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Abs t r ac t .  VFRAME is one of ANSALDO's software driven vital architec- 
tures for safety critical products. This paper describes a project whose 
result is the development of an "embedded verifier", i.e. a system in- 
tegrated within VFRAME and able to certify the correctness of one of 
V F R A M E  components, a compiler. The embedded verifier satisfies two 
precise requirements. First, the compiler must be certified in a fully au- 
tomatic and efficient way. Second, the embedded verifier must be itself 
certified, in a way which can be easily understood and validated by end 
u s e r s .  

1 Introduct ion 

This paper  describes the results of a project where theorem proving techniques 
have been applied to the certification of the correctness of a component  of 
VFRAME [9], one of ANSALDO's software driven vital architectures for safety crit- 
ical products. VFRAME is used for the development of rail t ranspor ta t ion indus- 
trial applications. The VFRAME component  under consideration can be thought 
of as a compiler which, given in input a (source) program, has to generate a "se- 
mantically equivalent" (target) program as its output.  The goal of the project 
was the development of an "embedded verifier", i.e. a system integrated within 
the VFRAME architecture and able to certify the correctness of the compiler. 
More precisely, every t ime a compilation is performed, the Verifier must  take in 
input the actual source program, the actual target  program generated by the 
compiler, and prove that  the latter is a correct translation of the former 1. Being 
part  of VFRAME, the Verifier had to meet the following requirements. 
Requirement 1. The Verifier must  be fully automatic, since it must  be used by 
VFRAME end users, and efficient, as in general the final installations on-the-field 
are subject to t ime constraints. 

1 A well known alternative approach, the (mechanical) "once for all" verification of the 
correctness of the VFRAME compiler for all its possible inputs (see for instance [7]), 
has been rejected since the compiler's environment platform is not guaranteed to be 
fail-safe and can not assure the correct execution of verified software. See also [1], 
which describes a further approach. 
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R e q u i r e m e n t  2. As any other component of the vital architecture, the Verifier 
must be itself certified, i.e. there must be a way to guarantee that the Verifier is 
itself correct. An additional requirement is that the certification of the Verifier 
and the proof of the correctness of the compilations must be easily understood 
and validated by end users. 

The design of the Verifier was characterized by the following key steps: 
Step 1. A formal semantics has been defined for the source and target languages 
of the VFRAME compiler, and a notion of semantic equivalence has been devised. 
Step 2. The Verifier has been functionally specified as a system capable of prov- 
ing a set of "Syntactic Verification Conditions" over source and target programs. 
These conditions have been formally proved to imply the semantic equivalence 
of the programs. 
Step 3. The architecture of the Verifier has been specified in terms of two 
independent programs, a Logger and a Checker. The Logger generates a Log, 
containing the proof that the Syntactic Verification Conditions are satisfied. The 
Checker certifies the correctness of the proof by checking that some "Checking 
Conditions" hold of the Log, the source program and the target program. The 
Checking Conditions have been formally proved to imply the Syntactic Verifica- 
tion Conditions. 

Requirement 1 was addressed by reducing the (hard) task of proving the se- 
mantic equivalence of the input programs to the (easier) task of proving the 
Syntactic Verification Conditions (step 2 above). Indeed, the direct proof of the 
semantic equivalence of the two programs would require complex theorem prov- 
ing techniques, and therefore interaction with a user and high computation time. 
On the contrary, the Syntactic Verification Conditions can be analyzed automat- 
ically and efficiently. The proof of the correctness of this step was performed a 
priori, once for all. 

Requirement 2 was achieved through the decomposition of the Verifier into 
the Logger and the Checker (step 3 above). The independence of the Logger and 
the Checker guarantees that the Logger is non critical, and the correctness of 
the Verifier relies only on the correctness of the Checker. Indeed, if the Logger 
generates a wrong proof, and the Checker is correct, the Verifier will not accept 
the compilation. This decomposition is motivated by the fact that the task per- 
formed by the Checker (i.e. checking a proof) is in general much simpler than 
the task of the Logger (i.e. finding a proof). Hence the Checker is a small portion 
of the Verifier, and can be easily validated. The proof of the correctness of this 
decomposition was performed a priori, once for all. Since the task of the Verifier 
has been reduced to proving some syntactic properties of the two programs, the 
proof steps in the Log (e.g. substitutions) are presented to end users as infor- 
mation on the syntactic structures of the two programs (e.g. the two programs 
corresponding instructions). As a consequence, the logical steps performed by 
the Checker can be presented to end users with no experience of logic or theorem 
proving as simple tests on the syntactic structures of the two programs. 

