
Model Checking and Transitive-Closure Logic*

Neil Im m erm an *.1 and Moshe Y. Vardi **.2

1 Computer Science Dept., University of Massachusetts, Amherst, MA 01003,
http://www.cs.umass.edu/,~immerman, immerman@cs.umass.edu

2 Computer Science Dept., Rice University, Houston, TX 77005-1892,
http://www.cs.rice.edu/,vvardi, vardi@cs.rice.edu

Abs t r ac t . We give a linear-time algorithm to translate any formula
from computation tree logic (CTL or CTL*) into an equivalent expres-
sion in a variable-confined fragment of transitive-closure logic FO(TC).
Traditionally, CTL and CTL* have been used to express queries for
model checking and then translated into #-calculus for symbolic eval-
uation. Evaluation of/z-calculus formulas is, however, complete for time
polynomial in the (typically huge) number of states in the Kripke struc-
ture. Thus, this is often not feasible, not parallelizable, and efficient in-
cremental strategies are unlikely to exist. By contrast, evaluation of any
formula in FO(TC) requires only NSPACE[log n]. This means that the
space requirements are manageable, the entire computation is paralleliz-
able, and efficient dynamic evaluation is possible.

1 Introduction

Model checking, proposed first as a paradigm for computer-aided verification of
finite-state programs in [CES1] and developed further in [BCM92, CES86, LP85,
QS81, VW86] has been gaining widespread acceptance lately (see [BBG94]).
The approach is especially appropriate for the design and verification of circuits
and distributed protocols. The detailed, low-level design can be automat ical ly
translated into a logical structure called a Kripke structure]C. We can then
write a series of short correctness conditions 91,92, �9 - �9 concerning the behavior
of the Kripke structure. The conditions are written in a formal language such as
computat ion tree logic (CTL) or the more expressive CTL*. Given/C and 9i, the
model-checking program will automatical ly test whether or not/(: satisfies 9i. If
it does, then confidence in the design is improved. If ~ does not satisfy some ~ ,
then the checking program will usually present a counter example which thus
exposes a bug in the design.

The Kripke structures used in model checking usually have a state for each
possible configuration of the circuit or protocol being designed. For this rea-
son they are often of size exponential in the size of the design. In this case,

* Part of the research reported here was conducted while the authors were visiting
DIMACS during the Special Year on Logic and Algorithm.

** Research partly supported by NSF grant CCR-9505446.
*** Research partly supported by NSF grant CCR-9628400

292

one usuMly represents the Kripke structure symbolically rather than explicitly,
often using ordered binary decision diagrams (OBDDs). The model checking per-
formed using these symbolic representations is called symbolic model checking
[BCM92, McM93].

The correctness conditions pi described above can be thought of as queries to
the Kripke structure. In fact, in this paper we emphasize the close relationship
between model checking and database query evaluation (cf. [Var97]). Optimiza-
tion of the queries is crucial. For this reason, the tradeoff between the expressive
power of the query language and the complexity of doing model checking is
important.

A powerful query language for model checking is the branching-time logic
CTL*. Consider the model checking problem for CTL* in which we fix a query
9o E CTL* and vary the Kripke structure 1~. The complexity of this problem,
called program complexity in [VW86] and data complexity in [Var82], is known to
be NSPACE[log n] [BVW94] for CTL*. Here n is the size of the Kripke structure
- as we have mentioned, n is often exponential in the size of the design being
verified.

The standard way to perform symbolic model checking using CTL* is to
translate the query to the modal p-calculus [Koz83, EL86]. A problem with this
is that the data complexity of the modal #-calculus is polynomial-time complete
[BVW94] (cf. [I86, Var82]), This means that evaluation of modal #-calculus
queries most likely requires polynomial space, is not parallelizable, and emcient
incremental evaluation strategies are unlikely to exist.

We give here a linear-time algorithm to translate any formula from CTL* into
an equivalent expression in a variable-confined fragment of transitive-closure
logic FO(TC). In fact, the resulting formulas have only two first-order vari-
ables. The resulting logic, denoted FO2(TC), is known to have a data complex-
ity of NSPACE[logn] [I87, Var82]. This means that the space requirements are
manageable, the entire computation is parallelizable, and entire computation is
parallelizable, and efficient incremental evaluation is possible (see, for example,
[PI94, ZSS94]). Thus, it is very promising to do model checking and symbolic
model checking using the language FO2(TC) rather than the more complex
modal p-calculus.

