
Symbolic Model Checking of Infinite State
Systems Using Presburger Arithmetic*

Tevfik Bultan, Richard Gerber and William Pugh

Department of Computer Science
University of Maryland, College Park, MD 20742, USA

Abstract . We present a new symbolic model checker which conserva-
tively evaluates safety and liveness properties on infinite-state programs.
We use Presburger formulas to symbolically encode a program's tran-
sition system, as well as its model-checking computations. All fixpoint
calculations are executed symbolica~y, and their convergence is guaran-
teed by using approximation techniques. We demonstrate the promise of
this technology on some well-known infinite-state concurrency problems.

1 I n t r o d u c t i o n

In recent years, there has been a surge of progress in the area of automated
analysis for finite-state systems. Several reasons for this success are: (1) the de-
velopment of powerful techniques such as model-checking (e.g., [5, 7]), which can
efficiently verify safety and liveness properties; (2) innovative new data structures
that symbolically encode large sets of states in compact formats (e.g., [4, 5]);
and (3) new ways of carrying out compositional and local analysis, to assuage
the "state explosion" usually associated with concurrency (e.g., [6, 9, 14]). But
when transition systems are not restricted to be finite, most of these techniques
are no longer applicable, as they inherently depend on all underlying types be-
ing bounded. Also general safety and liveness properties become undecidable for
infinite transition systems.

We have developed a symbolic model checker to attack this problem, which
symbolically encodes transition relations and sets of states using affine con-
straints on integer variables, logical connectives and quantifiers (i.e., Presburger
formulas). Then, it efficiently manipulates these formulas (via a fast Presburger
solver called the Omega library [15, 17]) to derive truth sets of temporal logic for-
mulas and their fixpoint computations. Also, we use conservative approximation
techniques in analysis of infinite state programs, which guarantee convergence
by allowing false negatives.

In this paper we demonstrate our model checker's effectiveness on some clas-
sical infinite-state programs, taken from the concurrency literature [2]. While
relatively small, they possess some interesting subtleties, especially in the tricky
way their infinite-state variables influence control flow.

* This work was supported in part by ONR grant N00014-94-10228, NSF YI CCR-
9357850 and a Packard Fellowship.

401

Other methods have been proposed to deal with infinite-state programs like
these, and we note some of them here. In [8] Clarke et al. present a conservative
model checking technique, by producing a finite abstraction of the program (e.g.
via a congruence relation modulo a suitable integer), and then checking the
property of interest on the abstraction. In [12] Dingel and Filkorn extend this
method using "assumption-commitment" style reasoning and theorem proving.
While these techniques require the user to find the appropriate abstractions -
and hence are not completely automatable - we see them as being orthogonal to
our approach. There may be cases where abstraction methods can vastly reduce
the state space without achieving a finite representation. In these cases our model
checker can be used on the infinite abstract models.

Our work was influenced by known techniques from abstract interpreta-
tion [10, 11]; specifically, we use some approximation methods first developed for
that domain. Most reachability properties can be formulated as least fixpoints
over sets of a program's states; if the state space is infinite, these fixpoints may
not be computable. Abstract interpretation provides a way of approximating
these fixpoints via a technique known as "widening" - which can compute a
least fixpoint's upper bound in finite time. Since our basic temporal operators
require similar computations, we were able to successfully use this method in
conjunction with the Omega library.

Finally, our encoding of program states is similar to that used by Alur el al.
in verifying hybrid systems [1]. A hybrid system is a discrete control automaton,
which interacts with continuously-changing, external parameters. Like us, Alur
et al. used an application of widening to help solve verification queries over
linear hybrid a u t o m a t a - in which transition relations are defined in terms of
affine constraints over the variables of the system.

