. Crochemore. Partitioning a graph in O(IA] log 2 [VI). TCS,
19:85-98, 1982.

5. Aarti Gupta. Inductive Boolean function manipulation. PhD thesis, Carnegie
Me]Ion University, 1994. CMU-CS-94-208.

6. Aarti Gupta and Allan L. Fisher. Representation and symbolic manipulation of
linearly inductive boolean functions. In Proceedings of the IEEE International
Conference on Computer-Aided Design, pages 192-199. IEEE Computer Society
Press, 1993.

7. J.G. Henriksen, J. Jensen, M. JCrgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Tools
and Algorithms for the Construction and Analysis of Systems, First Inter-
national Workshop, TACAS '95, LNCS 1019, 1996. Also available through
http://www .brics.dk/,.~klarlund/MonaFido/papers.ht ml.

8. J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Z. Kohavi and Paz A., editors, Theory of machines and computations, pages
189-196. Academic Press, 1971.

9. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc.
STOC, pages 264-274. ACM, 1992.

10. H-T. Liaw and C-S. Lin. On the OBDD-representation of general Boolean func-
tions. IEEE Trans. on Computers, C-41(6):661-664, 1992.

11. R. Paige and R. Tarjan. Three efficient algorithms based on partition refinement.
SIAM Yournal of Computing, 16(6), 1987.

12. D. Sieling and I. Wegener. Reduction of OBDDs in linear time. IPL, 48:139-144,
1993.