2 B a c k g r o u n d o n T e m p o r a l L o g i c a n d t h e M o d a l

/ , - c a l c u l u s

Let ~b = {pi , . . . ,pr} be a finite set of propositional symbols. A propositional
Kripke structure,]C = (S, R, ~r), is a tuple consisting of a finite set of states S,
a binary transition relation R _C S 2 , and a labeling function ~r :~b --~ 2 s, where
intuitively, ~r(pi) is the set of states at which pi is true. S is often called the
set of possible worlds, but we call it the set of states because in model checking
applications it usually represents the set of global states of the circuit or protocol
being designed. Typically, we are interested in infinite computation paths, so in
this paper we restrict our attention to Kripke structures in which every state

293

has at least one successor, which may be itself. We can meet this condition by
adding the loop R(s, s) to each state that has no other successors. A Kripke
structure may be thought of as a directed graph whose vertices are the states,
labeled by the set of propositional symbols they satisfy.

The propositional Kripke structure K may also be thought of as a finite rela-
tional structure, i.e., relational database, K* (S, R, Pl , . . . , P~*). The universe
of K* is the set of states S. The binary relation/~ C S 2 is the transition relation,
and a unary relation Pi = 1r(pi) is the set of states at which the proposition Pi
holds. For any first-order formula 9, we will use the notation K* ~ ~ to mean
that p is true in K*.

We use in this paper the computation tree logics CTL and CTL*. For defi-
nitions of syntax and semantics of these logics see [Emeg0].

The modal y-calculus is a propositional modal logic that includes the least-
fixed point operator (p) [Koz83, Eme97]. The modal y-calculus is strictly more
expressive than CTL*, and has polynomial-time data complexity (see next sec-
tion). As an example, we can write the CTL formula EFp as a least fixed point,

E r p _= # Y (p V { R) Y) (1)

Equation 1 can be generalized to show that all of CTL* can be interpreted
in the modal y-Calculus. See [Eme97, Var97] for details.

Fact 2

�9 There is a linear time algorithm that translates any formula in CTL into an

equivalent formula in the modal p-calculus.

�9 There is an exponential time algorithm that translates any formula in CTL*

into an equivalent formula in the modal p-calculus.

Symbolic model checking is typically carried out by first translating the CTL
correctness condition into the y-calculus [McM93]. A drawback of this approach
is that model checking of the y-calculus uses space polynomial in the size of the
usually huge Kripke structure. In the next section we describe transitive-closure
logic. We will see that although transitive-closure logic has lower complexity
than the y-calculus, it still suffices to interpret CTL*.

3 B a c k g r o u n d o n D e s c r i p t i v e C o m p l e x i t y

In descriptive complexity, we study finite logical structures - - relational databases
- - such as the Kripke structures,

,~* (S, ~:* ~:* = R , p 1 , . . . , p ~) .

The complexity of computing queries on such structures is intimately tied to
the power of variants of first-order logic needed to describe these queries. This
has been studied in great detail. See for example [EF95, I89, LR96, Var82].

294

Let FO be the set of first-order expressible properties. For example, consider
the first-order formula,

_= (Vx)(p(x) (3y)(n(x, A p(y))).

A Kripke structure ~* satisfies ~ - - in symbols, K* ~ ~ - - iff every state
satisfying p has a successor state that also satisfies p.

The class FO captures the complexity class AC ~ consisting of those properties
checkable by bounded depth polynomial-size circuits. This is equal to the set of
properties computable in constant time on a concurrent parMlel random access
machine that has at most polynomiatly many processors [I89a].

To obtain a richer class of queries, let FO(LFP) be first-order logic extended
by a least-fixed-point operator. This is the closure of first-order logic under the
power to define new relations by induction. We can view the modal #-calculus
as a restriction of FO(LFP) in which all fixed points are taken over monadic
relations, and such that only two domain variables are used. Let FO k be the
restriction of FO such that the only domain variables are x i , . . . , xk- Let LFP ~
be the restriction of LFP to act only on inductive definitions of arity at most r.
Then there is a linear-time mapping of each formula from the modal-mu calculus
to an equivalent formula in FO2(LFP 1) [Var97].