The paper is structured as follows. Section 2 is a brief overview of VFRAME.  
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Section 3 describes, through an example, the source and target programs of the 
VFRAME compiler and their semantics. Section 4 describes the functional spec- 
ifications of the Verifier. Section 5 describes how the Verifier specifications are 
refined into the specifications of the Logger and the Checker. Section 6 discusses 
some issues and assumptions about the certification requirements of the Verifier. 
Since the work done involved proprietary information not all of the details can 
be disclosed in this paper. 

2 O v e r v i e w  o f  VFRAME 

VFR, AME (Vital Framework) [9] is one of ANSALDO software driven vital architec- 
tures used to develop safety-critical applications from commercial, off-the-shelf 
hardware and software. VFRAME can be thought of as a virtual logicM and arith- 
metic machine that  executes a vital algorithm on a vital platform. This virtual 
machine is a cyclic, finite state machine designed to have fail safe behavior in- 
dependent of the physical implementation. In this way system vitality does not 
depend on knowing how the processor might fail. The software which implements 
this virtual machine is called the cyclic Runtime Executive. Figure 1 shows an 
overview of VFRAME. At the software level, VFRAME is partitioned into the Off= 
line and Runtime systems. 
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F i g .  1 .  V F R A M E  o v e r v i e w  

The Off-line system provides an application programming environment in the 
form of a Domain Application Builder (DAB), i.e. a graphical interface designed 
to allow specification of both the system hardware and application algorithms. A 
visual language compiler translates graphical specifications into a unique generic 
and domain independent form, called the Generic Entity Model (GEM), which 
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represents the application in terms of standard operations, like boolean and 
arithmetic operations, access to tables, etc. The GEM is not yet in a form which 
can be executed by the Runtime Executive. A compiler, called the GEM2RTM 
compiler, translates a GEM into a loadable and executable program, called a 
Run Time Model (R, TM). The compiler decomposes the GEM into a sequence of 
primitive executable operations. At the R.TM level, information is stored in form 
of "codewords", i.e. words protected with cRc (Cyclic Redundant Checksum) 
to detect data corruptions. The RTM is loaded onto the Runtime Executive. A 
correctness criteria generator independently processes the RTM and generates 
precomputed data describing what the correct result of each primitive operation 
should be. These correctness criteria are loaded onto a Realtime Application 
Checker (I~AC), a simple, fail-safe hardware checker which performs concurrent 
checking of the results of the runtime execution against the correctness criteria. 
The on-line architecture allows for safety quantification: a "probability of un- 
detected error" [9] can be determined which depends on the length of the cRc 
in the codewords. As a consequence, run time execution can be guaranteed to 
be performed with a small probability of undetected error by means of tech- 
niques based on information encoding and concurrent checking by independent 
hardware. 

The remaining problem is the correctness of the off line translations, where the 
techniques used for the runtime execution cannot be applied. A project under 
development is dealing with the formal verification of the correctness of the 
visual compiler [9, 4]. In this paper we describe the project on the certification 
of the GEM2RTM compiler. The goal is to embed the (GEM2RTM) Verifier (see 
Figure 1) within the off-line part of the vital architecture. The Verifier can be 
thought of as a black box which takes in input the source and target programs 
and answers "yes" only if the target program (generated by the compiler) is a 
semantically equivalent correct translation of the source program (in input to 
the compiler). A future project will apply the same methodology developed in 
this project to the formal verification of the correctness criteria generator. 

