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Abstract .  We present a new symbolic model checker which conserva- 
tively evaluates safety and liveness properties on infinite-state programs. 
We use Presburger formulas to symbolically encode a program's tran- 
sition system, as well as its model-checking computations. All fixpoint 
calculations are executed symbolica~y, and their convergence is guaran- 
teed by using approximation techniques. We demonstrate the promise of 
this technology on some well-known infinite-state concurrency problems. 

1 I n t r o d u c t i o n  

In recent years, there has been a surge of progress in the area of automated 
analysis for finite-state systems. Several reasons for this success are: (1) the de- 
velopment of powerful techniques such as model-checking (e.g., [5, 7]), which can 
efficiently verify safety and liveness properties; (2) innovative new data structures 
that  symbolically encode large sets of states in compact formats (e.g., [4, 5]); 
and (3) new ways of carrying out compositional and local analysis, to assuage 
the "state explosion" usually associated with concurrency (e.g., [6, 9, 14]). But 
when transition systems are not restricted to be finite, most of these techniques 
are no longer applicable, as they inherently depend on all underlying types be- 
ing bounded. Also general safety and liveness properties become undecidable for 
infinite transition systems. 

We have developed a symbolic model checker to attack this problem, which 
symbolically encodes transition relations and sets of states using affine con- 
straints on integer variables, logical connectives and quantifiers (i.e., Presburger 
formulas). Then, it efficiently manipulates these formulas (via a fast Presburger 
solver called the Omega library [15, 17]) to derive truth sets of temporal logic for- 
mulas and their fixpoint computations. Also, we use conservative approximation 
techniques in analysis of infinite state programs, which guarantee convergence 
by allowing false negatives. 

In this paper we demonstrate our model checker's effectiveness on some clas- 
sical infinite-state programs, taken from the concurrency literature [2]. While 
relatively small, they possess some interesting subtleties, especially in the tricky 
way their infinite-state variables influence control flow. 

* This work was supported in part by ONR grant N00014-94-10228, NSF YI CCR- 
9357850 and a Packard Fellowship. 
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Other methods have been proposed to deal with infinite-state programs like 
these, and we note some of them here. In [8] Clarke et al. present a conservative 
model checking technique, by producing a finite abstraction of the program (e.g. 
via a congruence relation modulo a suitable integer), and then checking the 
property of interest on the abstraction. In [12] Dingel and Filkorn extend this 
method using "assumption-commitment" style reasoning and theorem proving. 
While these techniques require the user to find the appropriate abstractions - 
and hence are not completely automatable - we see them as being orthogonal to 
our approach. There may be cases where abstraction methods can vastly reduce 
the state space without achieving a finite representation. In these cases our model 
checker can be used on the infinite abstract models. 

Our work was influenced by known techniques from abstract interpreta- 
tion [10, 11]; specifically, we use some approximation methods first developed for 
that  domain. Most reachability properties can be formulated as least fixpoints 
over sets of a program's states; if the state space is infinite, these fixpoints may 
not be computable. Abstract interpretation provides a way of approximating 
these fixpoints via a technique known as "widening" - which can compute a 
least fixpoint's upper bound in finite time. Since our basic temporal  operators 
require similar computations, we were able to successfully use this method in 
conjunction with the Omega library. 

Finally, our encoding of program states is similar to that  used by Alur el al. 
in verifying hybrid systems [1]. A hybrid system is a discrete control automaton,  
which interacts with continuously-changing, external parameters. Like us, Alur 
et al. used an application of widening to help solve verification queries over 
linear hybrid a u t o m a t a -  in which transition relations are defined in terms of 
affine constraints over the variables of the system. 

The fundamental difference in our work is that  we encode sets of integers - 
as opposed to the real numbers used in hybrid systems - and we can thus use 
Presburger formulas as our symbolic representation. This enables us to express 
and prove properties such as "x is even," using quantification. In general, satis- 
fiability problems over constraints with integer variables are significantly harder 
to deal with. For example, checking to see if there exists an integer solution to 
a set of linear constraints is NP-hard, while the analogous real-valued problem 
can be solved in polynomial time. Also, we take our fixpoints by storing, at each 
step, unions of convex regions (with possible stride constraints); Alur el al. force 
intermediate results into a single convex region. While their strategy is one way 
to control potentiM state explosion, we have found that  in our problem domain, 
most interesting properties cannot be proved unless multiple convex regions are 
used at each point. 