As an example, consider the #-calculus formula, r _= #Y(p V (R)Y). Recall
from Equation 1 that r is equivalent to the CTL formula EFp. This can be
interpreted in FO(LFP) as the formula,

r - LFPy, y(p(y) V 3y'(R(y, yt) A Y(y~))) (y). (3)

The equivalence between r and r is that for any propositional Kripke struc-
ture ~ and state s,

(t:, s) r (lc*, s/y) r

It is well known that FO(LFP) captures polynomial time. The following facts
assume that structures in question are finite and include a total ordering on their
universes.

Fact 4 ([I86, Var82]) The queries computable in polynomial time are exactly
those expressible in FO(LFP).

While the modal /~-calculus is a proper subset of FO(LFP), it still con-
tains problems complete for polynomial-time [BVW94]. Since the model checking
problem for CTL* is contained in NSPACE[log n], it would be much better to
interpret CTL* in a logic with this lower complexity.

Let the formula ~(Xl, . . . xk, yl, .. �9 y~) represent a binary relation on k-tuples.
We express the reflexive, transitive closure of this relation using the transitive-
closure operator (TC), as follows: TC~5 T. Let FO(TC) be the closure of first-
order logic under the transitive-closure operator. For example, the following
formula is equivalent to r (Equation 3) and thus interprets the CTL formula,

295

EFp. It does so directly, by saying that there is an R-path to a state satisfying
p.

r - (3y')[(TCy,~,R(y,y'))(y, yP) A p(y')]

We will see in the next section that every formula in CTL* can be so inter~
preted.

Transitive closure logic exactly captures nondeterministic logspace:

Fact 5 ([I87, I88]) The queries computable in NSPACE[logn] are exactly those
expressible in FO(TC).

The number of variables used is an important descriptive resource. Each do-
main variable xl ranges over the universe of its input structure. In the definition
of FO k, we allow an unbounded number of boolean variables, bl , . . . , bc in ad-
dition to the k domain variables. Boolean variables are essentially first-order
variables that are restricted to range only over the first two elements of the
universe, which we fix as 0 and 1. Including also boolean variables makes the
definition of FO ~ more robust [I91]. As a simple example, we can interpret the
conjunction EFp A EFq using a universally quantified boolean variable,

(Vb)(3y')[(TCy,y,R(y, y'))(y, ~') A (b Ap(y') V ~b A q(y'))].

We note, however, that the inclusion of boolean variables has a nontrivial complexity-
theoretic consequence. While "pure" (i.e., boolean-variable-free) queries in FO k (TC)
can be evaluated in uniform polynomial time, the space required to evaluate
queries in FOk(TC) is polynomial in the number of boolean variables.

We sometimes want a strict transitive closure operator: TCS(~) denotes the
transtive closure of ~, as opposed to the reflexive, transitive closure of ~. The
strict and reflexive transitive closure operators are definable from each other, as
follows. Note that no extra variables are needed:

T C (p (y , y ')) (y , y ') = y = y' V TCS(~(y ,y~)) (y , y ~)

TC~(~(y,y '))(y,y ') - (y r y' A TC(~(y,y ')) (y ,y '))

v (y=y' A (3y')(~(y,y')A TC(~(y, y'))(y', y)))

4 T r a n s i t i v e C l o s u r e L o g i c S u f f i c e s

In this section we present an algorithm that translates any formula in CTL* to
an equivalent formula in FO2(TC), i.e., first-order logic with only two first-order
variables, extended by the transitive-closure operator. We first do the case of
CTL, which is significantly simpler.

296

T h e o r e m 6. There is a transformation f from state formulas in CTL to formu-
las in FO2(TC) that preserves meaning. That is,]'or all state formulas ~a E CTL
and all Kripke structures IC, and states s,

(IC, s) ~ ~ r162 (1C*, s/y) ~ f(~p) (7)

Proof. We define f by induction on ~p,

- f(p) = p(y), for predicate symbol p

- f (- ~) = - ~ f (~)
- f (~ A r = f (~) A f (r
- f(E(~aUr = (3yt)(TC(M/(~))(y,y') A f (r

where, M~(y,y') = R(y, y') A a(y)
- f(E({Br = (3y')(TC(M/(r A ((f(~)(y')Af(r162

It is easy to show by induction that Equation 7 holds. The interesting cases
are the last two: For "Until", note that there is a path starting at y along which
~ U r holds iff there is some point y' at which r holds and there is a path from
y to y~ along which ~ holds. For "Before", there is a path starting at y along
which 9 B r holds iff there is some point y~ for which there is a path from y to y'
along which r holds, and either ~, and r both hold at y / o r there is an infinite
path, i.e., a cycle, starting at y~ along which r remains true. [3

Note that the formulas f (~) does not use boolean variables. We would be
happier if the above f were linear-time computable. The problem is that the
formula f (r occurs more than once in the definition of f (E (~ B r This could
cause an exponential blowup in the size of the resulting formula. We will defer
this problem to Corollary 11.