3 GEM and RTM Programs 

GEM and RTM programs can be thought of as "embedded programs", i.e. pro- 
grams which are embedded in an external environment (at different abstraction 
levels). After (variable) initialization, embedded programs are executed cycli- 
cally. At each cycle, values are acquired from the external environment (e.g. 
information from sensors such as train speed) and stored in input variables. 
Then, the instructions of the program are executed (e.g. to compute a control 
algorithm), and the computed values are stored in output variables and then 
delivered to the external environment (e.g. information for actuators such as 
control to a breaking device). 

Embedded programs are composed of (variable) declarations and instructions. 
A GEM variable declaration contains a variable identifier, its initial value, infor- 
mation about whether it is an input or an output variable, and its type (e.g. 
boolean or integer). For example, in Figure 2, the GEM program contains the 
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- G E M  P R O G R A M  - R T M  P R O G R A M  
- D E C L A R A T I O N S  - D E C L A R A T I O N S  
1. A, 1, O u t pu t ,  bool 1. A1, 1, O u t p u t  
2. B, 21, Input ,  int 2. B1, 1, Inpu t  
3. C, 17, Input ,  int 3. B2, 0, Inpu t  

4. C1, 2, Input  
5. C2, 3, Inpu t  
6. tmpe qu ,  0 

- I N S T R U C T I O N S  - I N S T R U C T I O N S  
1. A <- B ----- C 1. t m p e q u  <- B1 E Q U  C1 

2. 
3. 
4. 

- ope ra t i on  # 1  - 
A1 <-  t m p e q u  0]% t m p e q u  - ope ra t ion  # 2  - 
t m p e q u  <-  B2 E Q U  C2 - ope ra t ion  # 3  - 
A1 <-  A1 AND t m p e q u  - ope ra t ion  # 4  - 

Fig. 2. Examples of GEM and RTM programs. 

declarations of the variables A,B,C~ which are initialized to 1, 21, 17, respec- 
tively (in the case of boolean variables 0 and 1 stand for f a l s e  and t rue ,  re- 
spectively). A is a boolean output variable and B,C are integer input variables. 
GEM instructions have type restrictions, and can have multiple arguments and 
multiple results. The G E M  program in Figure 2 contains only one instruction, 
A < -  B == C, which tests if the two integer variables B and C are equal and 
assigns the boolean result to A. 

R T M  programs are not typed. In order to prevent undetected data corrup- 
tions, information is manipulated in form of codewords, uniform data structures 
containing, among other things~ a numerical value~ the identifier of the vari- 
able where the codeword is stored, and a CRC protection. R T M  variables can be 
thought of as the result of an "expansion" of GEM variables. 2 This expansion 
depends on some configuration parameters of the compiler, the most important 
being a sequence of relatively prime numbers, which can change from compila- 
tion to compilation. Let us assume that  this sequence is (Pl, "--,P~/' Then, an 
integer G E M  variable is translated into n R T M  variables. These R T M  variables 
correspond to the residues modulo P l ,  . . . ,  P n ,  respectively, of the integer G E M  

variable. Boolean G E M  variables are translated into single l t T M  variables. For 
simplicity, in the rest of the paper we assume that  the sequence of relatively 
prime numbers is fixed and is equal to (5, 7). For instance, in the programs in 
Figure 2 the integer variables B and C are expanded into two pairs of variables, 
B1,B2 and C1,C2, respectively. The boolean variable A is translated into the 
single variable A1. I t T M  instructions are expansions of G E M  instructions as well. 
In the example, the G E M  instruction A <- B == C gets expanded into the four 
R T M  instructions, o p e r a t i o n  #1 compares the first two pairs (B:t and C1) and 
the boolean result is assigned to a variable introduced by the compiler (tmpequ). 
The result is stored in A1 ( o p e r a t i o n  #2). The second pair is compared and the 
result is stored in tmpequ ( o p e r a t i o n  #3). The result (A1) is the conjunction 
of the results of the two equality comparisons ( o p e r a t i o n  #4). The intuition 
underlying this expansion is that  the two GEM variables B and C are equal if 
and only if the ltWM corresponding variables are pairwise equal, i.e. B1 is equal 

2 The motivation underlying this expansion is to simplify the check of consistency of 
arithmetic calculations (to be performed by the RAC,  see Section 2). 
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to Cl and B2 is equal to C2 (this fact is guaranteed by the Chinese Remainder 
Theorem, under the condition that B and C are less than 35, i.e. the product of 
the two relatively prime numbers chosen for the translation). 