The fundamental difference in our work is that we encode sets of integers -
as opposed to the real numbers used in hybrid systems - and we can thus use
Presburger formulas as our symbolic representation. This enables us to express
and prove properties such as "x is even," using quantification. In general, satis-
fiability problems over constraints with integer variables are significantly harder
to deal with. For example, checking to see if there exists an integer solution to
a set of linear constraints is NP-hard, while the analogous real-valued problem
can be solved in polynomial time. Also, we take our fixpoints by storing, at each
step, unions of convex regions (with possible stride constraints); Alur el al. force
intermediate results into a single convex region. While their strategy is one way
to control potentiM state explosion, we have found that in our problem domain,
most interesting properties cannot be proved unless multiple convex regions are
used at each point.

The paper is organized as follows. First we present the syntax, semantics,
and Presburger encodings for concurrent programs and their properties. Then
we describe our symbolic model checker, and show how it exploits the Presburger
representation. After formally defining conservative approximations, we discuss
the specific approximation techniques for computing upper and lower bounds of
fixpoints. Finally, we conclude with some discussion on our results.

402

Data Variables: a, b: positive integer
Contro l Variables: pc~ : {T1, W1, C1 }, pc2 : {T2, W2, C2}
Initial Condi t ion: a = b = 0 A pc1 = T1 A pc2 = T2
Events:
eT1 enabled: pc1 = TI eT2 enabled: pc2 = T2

act ion: pc'l = W 1 A a' = b + l action: pc~ = W2 A b' = a + l
ewl enabled: pc1 = W1A ew2 enabled: pc2 = W 2 A

(a < ~vb=o) (b< aVa=O)
action: pe~ = C1 action: pe~ = C2

ee l enabled: pc1 = C1 ec2 enabled: pc2 = C2
action: pe~ = T 1 A a' = O act ion: pc'2 = T2 A b' = O

Fig. 1. The bakery algorithm.

2 R e p r e s e n t a t i o n o f P r o g r a m s a n d P r o p e r t i e s

We use the event-action language from [18] as our syntax for concurrent pro-
grams, with a semantics defined in terms of infinite transition systems. A con-
current program C = (V, I , E) is represented by (1) a finite set of data and
control variables V; (2) an initial condition I, which specifies the starting states
of the program; and (3) a finite set of events E, where each event is considered
atomic. The state of a program is determined by the values of its data and con-
trol variables. We assume that the domain of each variable is a countable set.
Each event is represented with an enabling condition and an action, where the
enabling condition constrains the states in which the event can occur, and the
action defines a transformation on the variables of the program.

Consider the concurrent program shown in Figure 1, which implements the
bakery a l g o r i t h m [2] to achieve mutual exclusion between two processes. Here the
control points for each process are denoted T, W, C, which stand for t h i n k i n g ,

w a i t i n g or in c r i t i ca l sec t ion , respectively. If a variable v is used in an event, then
the symbol v ~ denotes the new value of v after the action. If v is not mentioned
in the action of an event, then we assume that its value is not altered by that
event.

When a process wants to enter the critical section it first gets a ticket, which
will be higher than those of all other processes currently in the critical section or
waiting for entry. In the above system, variables a and b hold the ticket values
for processes 1 and 2, respectively; a process gets its ticket by simply adding
one to the highest outstanding ticket number. Note that variables a and b can
increase without bound; i.e., this is not a finite-state program.

Given a program C = (V, I , E) in the above language, we model it as an
infinite transition system M = (S, I, X, L), where S is the set of states, I is the
set of initial states, X C S • S is the transition relation (derived from the set
of events E), and L : S • S F --~ {True, False) is the valuation function for state
formulas over the program's variables. (We define the set of state formulas S F

below.) The set of states S is obtained by taking Cartesian product of domains
of all program variables; hence each state corresponds to a valuation of all the

403

variables of the program.
Every event e E E defines a binary relation on the program's states, X~ C S•

S, such that X~ = {(8, s ') : s C enabled(e) A (8, s') C act ion(e)} where 8 and
s' denote program's states before and after the execution of event e, respectively.
The sets enabled(e) and act ion(e) respectively denote the enabling condition
and action of event e. Hence the global transition relation is X = UeeE X~. Note
that we use an interleaving model, where each transition represents execution of
a single event, i.e., only one event can occur at a time.