The difficulty in extending Theorem 6 to CTL* occurs in a formula such as

= E ((p - ~ qU~)Ut)

As before, we can express that at some state y', t holds, and that there is a
path from y to yt along which (p -* qUr) holds. The problem is that we must
remember our obligations along this path, i.e., whether we need to preserve qUr,
and we may need to preserve this along the same path, beyond y~.

To solve this problem we introduce a new boolean variable b, whose purpose is
to remember our obligation concerning the formula qUr. The following formula
a* asserts that there is a path to a future state yf and a boolean value b t such
that (p --* qUr) holds along the path, t holds at y~, and if b' holds, i.e., we are
still obliged to fulfill qUr, then there is a continuation of the path along which
qUr holds,

4" _= (3~'b')(TC(~)(y, f~l~e, v', b') A t(y') A
b' -~ (3~)(TC(M~)(y', y) A r(y))

~(y, b, y', b') - ((p v b) -~ (r v (q A b'))) A n(y , y')

297

Observe that as desired, for all Kripke structures JC and states s,

qC, s) ~ ~* (~:*,s/y) ~ a *)

Reiterating the main point, in addition to the log n bits needed to name y -
the current state in our n-state Kripke structure - we use one additional bit b
to record our obligations concerning the truth of a formula along the remainder
of a path.

We now describe this construction in general so that we may extend Theorem
6 to CTL*. Let E(~) be a CTL* formula. Define the closure of ~ (cI(~)) to be
the set of path subformulas of ~. We introduce a boolean variable b~ for each
a E d(~). Intuitively, we use the boolean variables to encode the state of the
automaton that runs along a path and checks that the path satisfies a path
formula (see [VW94]).

We inductively define a mapping g from state formulas E(~) in CTL* to
equivalent formulas in FO2(TC). Let b be a tuple of all the boolean variables
b~, for ~ E cI(~). Define the transition relation R~ b, y', ~) as follows. In each
case, the comment on the right is the condition underwhich the given conjunct is
included in the formula. (We assume that ~ is written in positive-normal form.)

R(y, y')
A b~ --~ g(a)(y) for any state formula c~ E c](~)
A b~^ z --* ba A b~ for any path formula c~ A/~ E cl(~)
A b~v~ ~ b~ V b~ for any path formula ~ V ~ E cl(~)
A bx~ ---+ b~ for any path formula Xc~ E cI(~)
A bau~ -* bz V (b~ A b~t~) for any path formula c~U~ E c1(9~)
A b ~ --~ bz A (b~ V b~Z) for any path formula c~Bfl E cl(~)

It follows by an inductive proof from the definition of R~ that if the structure
/C* satisfies the formula,

TC~R0- , (3y'bb')(b~ A TC(R~)(y,b,y',~) A (~)(y,~7, y,,~7)) (8)

then there is a path from y to y' along which ~ may be true. The reason we
, , !

say, "may be, is that there may be some booleans b~3O that are true, promising
that eventually fl will become true, but in fact as we walk around the cycle, c~
remains true but fl never becomes true. Essentially, the boolean variables encode
only the states of the "local automaton" in [VW94], which does not guarantee
the satisfaction of "Until" formulas.

In order to solve this problem, let ~ be a tuple of bits rn~vz, one for each
"Until" formula, aU~ E cI(~). We use the "memory bit" m~uz to check that

actually occurs on the path from y~ back to itself. We do this by starting
the cycle with m~uz being false and only letting it become true when fl holds.
Essentially, the memory bits encode the state of the "eventuality automaton" in
[VW94].