For simplicity and readability, in this paper we have written R T M  programs 
"symbolically". R.TM programs are, actually, sequences of hexadecimal numbers. 
A somewhat more "realistic" presentation of the instructions of the R T M  program 
in Figure 2 is reported below (lines starting with - are comments). For instance, 
consider o p e r a t i o n  #1. OxO0000002 and 0x00000014 identify the variables B1 
and C1, respectively, 0x0000000d identifies the operator EQU, and 0x00000019 
identifies tmpequ. 

- ope ra t ion  # i  - 

OxO0000002 0x00000014 OxOOOOOOOd 0x00000019 

- o p e r a t i o n  ~ 2  - 
0 x 0 0 0 0 0 0 1 9  0 x 0 0 0 0 0 0 1 9  0 x 0 0 0 0 0 0 0 b  0 x 0 0 0 0 0 0 0 1  
- o p e r a t i o n  ~ 3  - 
0 x 0 0 0 0 0 0 0 3  0 x 0 0 0 0 0 0 1 5  0 x 0 0 0 0 0 0 0 d  0 x 0 0 0 0 0 0 1 9  
- o p e r a t i o n  # 4  - 
0 x 0 0 0 0 0 0 0 1  0 x 0 0 0 0 0 0 1 9  0 x 0 0 0 0 0 0 0 a  0 x 0 0 0 0 0 0 0 1  

G E M  and l%TM programs were given semantics by formalizing the cyclic exe- 
cution process informally presented above. The basic entities are computation 
states, mapping the variables of a program on the corresponding values. In the 
following, we write the value of a variable v in the computation state s as v(s). 
Each execution step - initialization, input acquisition, execution of instruction, 
output  delivery - is formalized as an operation on the (computation) state. Ini- 
tialization is a function mapping a program into the initial state s such that  for 
each variable v, v(s) is the initial value of v. Input acquisition is the function 
mapping the computation state s and an input vector I = (i l , . . . ,  ira), i.e. a tu- 
ple of (input) values, into the computation state s', such that,  for 1 < j _< m, 
vj(s ')  = ij, where Vl, ..., vm are the input variables of the program, and for 
every other variable w, w(s')  = w(s).  Output  delivery is a function from a state 
into an output  vector, i.e. a function from a state s into the tuple of the val- 
ues (vl(s), ..., vk(s)), where Vl, ..., vk are the output  variables of the program. 
Each (GEM and R T M )  instruction is semantically interpreted as a function map- 
ping states into states. For instance, the interpretation of the GEM operation 
vl <- v2 == v3 is the function ~vl <- v2 == v3](s) -= s', where vl(s  ~) is 1 iff v2(s) 
and v3(s) are equal, 0 otherwise, and for all v other than vl, v(s ~) = v(s). 

Intuitively, the (state) semantics of an embedded program p, written ~LP], 
is a function from the set of all finite sequences of input vectors into stat~ 
sequences, such that  for every input sequence of length l, I -- ( I 1 , . . . ,  It>, the 
sequence of states is obtained by composing initialization, input acquisition and 
the execution of the sequence of instructions. 

4 F u n c t i o n a l  S p e c i f i c a t i o n  o f  t h e  V e r i f i e r  

A correct compilation is defined by a set of Syntactic Verification Conditions, 
i.e. conditions on how source programs are mapped syntactically into target pro- 
grams. The Verifier is thus formally specified as a system which, given in input 
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sourcopgm "l" yes, 