The paper is organized as follows. First we present the syntax, semantics, 
and Presburger encodings for concurrent programs and their properties. Then 
we describe our symbolic model checker, and show how it exploits the Presburger 
representation. After formally defining conservative approximations, we discuss 
the specific approximation techniques for computing upper and lower bounds of 
fixpoints. Finally, we conclude with some discussion on our results. 
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Data  Variables: a, b: positive integer 
Contro l  Variables: pc~ : {T1, W1, C1 }, pc2 : {T2, W2, C2} 
Initial  Condi t ion:  a = b = 0 A pc1 = T1 A pc2 = T2 
Events: 
eT1 enabled:  pc1 = TI eT2 enabled:  pc2 = T2 

act ion:  pc'l = W 1 A  a' = b + l action:  pc~ = W2 A b' = a + l 
ewl  enabled:  pc1 = W1A  ew2 enabled:  pc2 = W 2 A  

(a < ~vb=o)  (b< aVa=O) 
action: pe~ = C1 action:  pe~ = C2 

ee l  enabled:  pc1 = C1 ec2 enabled:  pc2 = C2 
action: pe~ = T 1 A  a' = O act ion:  pc'2 = T2 A b' = O 

Fig. 1. The bakery algorithm. 

2 R e p r e s e n t a t i o n  o f  P r o g r a m s  a n d  P r o p e r t i e s  

We use the event-action language from [18] as our syntax for concurrent pro- 
grams, with a semantics defined in terms of infinite transition systems. A con- 
current program C = (V, I ,  E )  is represented by (1) a finite set of data and 
control variables V; (2) an initial condition I, which specifies the starting states 
of the program; and (3) a finite set of events E, where each event is considered 
atomic. The state of a program is determined by the values of its data  and con- 
trol variables. We assume that the domain of each variable is a countable set. 
Each event is represented with an enabling condition and an action, where the 
enabling condition constrains the states in which the event can occur, and the 
action defines a transformation on the variables of the program. 

Consider the concurrent program shown in Figure 1, which implements the 
bakery  a l g o r i t h m  [2] to achieve mutual  exclusion between two processes. Here the 
control points for each process are denoted T, W, C, which stand for t h i n k i n g ,  

w a i t i n g  or in  c r i t i ca l  sec t ion ,  respectively. If a variable v is used in an event, then 
the symbol v ~ denotes the new value of v after the action. If v is not mentioned 
in the action of an event, then we assume that  its value is not altered by that  
event. 

When a process wants to enter the critical section it first gets a ticket, which 
will be higher than those of all other processes currently in the critical section or 
waiting for entry. In the above system, variables a and b hold the ticket values 
for processes 1 and 2, respectively; a process gets its ticket by simply adding 
one to the highest outstanding ticket number. Note that variables a and b can 
increase without bound; i.e., this is not a finite-state program. 

Given a program C = (V, I ,  E )  in the above language, we model it as an 
infinite transition system M = (S, I, X, L), where S is the set of states, I is the 
set of initial states, X C S • S is the transition relation (derived from the set 
of events E),  and L : S • S F  --~ {True, False) is the valuation function for state 
formulas over the program's variables. (We define the set of state formulas S F  

below.) The set of states S is obtained by taking Cartesian product of domains 
of all program variables; hence each state corresponds to a valuation of all the 
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variables of the program. 
Every event e E E defines a binary relation on the program's states, X~ C S• 

S, such that  X~ = {(8, s ' ) :  s C enabled(e)  A (8, s') C act ion(e)} where 8 and 
s' denote program's states before and after the execution of event e, respectively. 
The sets enabled(e)  and act ion(e)  respectively denote the enabling condition 
and action of event e. Hence the global transition relation is X = UeeE X~. Note 
that  we use an interleaving model, where each transition represents execution of 
a single event, i.e., only one event can occur at a time. 