Define the relation R~(y, b, ~., y~, b', m') as follows,

298

Ro(y, ~,, ~', b,--)
' -* (rnaufl V bfl) for any formula aUf l e cl(~p) A rnc~UC ~

Finally, we define the desired mapping g from CTL* state formulas to FO2(TC)
as follows:

g(p) = p(y)

g(~ A Z) = g(~) A g(fl)
g (~) = ~g (.)

g(~,(~)) = (3~' ~gm)(by
A TC(R~)(y, b, false, y', b', false)

A TC ~ (R~,)(y', b', false, y', ~7,-i-g)
!

A bau p ~ m~uz for any formula c~Ufi E c1(~)

The following can now be proved by induction on 9,

T h e o r e m 9. The map g defined above translates CTL* state formulas to equiv-
alent formulas in FO2(TC). That is, for all Kripke structures tO, states s, and
CTL '~ state formulas f~,

(~, s) ~ ~ ~ (~c*, s/y) ~ g(~) (lo)

The transformation g suffers from a similar problem as the transformation
f of Theorem 6. The problem is that the formula R~ is written twice in the
definition of g(E(~)) . This may cause the size of the formula g(7) to grow expo-
nentially in the nesting depth of path quantifiers (E, A) in 7. In practice there
is little reason for this nesting depth to be greater than one or two. We can,
however, alleviate this problem in general as follows:

C o r o l l a r y 11. The mapping g above may be modified to run in linear time and
thus produce linear size output, in any of the following ways:

1. Modify the mapping allowing another variable, that is, map to FOU(TC).
2. Allow the definition of R~ to be written once and reused, that is, we represent

the formula as a first-order circuit.
3. Allow the construction, '~R ~ := TC~(R~)," that is, whenever we compute the

transitive closure of a relation we may reuse it.

Proof. Items 2 and 3 simply change our mode of representation and are thus
obvious. The idea in item 1 is that with an extra state variable t and a universal
quantifier, we can eliminate the extra occurrence of R~. For example, we can
rewrite the definition of G(E(~)) as follows:

299

(t = y A ~ = b A d = f a l s e V t = y ' A ~ = b ~ A d = ~) -~
TC" (R~)(t, ~, false, y', ~7, ~)

/ !
A b~u z --+ rn~u z for any formula ~U/~ E cl(~)

Note: In all of the cases of Corollary 11, the resulting formulas remain in
FO(TC) and thus have data complexity NSPACE[Iog n]. In addition, conditions
2 and 3 are quite feasible from a symbolic model checking point of view: we would
naturally compute the OBDD for the relation R~, and its transitive closure only
once.

The use of the finiteness of the Kripke structures,/(;*, in our proofs of Theo-
rems 6 and 9 is crucial. It is known that CTL cannot be translated to FO(TC)
over all structures [Ott].

5 Appl icat ions to Symbol ic Mode l Checking

The main application of this work is to symbolic model checking. In this situa-
tion, the Kripke model is too large to be represented in memory and is instead
represented symbolically, often via an OBDD.

From a descriptive point of view, this corresponds to a Kripke structure
determined by a set of n boolean variables. Let,

,4 = ({xl ,x2, . . . ,x ,} ,~,pl , . . . ,pr>

Here the universe of .4 is a set of n boolean variables. A state in the cor-
responding Kripke structure /(;(.4) is a unary relation S over .4, i.e., a truth
assignment to the elements of IA]. The formula, 5, which might be represented
as an OBDD, expresses the transition relation, 5(6:1, ,-92), on states of/C(A).
Similarly, the formulas p l , - - - , pr represent the relevant unary relations that are
true or false at each state S of/(;(..4).

Above, we expressed CTL or CTL* conditions concerning a Kripke structure
/r in FO2(TC), that is, in first-order logic with two variables, and a transitive
closure operator. In the symbolic setting, such a formula concerning/C(A) is best
thought of as a second-order, monadic formula concerning the structure A. That
is, the elements of the universe of/(;(A) are unary relations over A. Thus, the
correctness conditions in question are queries to .4 i n the language MSO2(TC)
- - monadic, second-order formulas, with only two second-order variables, and a
transitive closure operator.

It is not hard to see that

Fact 12 NSPACE[n] = MSO(TC).

300

Thus, the CTL and CTL* queries are all checkable in nondeterministic linear
space [BVW94 t. Here the space is linear in n, the size of the design of the circuit
or protocol to be verified, not 2 '~, the size of the Kripke structure/(;(,4).