target pgm no, 

if source pgm and target pgm satisfy the 
syntactic verification conditions 

otherwise 

Fig. 3. The Verifier 

the two programs, answers "yes" only if the two programs satisfy the Syntac- 
tic Verification Conditions (see Figure 3). Let g and r be a GEM and an RTM 
program, respectively. Intuitively, g and r satisfy the Syntactic Verification Con- 
ditions (written as g '~M r) iff they correspond through a mapping M from GEM 
variable declarations into RTM variable declarations, and from GEM instructions 
into RTM instructions. The following are some of the conditions which must hold 
of the GEM and RTM programs. If v is an integer variable in g, then M(v) must be 
a pair (Ml(v), M2(v)) of distinct variables in r (in the following we write Mi(v) 
as the i-th element of M(v)). For each integer input [output, resp.] variable v in 
g, (Ml(v), M2(v)} are input [output] variables in r, and for each input [output, 
resp.] variable v t in r, there exists an input [output] variable v in g such that ,  
either Ml(v) = v' or M2(v) = vq The GEM and RTM programs in Figure 2 sat- 
isfy the conditions above. For instance, M(B) = (B1, B2) and all and only GEM 
input /output  variables are mapped into aTM input /output  variables. 

Each instruction in the GEM program must correspond to a sequence of in- 
structions in the aTM program. Not only does this correspondence depend on 
the operator of the instruction (e.g. ==), but also on the types of GEM variables 
(e.g. integer or boolean). For instance, if v2 and va are integer variables, a GEM 
instruction of the form vl <- v2 == va must be mapped by M into the sequence 
of RTM instructions reported below, where ~ is an aTM (temporary) variable 
which does not correspond to any GEM variable. Comparison between boolean 
variables would be translated in a different way. 

t <- Ml(v2) EQU Ml(v3), 
M(vl) <- t OR t, 

t <- M2(v2) 
M(vl )  , -  M( I) AND 

The instructions of GEM and RTM programs in Figure 2 satisfy the above 
conditions, the (temporary) variable t being tmpequ. 

The functional specification of the Verifier through the Syntactic Verification 
Conditions makes it possible to satisfy Requirement 1 (see Section 1). Indeed, 
the problem of verifying the Syntactic Verification Conditions is decidable and 
not computationally complex. As a consequence, the Verifier can be implemented 
as a fully automatic and efficient system. 

The next step was to make sure that  this specification is actually such that  
correct compilations generate target programs which are semantically equivalent 
to source programs. Two (GEM and RTM) programs are semantically equivalent 
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when, given two sequences of "equivalent" input vectors, they compute two se- 
quences of "equivalent" output vectors. The notion of equivalent (sequences of) 
input vectors is formalized by extending the mapping M to input vectors. If 
I = (it, ...,ira) is a GEM input vector, M ( I )  is the vector M(il)]] . . .]]M(im),  
where ]] denotes concatenation of sequences, M(ij) is (ij) if the input variable 
vj of the GEM program is a boolean, and (ij rood 5,ij  rood 7) otherwise. The 
notion of equivalent output vectors and equivalent states is formalized similarly. 

We formally prove that, for any possible individual compilation, the Syntac- 
tic Verification Conditions imply semantic equivalence. This result is a direct 
consequence of the following theorem, stating that the Syntactic Verification 
Conditions imply that the GEM and RTM programs are state equivalent. The in- 
tuitive meaning is that the execution of the programs when given corresponding 
inputs proceeds through sequences of pairwise corresponding states. 

Theo rem 1 State equivalence between programs. Let g and r be a GEM 

and an RTM program, such that g~Mr.  Then they are state equivalent, i.e. for 
every input vector sequence 7 for g, 

The proof of Theorem 1 is done by induction on the length of sequences of 
inputs 7. The base case, corresponding to the null sequence of inputs, follows 
from the equivalence between the initial states of GEM and RTM. The step case 
states that, if the sequences of states generated by any input sequence of length 
n are equivalent, then the sequences of states generated by any input sequence 
of length n + 1 are. We prove this by showing that each state transition (e.g. 
input acquisition, execution of instructions) preserves the equivalence. This was 
done for each possible GEM instruction and legal typing configuration of GEM 
operands and results. 