P r e s b u r g e r  fo rmu la s .  The bakery algorithm's mutual  exclusion requirement 
asserts that the following property stays invariant over all executions: -7 (pc1 = 
C1 A pc2 = C2). We call this type of assertion a state formula. And in general, we 
define the set of state formulas S F  for a program C as all Presburger formulas 
which range over program's variables. Presburger formulas are generated by the 
following grammar: 

f ::= t_<t  ] (f) I f A f  I-~f t 3vat  f t ::= (t) [ t + t  [va r  ] c o n s t a n t  

Here, the terminals c o n s t a n t  and var  represent integer constants and variables, 
respectively. Using this base language, we can easily represent formulas including 
<, =, V, V, as well as multiplication by a constant. The set of closed formulas 
defined by the above grammar forms the theory of integers with addition, called 
Presburger arithmetic. An important property of Presburger arithmetic is that  
validity is decidable. 

In general, the worst-case time bound for determining validity in Presburger 
arithmetic is prohibitive [13]. Yet we have found that  the Omega library [15, 17] 
is quite efficient at solving the problems that arise in our analysis, which typi- 
cally possess a small number of constraints, and do not contain multiple levels 
of alternating quantifiers. The Omega library uses extensions of Fourier variable 
elimination to solve integer programming problems, along with a set of transfor- 
mation functions and heuristics to help convert real-valued approximations into 
discrete-valued solutions. 

T e m p o r a l  P r o p e r t i e s .  We use four CTL-style modal operators as the basis for 
our temporal logic - the "quantified-next-state" operators ( 3 0  and v o ) ,  and 
"quantified-eventuality" operators (3~ and V~). Thus, the logic we use to reason 
about a programis generated over the set {f  E SF, 3 0 ,  VO, 3~,  V�9 A, V, -7}. 
As usual, quantified-invariant operators can easily be represented as 3t2f = 
-~V~-~f, and Vt3f = -~3~-~f, respectively. 

The semantics of a temporal formula is defined on the paths of a program's 
transition system, M = (S, I, X, L). A path (So, sl, s2 , . . . )  is a (finite or infinite) 
sequence of states, such that  for each successive pair of states (sl, si+l) C X. 
Unlike Clarke et al. [7], we do not require the transition relation X to be total. 
Rather, the semantics is defined using maximal paths [3] (as opposed to infinite 
paths). A maximal path is one which is either infinite, or it ends with a state 
that  has no successors. The semantics of the temporal operators can then be 
defined as follows: A state so satisfies Y O f ( 3 0  f )  if and only if for all (some) 
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maximal paths (so, sl,  s2 , . . . )  with length _> 2, sl satisfies f .  A state so satisfies 
VOf (3Of)  if and only if for all (some) maximal paths (So, sl,  s2 , . . . )  there exists 
an i such that  s~ satisfies f .  

In this language, the bakery algorithm's mutual-exclusion property is ex- 
pressed as VD(-~(pcl = C1 A pc2 = 6'2)), that  is, the two processes never reach 
the critical section at the same time. 

3 S y m b o l i c  A n a l y s i s  

Presburger f o r m u l a s -  and their corresponding set-theoretic interpretations - 
give us a convenient way to symbolically encode sets of program states. More- 
over, we also use this encoding to represent the program's underlying transi- 
tion relation. For a given event e, if we assume that  enab l ed (e )  and ac t ion (e )  
are both representable as Presburger formulas (which prevents us, for example, 
from defining multiplication within a single event), then X~ is representable as 
a Presburger formula. This results in [E I Presburger formulas, which together 
symbolically encode the transition relation X. 

To carry out our analysis, we exploit the natural partitioning induced by valu- 
ations of the control variables, and we incrementally analyze the program by con- 
sidering one class at a time. When applied to the bakery program this yields the 
following partitioning of the state space: P = {S(T1,T~), S(T1,W~),.. . ,  S(c~,c2)} 
where, for example, 

S(Cl,T2) = {(pcl,pc2~ a, b) : pc1 -= C1 Apc2 = T2}. 