It is important in our simulations that we used as few variables as possible.
With two second-order, monadic variables, the paths to be checked can have
length at most 2 n. Each boolean variable that we add, can at most double the
length of such a path, whereas adding another second-order, monadie variable
is essentially n boolean variables, and could thus increase the length of paths to
be searched by a factor of 2 ~. We suspect that the number of boolean variables
needed for typical CTL* queries is quite small. It is an interesting open open
question how many boolean variables are needed in the worst case. (For example,
in the context of linear temporal logic, analogous translations are known that
use no boolean variables [EVW97].)

Experiments need to be performed concerning practical aspects of using
FO(TC) as a language for expressing correctness queries. While the straight-
forward approach for adopting transitive-clousre algorithms to symbolic model
checking have failed [TBK95], more sophisticated transitive-closure algorithms
(see [Ya90]) might be quite useful for symbolic model checking.

This work suggests a new paradigm for model checking: One can write the
conditions to be checked in a very expressive language, e.g., second-order logic or
first-order logic with least-fixed point operators or FO(LFP). Next, if the Kripke
structure is small, we may be able to check this condition automatically. If not, we
may need to break our correctness conditions down into simpler conditions which
may be expressed in simpler languages, e.g., FO(TC), which can be automatically
checked in a feasible amount of time. Even within FO(TC), there is a hierarchy
of how many varables we need, and how many boolean variables in FO2(TC).
There is a well-developed theory in the context of finite-model theory of the
relationship between descriptive complexity and computational complexity [I89].
This understanding could be also important in computer-aided verification.

6 C o n c l u s i o n s a n d F u t u r e W o r k

We have shown that every formula in CTL* may be translated in linear time
to an equivalent formula in transitive closure-logic, FO(TC). Since the language
FO(TC) has data complexity NSPACE[logn], it admits more efficient model
checking algorithms than the modal p-calculus, which has a polynomial-time-
complete data complexity

There are several open questions concerning the number of variables needed
for the resulting formulas in FO(TC):

1. We have shown that the resulting formulas are linear size when we allow
three domain variables, that is they are in FO3(TC). It is open whether
linear size can be maintained when we map to FO2(TC), or indeed, whether
an exponential blow-up is required.

301

2. We would like to know how many boolean variables are needed to interpret
CTL* in FO2(TC) (our construction allows a linear number of such boolean
variables).

Finally, our approach of using transitive-closure logic rather than the much
more complex #-calculus for model checking might be useful in practice. This
requires further investigation and testing. Part of the program of Descriptive
Complexity is that the computational complexity of query evaluation should
be apparent just from looking at the syntax of the query under consideration.
Translating CTL* queries into transitive-closure logic rather than #-calculus
facilitates this approach.

A c k n o w l e d g e m e n t s : Thanks to Kousha Etessami and Thomas Wilke for
helpful comments, corrections, and suggestions.

References

[BBG94] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman and M. Yoel, "Methodology
and System for Practical Formal Verification of Reactive Hardware," in Com-
puter Aided Verification, Proc. 6th Int. Conference, D. L. Dill, ed., LNCS 818,
1994, Springer-Verlag, 182-193.

[BVW94] O. Bernholtz, M.Y. Vardi and P. Wolper, "An Automata-Theoretic Ap-
proach to Branching-Time Model Checking," in Computer Aided Verification,
Proc. 6th Int. Conference, D. L. Dill, ed., LNCS 818, 1994, Springer-Verlag,
142-155.

[BCM92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang, "Sym-
boric Model Checking: 1020 States and Beyond," Information and Computa-
tion 98(2)(1992), 142-170.

[CE81] E.M. Clarke and E.A. Emerson, "Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic," in Proc. Workshop on
Logic of Programs, LNCS 131, 1981, Springer-Verlag, 52-71.

[CES86] E.M. Clarke, E.A. Emerson and A.P. Sistla, "Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications," A CM Trans-
actions on Programming Languages and Systems, 8(2) (1986), 244-263.

[EF95] H.-D. Ebbinghaus, J. Flum, Finite Model Theory 1995, Springer 1995.
[Eme90] E.A. Emerson, "Temporal and modal logic," in Handbook of theoretical com-

puter science, 1990, 997-1072.
[Eme97] E. A. Emerson, "Model Checking and the Mu-Calculus," in Descriptive Com-

plexity and Finite Models, N. Immerman and Ph. Kolaitis, eds., 1997, Amer-
ican Mathematical Society.