As an example, let us consider the proof that the GEM instruction vl <- v2 == v3 
and the RTM instruction sequence M(Vl <- v2 == v3) preserve equivalence. Part 
of this proof consists in showing that the value of vl in the final state is equal 
to the value of M(vl) in the final state. We have two cases. If (the values of) v2 
and v3 are equal, then vl has value 1 and, by induction hypothesis, Ml(v2) is 
equal to Ml(v3) and M2(v2) is equal to M2(v3). This implies that, after the first 
RTM state transition, t has value 1, after the second M(vi) has value 1, after 
the third t has value l, and at the end of the final transition M(Vl) has value 1. 
The other case is similar. 

5 Functional Specification of the Logger/Checker 

The formal specification of the Verifier is refined into the specification of a 
system (see Figure 4) composed of two independent programs, a Logger and a 
Checker. The Logger generates a Log containing the proof that the Syntactic 
Verification Conditions are satisfied. The Checker certifies that the proof is cor- 
rect by checking that some Checking Conditions on the source program, on the 
target program and on the Log, are satisfied. This decomposition allows for the 
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VERIFIER 
s o u r c e  p g m  

t a r g e t  p g m ~  L O G G E R  

1 
LOG 

1 

1-- ~f yes, 
n o ,  

if s o u r c e  pgm, target pgm 
and LOG satisfy 
the checking conditions 

otherwise 

F i g .  4 .  T h e  VFRAME L o g g e r / C h e c k e r  A r c h i t e c t u r e  

achievement of Requirement 2 (see Section 1), being the Checker the only critical 
component of the Verifier. 

The first step is to provide a formal characterization of the output of the 
Logger, i.e. the Log. Intuitively, the Logger tries to build a proof that the GEM 
program and the aTM program in input to the Verifier satisfy the Syntactic 
Verification Conditions, and writes it in the Log. In particular, the Log contains 
a description of the mapping M from the G E M  program into the R T M  program, 
as described in previous section. As an example, let us consider the following 
Log, generated by the Logger when its inputs are the two programs in Figure 2. 

- LOG H E A D E R  
3 - G E M  decl length  
1 - GEM ins t r  l eng th  
6 - RTM decl l eng th  
4 - RTM ins t r  l ength  
- D E C L A R A T I O N  M A P P I N G  
11  - i .  bool  dec |  
2 < 2 , 3 >  - 2. int  decl 
3 < 4 , 5 >  - 3. int decl 
- I N S T R U C T I O N  M A P P I N G  
1 <1,2,3,4:> - 1. int  ins t r  
- A B S T R A C T  G E M  I N S T R U C T I O N S  
E Q U A L I T Y - I I  1 2 3  - 1. a b s t r a c t  gem ins t r  
- A B S T R A C T  RTM I N S T R U C T I O N S  
EQU 6 2 3  - 1, abstrmct r t m  ins t r  
OR 1 6 6  - 2 .  a b s t r a c t r t m i n s t r  
EQU 6 3 5  - 3. a b s t r a c t  r trn ins t r  
AND 1 1 6  - 4. a b s t r a c t  r t m  ins t r  

The log header states the length of the G E M  and R T M  declarations and instruc- 
tions. The declaration mapping and the instruction mapping are a description of 
the M which has been found by the Logger. Variables are (abstractly) referred 
to in terms of indexes indicating the position of the corresponding declaration 
in the declaration list. For instance, the G E M  integer variable B is referred to 
as 2, while the corresponding R T M  variables B1 and B2 are referred to as 2 and 
3. Instruction indexes are defined analogously. For instance, the G E M  instruc- 
tion at index 1, i.e. A <- B == C, is mapped into the four RTM instructions at 
indexes 1,2,3 and 4. The abstract G E M / P ~ T M  instructions provide an abstract de- 
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scription of the (concrete) instructions of the GEM/RTM programs. For instance, 
E~UALITY-II 1 2 3 is the abstract instruction corresponding to the GEM con- 
crete instruction t <- B == C. EQUALITY-II stands for an equality operation 
between two integer variables and 1 2 3 are the indexes of the declarations of 
the variables t ,  B, C, respectively. 