P r e s b u r g e r fo rmu la s . The bakery algorithm's mutual exclusion requirement
asserts that the following property stays invariant over all executions: -7 (pc1 =
C1 A pc2 = C2). We call this type of assertion a state formula. And in general, we
define the set of state formulas S F for a program C as all Presburger formulas
which range over program's variables. Presburger formulas are generated by the
following grammar:

f ::= t_<t] (f) I f A f I-~f t 3vat f t ::= (t) [t + t [va r] c o n s t a n t

Here, the terminals c o n s t a n t and var represent integer constants and variables,
respectively. Using this base language, we can easily represent formulas including
<, =, V, V, as well as multiplication by a constant. The set of closed formulas
defined by the above grammar forms the theory of integers with addition, called
Presburger arithmetic. An important property of Presburger arithmetic is that
validity is decidable.

In general, the worst-case time bound for determining validity in Presburger
arithmetic is prohibitive [13]. Yet we have found that the Omega library [15, 17]
is quite efficient at solving the problems that arise in our analysis, which typi-
cally possess a small number of constraints, and do not contain multiple levels
of alternating quantifiers. The Omega library uses extensions of Fourier variable
elimination to solve integer programming problems, along with a set of transfor-
mation functions and heuristics to help convert real-valued approximations into
discrete-valued solutions.

T e m p o r a l P r o p e r t i e s . We use four CTL-style modal operators as the basis for
our temporal logic - the "quantified-next-state" operators (3 0 and v o) , and
"quantified-eventuality" operators (3~ and V~). Thus, the logic we use to reason
about a programis generated over the set {f E SF, 3 0 , VO, 3~, V�9 A, V, -7}.
As usual, quantified-invariant operators can easily be represented as 3t2f =
-~V~-~f, and Vt3f = -~3~-~f, respectively.

The semantics of a temporal formula is defined on the paths of a program's
transition system, M = (S, I, X, L). A path (So, sl, s2 , . . .) is a (finite or infinite)
sequence of states, such that for each successive pair of states (sl, si+l) C X.
Unlike Clarke et al. [7], we do not require the transition relation X to be total.
Rather, the semantics is defined using maximal paths [3] (as opposed to infinite
paths). A maximal path is one which is either infinite, or it ends with a state
that has no successors. The semantics of the temporal operators can then be
defined as follows: A state so satisfies Y O f (3 0 f) if and only if for all (some)

404

maximal paths (so, sl, s2 , . . .) with length _> 2, sl satisfies f . A state so satisfies
VOf (3Of) if and only if for all (some) maximal paths (So, sl, s2 , . . .) there exists
an i such that s~ satisfies f .

In this language, the bakery algorithm's mutual-exclusion property is ex-
pressed as VD(-~(pcl = C1 A pc2 = 6'2)), that is, the two processes never reach
the critical section at the same time.

3 S y m b o l i c A n a l y s i s

Presburger f o r m u l a s - and their corresponding set-theoretic interpretations -
give us a convenient way to symbolically encode sets of program states. More-
over, we also use this encoding to represent the program's underlying transi-
tion relation. For a given event e, if we assume that enab l ed (e) and ac t ion (e)
are both representable as Presburger formulas (which prevents us, for example,
from defining multiplication within a single event), then X~ is representable as
a Presburger formula. This results in [E I Presburger formulas, which together
symbolically encode the transition relation X.

To carry out our analysis, we exploit the natural partitioning induced by valu-
ations of the control variables, and we incrementally analyze the program by con-
sidering one class at a time. When applied to the bakery program this yields the
following partitioning of the state space: P = {S(T1,T~), S(T1,W~),.. . , S(c~,c2)}
where, for example,

S(Cl,T2) = {(pcl,pc2~ a, b) : pc1 -= C1 Apc2 = T2}.

We can then parti t ion any subset of S as follows: If Q c_ S, then PC2 =
{Q1, Q 2 , . . . , Q.} is a partitioning of Q, where each Qi = QNS~ (for all S i e P) .
E.g., in the bakery program, the set Q = {(pcl,pc2, a,b) : a < b} denotes all
states in which a is less than b. Using a partitioning via control points, we have
Pc2 = {Q(TI,T2), Q(T~,W2),... ~ Q(C~,C2)} where, for example,

Q(c1,c2) -- {(pet,pc2, a, b) : pc1 --- C1 A pc2 -~ C2 A a < b}

which is the set of states where a is less than b and both processes are at the
critical section.