We can then parti t ion any subset of S as follows: If Q c_ S, then PC2 = 
{Q1, Q 2 , . . . ,  Q.}  is a partitioning of Q, where each Qi = QNS~ (for all S i e  P) .  
E.g., in the bakery program, the set Q = {(pcl,pc2, a,b) : a < b} denotes all 
states in which a is less than b. Using a partitioning via control points, we have 
Pc2 = {Q(TI,T2), Q(T~,W2),... ~ Q(C~,C2)} where, for example, 

Q(c1,c2) -- {(pet,pc2, a, b) : pc1 --- C1 A pc2 -~ C2 A a < b} 

which is the set of states where a is less than b and both processes are at the 
critical section. 

After partitioning of the state space, we use the Omega library [15] to help 
symbolically compute the truth sets for the temporal properties at hand. The 
Omega library includes a large collection of object classes to efficiently manipu- 
late Presburger formulas; to date it has mainly been used in high-performance 
compilers, specifically for dependence analysis, program transformations, and 
detecting redundant synchronization [16, 17]. The particular Omega functions 
we use are shown in Figure 2(A). These functions take symbolic representations 
of sets or relations as inputs (i.e., a Presburger formula representing a set or a 
relation), and return the symbolic form of a set or a relation as output.  

To symbolically compute the temporal operators, we define a function p r e d  : 
2 s --~ 2 s, called the predecessor function, which, given a set of states, returns 
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SYMBOLIC OMEGA OPERATIONS 

F M G : symbolic intersection 
F U G : symbolic union 
F -  G : symbolic difference 
F -1 : symbolic inverse of 

relation F 
F[G] : restrict domain of 

relation F to constraint 
G and return the range 
of the result 

hull(F) :convex hull of F 

PROCEDU~ CHECK(f) 
CASE 

f E S F  : RETURN(f) 
f ----- ~ f l  : RETURN(S -- f l )  

f = k ^ f~: RETURN(f~ n A) 
f = fl V f2: P~TUaN(fl U f2) 
f = 3 �9 : RETu~(r,~d(f~)) 
f = V 0 f l  : RETURN(S -- p r e d ( S  - f l ) )  

f : 3<>A : Q o = A  
Qi+l = Qi u pred(Qi) 
RETURN(Qn) when Q~ -- Q~+I 

.f=V<>fl :Qo=A 
Qi+l - Qi u (pred(Qi) - pred(S - Qi)) 

RETUaN(Q~) when Q~ -- Q~+I 

Fig. 2. (A) Omega functions, and (B) symbolic model checker. 

all the states that  can reach this set in one step (i.e. after execution of a single 
event ): 

pred(Q)  de__=f {s:  s' G Q A (s, s') G X } .  

Using the Omega operator in Figure 2(A) we have pred(Q)  = X - I [ Q ] .  More- 
over, we can symbolically compute p r e d  with respect to our program's parti- 
tioning, and maintain a formula for each partition class, as follows: 

pred(Q) =pred(  [.J (QnS~))= [_J pred(QnS~)= [..J x~-l[Qn$~]. 
SiEP SiEP SiEP, eEE 

By performing this computation individually for each partition class, we exploit 
the fact that  many formulas inherently involve only small parts of the program's 
state space. For example, consider the states where both processes are at the 
critical section, or Q = {(pcl,  pc2, a, b) : pc1 = C1 A pc2 = C2}. Then we have 

pred(Q) = U x - j l [ Q  N S(cl,c~)] 
ee{ew1 ,ew2} 

= {(pcl ,pc2,  a, b): pel = Wl  A pc2 -~- 62 A (b ~-- 0 V a < b)} 
U {(pcl ,pc2,  a,b) :pc1 = C1 Apc2 = W~ A (a = 0 V b < a)}. 