Notice that the Log can be validated by end users which have no experience 
of logic and theorem proving (part of Requirement 2). Indeed, the logical proof 
steps actually performed by the Logger (e.g. substitutions, universal bounded 
quantifications) are presented to the users as information on the syntactic struc- 
tures of the two programs, e.g. the two programs corresponding instructions 
(corresponding to substitution), the lengths of the two programs (corresponding 
to the bound on universal quantification). 

Let us consider now the Checking Conditions. Intuitively, they make sure 
that the Log is syntactically correct. For instance, the Checker must check that 
the abstract instructions are well formed and well typed, that the indexes of 
the variables in the abstract GEM/RTM instructions are consistent with the log 
header, and that there is an appropriate mapping, say M ai, from abstract GEM 
instructions into corresponding abstract RTM instructions. For instance, in the 
case of EqUALITY-IT, M a~ is defined as follows: 

Mai(EOUALITY-II il i2 /3) = < EQU rd Md(i2) M~(i3), 
OR Ma(il) rd rd, 
EOU rd Md(i2) Md(is), (1) 
AND Md(il) Md(il) rd >, 

M d is the mapping from GEM variable indexes to RTM variable indexes as 
reported in the declaration mapping. In the example, Md(2) = < 2,3 >. 
Md(i) and Md(i) are the first and second elements of the sequence Md(i), e.g. 
Md(2) = 2. rd is the index of the RTM variable tmpequ. Notice that the Log 
actually satisfies the Checking Conditions, e.g. M a~ maps the first abstract GEM 
instruction into the corresponding abstract RTM instructions 1, 2, 3, and 4. 

However, knowing that the Log is well formed is not enough. The Checker 
must make sure that the Log is a proof of the theorem we are interested in, i.e. 
the equivalence of the two GEM and RTM programs in input to the verifier. This 
amounts to verifying that the Log applies to the actual GEM and RTM programs. 
For instance, the Checker must check that the actual programs contain as many 
instructions and declarations as stated in the log header, and that there is a 
bijective correspondence between GEM/RTM abstract instructions (contained in 
the Log) and the concrete GEM/RTM instructions (parsed directly from the actual 
GEM/R.TM). For each possible type of GEM and ItTM abstract instruction, the 
mapping M r determines the structure of the corresponding concrete instruction. 
For instance, in the case of EqUALITY-II, it holds: 

M~(EqUALITY-II il i2 i3) = vl <-v2 == vs, where vj is the variable of 
the ij-th GEM declaration. 

The correctness of the decomposition of the Verifier in the logging/checking 
schema presented above is guaranteed by proving that, for any possible indi- 
vidual compilation, the Checking Conditions imply the Syntactic Verification 
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Conditions. The proof is done by constructing a mapping M from the M d, M ~ 
and M ~ obtained from the Log, This proof is not difficult and we omit to com- 
ment it for lack of space. 

6 Certif ication Assumpt ions  
As any other form of certification, the certification provided by the Verifier is 
not absolute. First of all, it depends on the assumption that the formal models of 
GEM and aTM computation are accurate with respect to the actual GEM and RTM 
computation. This problem has been tackled with a strict integration between 
reST and ANSALDO in the development of the formal model. 

Second, it depends on the correctness of the formal results. The proofs have 
been performed manually and, though not technically complex, they are rather 
long. In order to improve the confidence on their correctness, a further step will 
be the mechanization of these proofs by means of an industrial-strength prover 
(e.g. [8, 5]). A prover can be much more accurate than a human in working out 
the details of fifty pages of proofs. Of course, the mechanization woutd not give 
a 100% certification, because in principle the prover itself could be questioned. 
Several approaches to this problem are under development. Some of these aim at 
the development of logging/checking mechanisms for full blown provers (e.g. [6]). 
Others aim at the development of a provably correct prover, see for instance [2] 
and [3]. 

Finally, the certification provided by the Verifier depends on the correct im- 
plementation and execution of the Checker. The confidence in this assumption 
is rather high, as the Checker has been designed to be validated by end users, 
and given its simplicity also the compilation and the execution platform can be 
trusted. 