After partitioning of the state space, we use the Omega library [15] to help
symbolically compute the truth sets for the temporal properties at hand. The
Omega library includes a large collection of object classes to efficiently manipu-
late Presburger formulas; to date it has mainly been used in high-performance
compilers, specifically for dependence analysis, program transformations, and
detecting redundant synchronization [16, 17]. The particular Omega functions
we use are shown in Figure 2(A). These functions take symbolic representations
of sets or relations as inputs (i.e., a Presburger formula representing a set or a
relation), and return the symbolic form of a set or a relation as output.

To symbolically compute the temporal operators, we define a function p r e d :
2 s --~ 2 s, called the predecessor function, which, given a set of states, returns

405

SYMBOLIC OMEGA OPERATIONS

F M G : symbolic intersection
F U G : symbolic union
F - G : symbolic difference
F -1 : symbolic inverse of

relation F
F[G] : restrict domain of

relation F to constraint
G and return the range
of the result

hull(F) :convex hull of F

PROCEDU~ CHECK(f)
CASE

f E S F : RETURN(f)
f ----- ~ f l : RETURN(S -- f l)

f = k ^ f~: RETURN(f~ n A)
f = fl V f2: P~TUaN(fl U f2)
f = 3 �9 : RETu~(r,~d(f~))
f = V 0 f l : RETURN(S -- p r e d (S - f l))

f : 3<>A : Q o = A
Qi+l = Qi u pred(Qi)
RETURN(Qn) when Q~ -- Q~+I

.f=V<>fl :Qo=A
Qi+l - Qi u (pred(Qi) - pred(S - Qi))

RETUaN(Q~) when Q~ -- Q~+I

Fig. 2. (A) Omega functions, and (B) symbolic model checker.

all the states that can reach this set in one step (i.e. after execution of a single
event):

pred(Q) de__=f {s: s' G Q A (s, s') G X } .

Using the Omega operator in Figure 2(A) we have pred(Q) = X - I [Q] . More-
over, we can symbolically compute p r e d with respect to our program's parti-
tioning, and maintain a formula for each partition class, as follows:

pred(Q) =pred([.J (QnS~))= [_J pred(QnS~)= [..J x~-l[Qn$~].
SiEP SiEP SiEP, eEE

By performing this computation individually for each partition class, we exploit
the fact that many formulas inherently involve only small parts of the program's
state space. For example, consider the states where both processes are at the
critical section, or Q = {(pcl, pc2, a, b) : pc1 = C1 A pc2 = C2}. Then we have

pred(Q) = U x - j l [Q N S(cl,c~)]
ee{ew1 ,ew2}

= {(pcl ,pc2, a, b): pel = Wl A pc2 -~- 62 A (b ~-- 0 V a < b)}
U {(pcl ,pc2, a,b) :pc1 = C1 Apc2 = W~ A (a = 0 V b < a)}.

Now, given a symbolic representation for a set f , we can symbolically compute
3 C) f and V (~) f using pred , as follows:

3 C) f = p r e d (f) and V C) f = S - p r e d (S - f) .

As for 3~ and V~, consider the functionals ~-~<>y = Ay. f V 3 C) y and rw>y =
Ay. f V (V C) y A 3 C) y). The least fixpoints of ~-3o1 and w o f are equal to
3Of and V ~ f , respectively. Using well-known properties from lattice theory, it
can be shown that every element in the sequence False = 0, 7"3<>i(0), r2<>](0),
r~o f (0) , . . . , is a subset of the least fixpoint of r3of ; similarly, every element in the

406

sequence False = O, rVo](O), v ~] (~), ra<>f(O) , is a subset of the least fixpoint
of ~ > j . So when these monotonically increasing sequences reach a fixpoint, we
know that it is the least fixpoint.