Now, given a symbolic representation for a set f ,  we can symbolically compute 
3 C) f and V (~) f using pred ,  as follows: 

3 C) f = p r e d ( f )  and V C) f = S - p r e d ( S  - f ) .  

As for 3~  and V~, consider the functionals ~-~<>y = Ay. f V 3 C) y and rw>y = 
Ay. f V (V C) y A 3 C) y). The least fixpoints of ~-3o1 and w o f  are equal to 
3Of  and V ~ f ,  respectively. Using well-known properties from lattice theory, it 
can be shown that  every element in the sequence False = 0, 7"3<>i(0), r2<>](0), 
r~o f (0) , . . . ,  is a subset of the least fixpoint of r3of ; similarly, every element in the 
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sequence False = O, rVo](O), v ~ ]  (~), ra<>f(O) . . . .  , is a subset of the least fixpoint 
of ~ > j .  So when these monotonically increasing sequences reach a fixpoint, we 
know that it is the least fixpoint. 

These methods lead directly to the semi-decision procedure shown in Fig- 
ure 2(B) (subformulas are computed recursively). Given a program and a tem- 
poral logic formula, the model checker will (attempt to) symbolically compute 
the set of program states that satisfy the input formula - and the procedure wilt 
yield an exact answer if it converges. 

Bakery  Algor i thm,  Revis i ted .  Recall the mutual exclusion requirement for 
the bakery algorithm, which is equivalent to: -~3<5(pcl = C1 A pc2 = C @  'ro 
compute the least fixpoint 3<~(pcl = C1 Apc2 = C2),  the model checker initialized 
the first iterate to Qo = {(pc1,  pc2, a, b) : pc1 = C1 Ape2 = C2 }. After 4 iterations, 
the fixpoint computation converged to a set Q (for a total computation time of 
2.85 seconds on a Sun SPARCstation 5), where Q is partitioned as follows: 

Q(T1,T2) : pcl = T~ A pc2 = T2 A False Q(TI,c2) : pcl -- Ti A pc2 = C2 A b = O 
Q(T~,w2) :pc1 = T 1 A  pc2 = W 2 A b = 0  Q(C~,T~) :pc1 = C 1 A  pc2 = T 2 A a = 0  
Q(w~,T2) : pcl : I/V1 A pc2 = T2 A a ----- 0 Q(cl ,c2)  : pcl = 62 A pc2 ----- 62 A True 
Q(w~,c~) : pc1 = W1 A pc2 : C2 A (b : 0 V g ( b )  

Q(c~,w2) : pcl = C1/~pc2 = W2 A (a = 0 V b < a) 
Q(w~,w~) :pc l  = ~zl Apc2 -.= W2 A ( a  = b =- 0 V a  = 0A 1 _<: b V b  = 0A 1 < a) 

Since the top-level formula is - ,3<)(pcl  = C1 A pc2 = C2),  the model checker 
computes S - Q. Then it checks if I C (S - Q) and concludes that all of the 
initial states satisfy the safety property, hence the property is proved. 

The model checker also proved the starvation freedom property, V n ( p c i  = 

t4~ --~ V�9 = C1)), which is equivalent to ~ 3 O ( p e l  = W1 A -~V�9 = C1)) .  

The inner (VO) and outer (30) fixpoint computations converged in 9 and 1 
iterations, respectively (with a total computation time of 7.64 seconds). 

4 A p p r o x i m a t i o n  T e c h n i q u e s  

Since we have a Turing-computable language, our exact model-checker in Fig- 
ure 2(B) may keep iterating forever without reaching a fixpoint. Thus we also 
need a conservative approximation method, which will always converge. A con- 
servative analyzer is one which never yields a "false positive" (and reports that 
a property holds when in fact it does not), but it may yield a "false negative," 
and indicate that a property does not hold when it really does. 

Indeed, our exact analyzer diverged when we fed it the so-called t i cke t  al- 

gor i t hm  [2], along with its related mutual exclusion property (see Figure 3). In 
particular, note its similarity to the bakery algorithm. The difference is that the 
value of the next available ticket is stored in the global variable t, while another 
global variable s holds the highest ticket value served thus far. New tickets are 
obtained by executing a fetch-and-add on t. A customer can enter the critical 
section when the last-used ticket s catches up to its local ticket number. 