However, our approach does not rely on the accuracy of the correspondence 
between the actual GEM and tl.TM programs in input to the Verifier and their 
formM model. This correspondence is guaranteed by the Checker itself. As ex- 
plained in previous section, a large part of the Checking Conditions are intended 
to make sure that there is a one-to-one correspondence between the actual pro- 
grams and their model. This innovative feature is due to the requirement that 
the Verifier must be integrated in VFRAME, and therefore a manual intervention 
to generate the formal model would not be feasible. 

7 Conclus ion  and Resu l t s  

We have developed a Verifier which is able to certificate a real industrial safety 
critical software component. The Verifier is embedded within the safety critical 
architecture. As required by the industrial application, it is fully automatic and 
efficient. The Verifier has verified the translation of thousands of instructions in 
a few seconds. The certification requirement has been satisfied. The correctness 
of the Verifier depends only on an extremely simple and short portion of its code 
(a few hundred lines of c code) which can be easily understood and validated 
by end users. 

The project has provided further results and benefits. First, the development 
of the formal proofs of the semantic equivalence sketched in Section 4 revealed 
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that  one of the specified translations performed by the compiler was not seman- 
tically preserving. More precisely, the translation of GEM instructions of the form 
vl <- vl == v2, where Vl is boolean, had been specified as the mapping  presented 
in Section 4. This bug was discovered while failing to prove the corresponding 
case for Theorem 1. 

Second, by running the Verifier on substantial  examples of GEM to RTM trans- 
lations, implementat ion bugs were detected in the compiler. These bugs were 
pinpointed by the Checker failure to certify the correctness of the translation. 

The approach followed in this project is completely general and indepen- 
dent of the fact that  it is used to certify a particular component  of VFP~AME. 
Moreover, in spite of the fact that  some of the modules of the Logger and the 
Checker depend on the compiler, the architecture of the Verifier can be re-used 
for the certification of different systems. Such an architecture can be devised 
for several safety critical systems which need a certification of translations of 
data /programs/models /specif ica t ions ,  such as compilers, translators,  and spec- 
ification editors. 

References  

1. B. Boyer and Yu Y. Automated Correctness Proofs of Machine Code Programs for a 
Commercial Microprocessor. In Proc. of the 11th Conference on Automated Deduc- 
tion, number 607 in Lecture Notes in Computer Science, pages 416-430. Springer- 
Verlag, 1992. 

2. R.S. Boyer and J.S. Moore. A Theorem Prover for a Computational Logic. In M. E. 
Stickel, editor, Proc. of the lOth Con]erence on Automated Deduction, pages 1-15, 
Ka]serlautern, Germany, July 1990. Published as Springer LNAI, number 449. 

3. F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: Towards an Ar- 
chitecture for Open Mechanized Reasoning Systems. Technical Report 9409-15, 
IRST, Trento, Italy, 1994. 

4. D. Guaspari, C. Barbash, and D. Hoover. Checking critical code. Technical Report 
ORA TM-95-0081, Odyssey Research Associates, Ithaca, NY 14850 USA, September 
1995. 

5. M. Kaufmann and J S. Moore. Design Goals for ACL2. Technical Report 101, 
Computational Logic Inc., Austin, Texas, 1994. 

6. S. Kromodimoeljo, B. Pase, M. Saaltink, D. Craigen, and I. Meisels. The EVES 
system. In Proceedings of the International Lecture Series on "Functional Program- 
ming, Concurrency, Simulation and Automated Reasoning" (FPCSAR). McMaster 
University, August 1992. 

7. J.S. Moore, editor. Special Issue on Systems Verification, Journal of Automated 
Reasoning. Vol. 5, n. 4, 1989. 

8. S. Owre, J. Rushby, N. Shankar, and F. yon Henke. Formal verification for fault- 
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on 
Software Engineering, 20(2):107-125, February 1995. 

9. J. Profeta, N. Andrianos, B. Yu, B. Jonson, T. DeLong, D. Guaspari, and 
D. Jamsek. Safety Critical Systems Built with COTS. Computer, 29(11):54-60, 
November 1996. 