These methods lead directly to the semi-decision procedure shown in Fig-
ure 2(B) (subformulas are computed recursively). Given a program and a tem-
poral logic formula, the model checker will (attempt to) symbolically compute
the set of program states that satisfy the input formula - and the procedure wilt
yield an exact answer if it converges.

Bakery Algor i thm, Revis i ted . Recall the mutual exclusion requirement for
the bakery algorithm, which is equivalent to: -~3<5(pcl = C1 A pc2 = C @ 'ro
compute the least fixpoint 3<~(pcl = C1 Apc2 = C2), the model checker initialized
the first iterate to Qo = {(pc1, pc2, a, b) : pc1 = C1 Ape2 = C2 }. After 4 iterations,
the fixpoint computation converged to a set Q (for a total computation time of
2.85 seconds on a Sun SPARCstation 5), where Q is partitioned as follows:

Q(T1,T2) : pcl = T~ A pc2 = T2 A False Q(TI,c2) : pcl -- Ti A pc2 = C2 A b = O
Q(T~,w2) :pc1 = T 1 A pc2 = W 2 A b = 0 Q(C~,T~) :pc1 = C 1 A pc2 = T 2 A a = 0
Q(w~,T2) : pcl : I/V1 A pc2 = T2 A a ----- 0 Q(cl ,c2) : pcl = 62 A pc2 ----- 62 A True
Q(w~,c~) : pc1 = W1 A pc2 : C2 A (b : 0 V g (b)

Q(c~,w2) : pcl = C1/~pc2 = W2 A (a = 0 V b < a)
Q(w~,w~) :pc l = ~zl Apc2 -.= W2 A (a = b =- 0 V a = 0A 1 _<: b V b = 0A 1 < a)

Since the top-level formula is - ,3<)(pcl = C1 A pc2 = C2), the model checker
computes S - Q. Then it checks if I C (S - Q) and concludes that all of the
initial states satisfy the safety property, hence the property is proved.

The model checker also proved the starvation freedom property, V n (p c i =

t4~ --~ V�9 = C1)), which is equivalent to ~ 3 O (p e l = W1 A -~V�9 = C1)) .

The inner (VO) and outer (30) fixpoint computations converged in 9 and 1
iterations, respectively (with a total computation time of 7.64 seconds).

4 A p p r o x i m a t i o n T e c h n i q u e s

Since we have a Turing-computable language, our exact model-checker in Fig-
ure 2(B) may keep iterating forever without reaching a fixpoint. Thus we also
need a conservative approximation method, which will always converge. A con-
servative analyzer is one which never yields a "false positive" (and reports that
a property holds when in fact it does not), but it may yield a "false negative,"
and indicate that a property does not hold when it really does.

Indeed, our exact analyzer diverged when we fed it the so-called t i cke t al-

gor i t hm [2], along with its related mutual exclusion property (see Figure 3). In
particular, note its similarity to the bakery algorithm. The difference is that the
value of the next available ticket is stored in the global variable t, while another
global variable s holds the highest ticket value served thus far. New tickets are
obtained by executing a fetch-and-add on t. A customer can enter the critical
section when the last-used ticket s catches up to its local ticket number.

When the exact analyzer went to work on the mutual exclusion property of
the ticket algorithm, it attempted to symbolically enumerate ways that both a

407

Data Variables: a, b, t, s: integer
Contro l Variables: pc1 : {T1, W I , C1 }, pc2 : {T2, W 2 , C2 }

Init ial Condi t ion: t = s A pc1 = T1 A pc2 = T2

Events:
eT~ enabled: pc1 = TI

action: pc~ = W 1 A

a ~ = t A t l = t + l

ew1 enabled: pc1 = W1 A a < s

action: pc'l = C1

ec~ enabled: pc1 = C1

action: pc~ = T 1 A s ' = s + l

eT2 enabled: pc2 = T2

action: pc~ = W 2 A

b 1 = t A t l = t - } - I

ew2 enabled: pc2 = W~ A b ~ s

action: pc~ = C2

ec2 enabled: pc2 = C2

action: pc~ =- T2 A s ~ = s + l

Fig. 3. The ticket mutual-exclusion algorithm.

and b could be less than s. Since s and t are unbounded, this method failed to
converge.