When the exact analyzer went to work on the mutual exclusion property of 
the ticket algorithm, it attempted to symbolically enumerate ways that both a 
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Data  Variables: a, b, t, s: integer 
Contro l  Variables: pc1 : {T1,  W I  , C1 }, pc2 : {T2,  W 2 ,  C2 } 

Init ial  Condi t ion:  t = s A pc1 = T1 A pc2 = T2 

Events:  
eT~ enabled:  pc1 = TI 

action:  pc~ = W 1 A  

a ~ = t A t l = t + l  

ew1 enabled:  pc1 = W1 A a < s 

action:  pc'l = C1 

ec~ enabled:  pc1 = C1 

action:  pc~ = T 1 A  s '  = s + l 

eT2 enabled:  pc2 = T2 

action:  pc~ = W 2 A  

b 1 = t A t l = t - } - I  

ew2 enabled:  pc2 = W~ A b ~ s 

action:  pc~ = C2 

ec2 enabled:  pc2 = C2 

action:  pc~ =- T2 A s ~ = s + l 

Fig. 3. The ticket mutual-exclusion algorithm. 

and b could be less than s. Since s and t are unbounded, this method failed to 
converge. 

4.1 W h a t  is C o n s e r v a t i v e ?  

If we cannot directly compute a property f for a program, the next-best-thing 
is to generate a lower-bound for f ,  denoted f - ,  such that  f -  C f .  Then if 
we determine that  I C_ f - ,  we have also achieved our objective - that  I C_ f .  
However if I q: f - ,  we cannot conclude anything. 

Since we seek to carry out our analysis in a recursive manner (as in the exact 
analyzer in Figure 2(B)), we have to compute an approximation to a formula by 
first computing approximations for its subformulas. Hence, with a property like 
g -- -~h, we first need to compute an u p p e r  approximation h + for the subformula 
h, and then let g-  = S - h  +. 

When analyzing a negation-free formula, the compositionality of an approx- 
imation follows directly from the fact that  all operators other than ' % "  are 
monotonic. This means that  any lower/upper approximation for a formula can 
be computed using the corresponding lower/upper approximation for its subfor- 
mulas. As for handling arbitrary levels of negation, we can easily generalize the 
above mentioned method for outermost negation operators. Tha t  is, to approx- 
imate a temporal formula f ,  the following procedure determines which of f ' s  
subformulas require an upper bound, and which require a lower bound. 

1. Mark the root of the parse tree for formula f with a minus sign ( " - " )  if 
a lower bound is desired, and with a plus sign ( "+" )  if an upper bound is 
desired. 

2. Using a prcorder tree traversal, visit each node in the tree, mark each node 
with the mark of its parent, unless its parent is a -~ operator. In that  case 
mark the node with the opposite bound. 

4.2 C o m p u t i n g  U p p e r  B o u n d s  

When the algorithms in Figure 2(B) a t tempt  to compute fixpoints for 3 0  and 
V~, they may generate sequences of increasing lower hounds which never con- 
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verge. And from elementary fixpoint theory we know that  a least fixpoint exists 
- but it may simply not be computable. Hence our job is to accelerate the com- 
putation, and "leap-frog" over multiple members of the chain - perhaps at the 
risk of over-shooting the exact least fixpoint. As long as the result is larger than 
the exact fixpoint, we have an upper approximation. 

The way we go about this is as follows. If the exact iteration sequence is 
Qo, Q1, Q2,. . . ,  then we find a majorizing sequence Q0, Q1, Q~, . . . ,  such that  
(1) for each i, Qi _c Qi, and (2) the Qi sequence reaches a fixpoint after finitely 
many iterates. Thus the fixpoint of the (~i's is an upper approximation to the 
least fixpoint of the Q~'s. 