[EL86] E.A. Emerson and C.-L. Lei, "Efficient Model Checking in Fragments of the
Propositional mu-Calculus," Proc. 1st Syrup. on Logic in Computer Science
(1986), 267-278.

[EVW97] K. Etessami, M.Y. Vardi, and T. Wilke, "First-Order Logic with Two Vari-
ables and Unary Temporal Logic," Proc. 12th IEEE Symp. on Logic in Com-
puter Science, July 1997.

[I86] N. Immerman, "Relational Queries Computable in Polynomial Time," Infor-
mation and Control, 68 (1986), 86-104.

302

[IS7]

[ISS]

[IS9]

[IS9a]

[I91]

[Kozs3]

[LR96]
[LP85]

[McM93]
[Ott]
[PI94]

[QS81]

[TBK95]

[VatS2]

[Var97]

[vw84]

[vws6]

[VW94]

[Ya90]

[zss94]

N. tmmerman, "Languages That Capture Complexity Classes," SIAM Y.
Comput. 16(4) (1987), 760-778.
N. Immerman, "Nondeterministie Space is Closed Under Complementation,"
SIAM d. Comput. 17(5) (1988), 935-938.
N. Immerman, "Descriptive and Computational Complexity,"in Computa-
tional Complexity Theory, ed. J. Hartmanis, Lecture Notes for AMS Short
Course on Computational Complexity Theory, Proc. Syrup. in Applied Math.
38, American Mathematical Society (1989), 75-91.
N. Immerman, Expressibility and Parallel Complexity, SIAM J. o] Comput
18 (1989), 625-638.
N. Immerman, "DSPACE[n k] = VAR[k + 1]," Sixth IEEE Structure in Com-
plexity Theory Syrup. (July, 1991), 334-340.
D. Kozen, "Results on the Propositional #-Calculus," Theoretical Computer
Science, 27 (1983), 333-354.
R. Lassaigne and M. de Rougemont, Logique et Complexitd, 1996, Hermes.
O. Lichtenstein and A. Pnueli, "Checking that Finite State Concurrent Pro-
grams Satisfy their Linear Specification" Proc. 12th A CM Syrup. on Principles
o] Programming Languages (1985), 97-107.
K. McMillan, Symbolic Model Checking, 1993~ Kluwer.

M. Otto, private communication.
S. Patnaik and N. Immerman, "Dyn-FO: A Parallel, Dynamic Complexity
Class," Proc. ACM Symp. on Princwles of Database Systems (1994), 210-
221.
J.P. Queille and J. Sifakis, "Specification and Verification of Concurrent Sys-
tems in Cesar," Proc. 5th Int'l Symp. on Programming, LNCS 137, 1981,
Springer-Verlag, 337-351.
H. J. Touati, R. K. Brayton, and R. P. Kurshan, "Testing language con-

tMnment for w-automata using BDD's," Information and Computation,
118(1):101-109, 1995.
M.Y. Vardi, "Complexity
of Relational Query Languages," ACM Symp. Theory (9] Comput. (1982),
137-146.
M.Y. Vardi, "Why is Modal Logic So Robustly Decidable?'in Descriptive
Complexity and Finite Models, N. Immerman and Ph. Kolaitis, eds., 1997,
American Mathematical Society.
M.Y. Vardi and P. Wolper, "Yet Another Process Logic," in Logics of Pro-
grams, LNCS 164, 1984, Springer-Verlag, 501-512.
M.Y. Vardi and P. Wolper, "An Automata-Theoretic Approach to Automatic
Program Verification," Proc. 1st Syrup. on Logic in Computer Science (1986),
322-331.
M.Y. Vardi and P. Wolper, "Reasoning about Infinite Computations," Infor-
mation and Computation 115(1) (1994), 1-37.
M. Yannakalds, "Graph-theoretic methods in database theory", Proc. 9th
ACM Syrup. on Principles o] Database Systems, 230-242, 1990.
S. Zhang, S.A. Smolka, and O. Sokolsky, "On the Parallel Complexity of
Model Checking in the Modal #-Calculus," Proc. 9th IEEE Syrup. on Logic
in Computer Science, 1994, 154-163.