4.1 W h a t is C o n s e r v a t i v e ?

If we cannot directly compute a property f for a program, the next-best-thing
is to generate a lower-bound for f , denoted f - , such that f - C f . Then if
we determine that I C_ f - , we have also achieved our objective - that I C_ f .
However if I q: f - , we cannot conclude anything.

Since we seek to carry out our analysis in a recursive manner (as in the exact
analyzer in Figure 2(B)), we have to compute an approximation to a formula by
first computing approximations for its subformulas. Hence, with a property like
g -- -~h, we first need to compute an u p p e r approximation h + for the subformula
h, and then let g- = S - h +.

When analyzing a negation-free formula, the compositionality of an approx-
imation follows directly from the fact that all operators other than ' % " are
monotonic. This means that any lower/upper approximation for a formula can
be computed using the corresponding lower/upper approximation for its subfor-
mulas. As for handling arbitrary levels of negation, we can easily generalize the
above mentioned method for outermost negation operators. Tha t is, to approx-
imate a temporal formula f , the following procedure determines which of f ' s
subformulas require an upper bound, and which require a lower bound.

1. Mark the root of the parse tree for formula f with a minus sign (" - ") if
a lower bound is desired, and with a plus sign ("+") if an upper bound is
desired.

2. Using a prcorder tree traversal, visit each node in the tree, mark each node
with the mark of its parent, unless its parent is a -~ operator. In that case
mark the node with the opposite bound.

4.2 C o m p u t i n g U p p e r B o u n d s

When the algorithms in Figure 2(B) a t tempt to compute fixpoints for 3 0 and
V~, they may generate sequences of increasing lower hounds which never con-

408

verge. And from elementary fixpoint theory we know that a least fixpoint exists
- but it may simply not be computable. Hence our job is to accelerate the com-
putation, and "leap-frog" over multiple members of the chain - perhaps at the
risk of over-shooting the exact least fixpoint. As long as the result is larger than
the exact fixpoint, we have an upper approximation.

The way we go about this is as follows. If the exact iteration sequence is
Qo, Q1, Q2,. . . , then we find a majorizing sequence Q0, Q1, Q~, . . . , such that
(1) for each i, Qi _c Qi, and (2) the Qi sequence reaches a fixpoint after finitely
many iterates. Thus the fixpoint of the (~i's is an upper approximation to the
least fixpoint of the Q~'s.

^ ~S To generate the Qi , we currently adopt a method developed by Cousot and
Cousot, within the framework of abstract interpretation [10]. That is, we define
an operator called widening, or "V", which majorizes the union computation as
follows: For any pair of sets P, P~, P U P~ C_ P V Pq Using a suitable widening
operator, we can redefine the procedures for 3Of and VOf from Figure 2(B) as:

00 =s 00 =s
Q,+I = Qi V (Q~ U pred(Q0) Qi+l = (~ V ((~ U (pred(Q~) - pred(S - Q~)))
(3Of) + = Qn when Qn = (~n+l (V�9 + --- Q~ when Qn = Q,~+I

From the monotonicity of the p r e d operator, one can easily show by induction
that these sequences do indeed majorize the Qi's computed in Figure 2(B). And
the final iterates are upper bounds for 3Of and V�9

Our goal is to find a widening operator which (1) yields a suitable (i.e.,
reasonably tight) upper bound for union, and (2) forces the Q~ sequences to
converge. In defining our widening operator, we generalized a technique used by
Cousot and Halbwachs in [11]. The idea is to "guess" the direction of growth in
the model-checker's Qi iterates, and to extend the successive iterates in these
directions. Consot and Halbwachs' widening operator V does this for convex
polyhedra - i.e., regions formed by a conjunction of affine constraints. If both P
and P ' are convex, then P u P ' is defined by the constraints in P which are also
satisfied by P ' . For example,