^ ~S To generate the Qi , we currently adopt a method developed by Cousot and 
Cousot, within the framework of abstract interpretation [10]. That  is, we define 
an operator called widening, or "V", which majorizes the union computation as 
follows: For any pair of sets P, P~, P U P~ C_ P V Pq Using a suitable widening 
operator, we can redefine the procedures for 3Of  and VOf from Figure 2(B) as: 

00 =s 00 =s 
Q,+I = Qi V (Q~ U pred(Q0) Qi+l = (~ V ((~ U (pred(Q~) - pred(S - Q~))) 
(3Of) + = Qn when Qn = (~n+l (V�9 + --- Q~ when Qn = Q,~+I 

From the monotonicity of the p r e d  operator, one can easily show by induction 
that  these sequences do indeed majorize the Qi's computed in Figure 2(B). And 
the final iterates are upper bounds for 3Of  and V�9 

Our goal is to find a widening operator which (1) yields a suitable (i.e., 
reasonably tight) upper bound for union, and (2) forces the Q~ sequences to 
converge. In defining our widening operator, we generalized a technique used by 
Cousot and Halbwachs in [11]. The idea is to "guess" the direction of growth in 
the model-checker's Qi iterates, and to extend the successive iterates in these 
directions. Consot and Halbwachs' widening operator V does this for convex 
polyhedra - i.e., regions formed by a conjunction of affine constraints. If both P 
and P '  are convex, then P u P '  is defined by the constraints in P which are also 
satisfied by P ' .  For example, 

{ (x ,y) :  x -  1 _< y_< x} V {(x ,y) :  x -  2 _< y_< x} = { (x ,y) :  y_< x} 

Intuitively, if a constraint of P is not satisfied by P~ this means that  the iterates 
are increasing in that  direction. By removing that  constraint we extend the 
iterates in the direction of growth as much as possible without violating other 
constraints. Since PvP~ is built by simply removing constraints from P and 
since we cannot remove infinitely many constraints, the finiteness property is 
satisfied. But because it folds all arguments into a single convex region, a direct 
application of this method failed to work for us. The reason is that  on all of 
our examples to date, all fixpoint computations were composed of a (potentially 
large) number of disjuncts, each defining a convex polytope. To accommodate 
this we generalized V to handle multiple polyhedra. Assume that  we have two 
Presburger sets Q and R, where Q c R. Then Q and R can be represented as 
Q =  q l U q 2 U . . . U q m  a n d R = r l U r 2 U . . . U r , ~ U . . . U r n ,  where all the qi's 
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and ri's are convex polytopes, and where m ~_ n, and for all 1 < i < m, qi C_ ri. 
Then we can define our new widening operator to be 

n A 

Q v R - -  UPi s . t .  V i [ i ~ _ m - + p i = q i V r i  and m < i ~ _ n - + p i = r i ]  (~) 
i=1 

So, assume that  we are computing a 3 0  property; and that  Qi = ql u q2 u . . . u  qm 
where each of the qj's is convex. Then Qi+l = Qi ~7 (Qi u pred(Qi ) ) ,  with 

m 

(~iUpred((~i)  -- ( U  qJ) U (  p r e d ( q j ) ) - - - ( q l U . . . U q m )  U ( p l u . . . u p , )  
j = l  j = l  

Here the pk's (1 < k < l) represent a convex decomposition of U~=I p red(q j ) .  
To form the necessary ri's, we use a simple algorithm to merge selected qj's 
(1 _< j _< m) with pk's (1 < k < l) in a pairwise fashion. For each qj (1 < j _< m) 
we scan the pk's (1 < k < l), looking for polyhedra to merge. This is done by 
invoking an Omega function to compute the convex hull of qi U pk - denoted 
hull(qj Upk) - and determining if it is equal to qj Upk. If so, we delete the Pk term 
and replace qj with hull(qj U pk). We continue this process until a maximum 
amount of merging is accomplished, after which we have: 

Qi=qiuq2U...Uqm and Qiupred(Qi)=rlur2u...urn 

such that  m < n, and for all 1 ~_ j <_ m, qj C_ rj. Then the conditions for ~7 in 
(t) are satisfied, and therefore we can use it as our widening operation. 

Note that  the rj decomposition of (~i U p r e d ( ( ~ )  may include too many 
terms if there is little potential for merging the qj's with the Pk'S. To ensure 
convergence, we also assign an upper bound to the number of disjoint convex 
regions we wish to represent. When we reach this bound we force-merge disjoint 
regions by replacing them with their convex hull - even if that  loses precision 
(which is valid since we are computing upper bounds). 

4.3 Computing Lower Bounds 

Recall that  each iteration of an exact fixpoint computation will yield a lower a 
bound for 3(~f and V~f .  So to obtain a lower approximation for the purposes 
of analysis, we need only stop after a finite number of iterations; in this manner 
we are guaranteed to have a conservative approximation. Of course the question 
is: when do we stop? 

Our verifier uses the following rules: if it is handling the outermost formula, 
then after each iteration it checks whether the initial states are included in the 
current lower bound. If so it stops, since the property is proved. If not it keeps 
going. Obviously there will be cases where this method fails to converge, and if 
this happens the tool will not be able to prove or disprove the property. How- 
ever, the user is able to interact with the analyzer, and periodically monitor its 
progress; thus the user can optionally "pull the plug" on waiting for a response. 
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If the fixpoint we are computing is a subformula of another computation, the 
analyzer sets a (user specified) time limit to stop generating an approximation 
- after which it is used in the next-higher formula. But if the analyzer is unable 
to prove or disprove the outermost formula, the user may optionally return and 
improve the lower bound by continuing the fixpoint sequence. 

A p p r o x i m a t e  Analysis  of  t he  Ticket  Algor i thm.  Using the negation label- 
ing algorithm, the mutual exclusion property of the ticket algorithm is rendered 
as (-~(B<~(pcl = C1 Ape2 = C2)+)+) - . The temporal operator 30  is marked with 
'%" which means that we need an upper bound for the set of states violating 
mutual exclusion. The upper bound Q is computed using the multi-polyhedra 
widening technique in 9 iterations (with a CPU time of 7.32 seconds). However, 
since we are actually computing -,3C'(pcl = Ct  A pc~ = C2), the model checker 
computes S - Q, which is a lower approximation for the states which respect 
mutual exclusion. Then, shows that I C (S - 0). 

We also wish to prove starvation-freedom. Negation-labeling converts process 
l 's relevant formula to: (--(3<5((pcl = W~) + A (~ (YO(pc l  = C1)-)-)+)+)+) - .  
Because of the double negation, the inner fixpoint (V�9 is marked with " - "  (i.e., 
a lower bound), whereas the outer fixpoint (30) is marked with "+." The model 
checker computes the VO property exactly, in 5 fixpoint iterations; hence the 
lower bound turns out to be exact. Then it computes an upper bound for the 
3�9 property in 7 iterations, by using the widening technique (for a total CPU 
time of 27.03 seconds). After the lower bound for the whole formula is computed, 
it reports that all the initial states do indeed satisfy the liveness property. 

5 R e m a r k s  

We have presented a new symbolic model checker for infinite-state programs, 
which evaluates safety and liveness properties. We demonstrated our method 
on two example programs. While they do not contain many lines of code, they 
exhibit subtle interplay between the infinite-state variables and predicates con- 
trolling execution flow. They are the sort of programs usually analyzed in hand 
proofs. 

There is much work remaining. While our multiple-potyhedra widening ap- 
proximation helped solve one of the problems in this paper, it can often be rather 
coarse. In general it sacrifices precision for finite termination. We are currently 
developing more precise methods for reachability properties using transitive clo- 
sure computation techniques for Presburger formula.s [16]. As we acquire more 
experience with both types of approximations, we hope to determine which tech- 
niques work best for different classes of programs, and why. 

We also plan to investigate compositional approaches. We currently form our 
state-partitions over the Cartesian-product of all variable domains. When we 
scale to large numbers of processes we will obviously need a more compositional 
approach. To this end, we believe we can use many of the analogous methods 
developed for finite-state systems. 
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