{ (x ,y) : x - 1 _< y_< x} V {(x ,y) : x - 2 _< y_< x} = { (x ,y) : y_< x}

Intuitively, if a constraint of P is not satisfied by P~ this means that the iterates
are increasing in that direction. By removing that constraint we extend the
iterates in the direction of growth as much as possible without violating other
constraints. Since PvP~ is built by simply removing constraints from P and
since we cannot remove infinitely many constraints, the finiteness property is
satisfied. But because it folds all arguments into a single convex region, a direct
application of this method failed to work for us. The reason is that on all of
our examples to date, all fixpoint computations were composed of a (potentially
large) number of disjuncts, each defining a convex polytope. To accommodate
this we generalized V to handle multiple polyhedra. Assume that we have two
Presburger sets Q and R, where Q c R. Then Q and R can be represented as
Q = q l U q 2 U . . . U q m a n d R = r l U r 2 U . . . U r , ~ U . . . U r n , where all the qi's

409

and ri's are convex polytopes, and where m ~_ n, and for all 1 < i < m, qi C_ ri.
Then we can define our new widening operator to be

n A

Q v R - - UPi s . t . V i [i ~ _ m - + p i = q i V r i and m < i ~ _ n - + p i = r i] (~)
i=1

So, assume that we are computing a 3 0 property; and that Qi = ql u q2 u . . . u qm
where each of the qj's is convex. Then Qi+l = Qi ~7 (Qi u pred(Qi)) , with

m

(~iUpred((~i) -- (U qJ) U (p r e d (q j)) - - - (q l U . . . U q m) U (p l u . . . u p ,)
j = l j = l

Here the pk's (1 < k < l) represent a convex decomposition of U~=I p red(q j) .
To form the necessary ri's, we use a simple algorithm to merge selected qj's
(1 _< j _< m) with pk's (1 < k < l) in a pairwise fashion. For each qj (1 < j _< m)
we scan the pk's (1 < k < l), looking for polyhedra to merge. This is done by
invoking an Omega function to compute the convex hull of qi U pk - denoted
hull(qj Upk) - and determining if it is equal to qj Upk. If so, we delete the Pk term
and replace qj with hull(qj U pk). We continue this process until a maximum
amount of merging is accomplished, after which we have:

Qi=qiuq2U...Uqm and Qiupred(Qi)=rlur2u...urn

such that m < n, and for all 1 ~_ j <_ m, qj C_ rj. Then the conditions for ~7 in
(t) are satisfied, and therefore we can use it as our widening operation.

Note that the rj decomposition of (~i U p r e d ((~) may include too many
terms if there is little potential for merging the qj's with the Pk'S. To ensure
convergence, we also assign an upper bound to the number of disjoint convex
regions we wish to represent. When we reach this bound we force-merge disjoint
regions by replacing them with their convex hull - even if that loses precision
(which is valid since we are computing upper bounds).

4.3 Computing Lower Bounds

Recall that each iteration of an exact fixpoint computation will yield a lower a
bound for 3(~f and V~f . So to obtain a lower approximation for the purposes
of analysis, we need only stop after a finite number of iterations; in this manner
we are guaranteed to have a conservative approximation. Of course the question
is: when do we stop?

Our verifier uses the following rules: if it is handling the outermost formula,
then after each iteration it checks whether the initial states are included in the
current lower bound. If so it stops, since the property is proved. If not it keeps
going. Obviously there will be cases where this method fails to converge, and if
this happens the tool will not be able to prove or disprove the property. How-
ever, the user is able to interact with the analyzer, and periodically monitor its
progress; thus the user can optionally "pull the plug" on waiting for a response.

410

If the fixpoint we are computing is a subformula of another computation, the
analyzer sets a (user specified) time limit to stop generating an approximation
- after which it is used in the next-higher formula. But if the analyzer is unable
to prove or disprove the outermost formula, the user may optionally return and
improve the lower bound by continuing the fixpoint sequence.

A p p r o x i m a t e Analysis of t he Ticket Algor i thm. Using the negation label-
ing algorithm, the mutual exclusion property of the ticket algorithm is rendered
as (-~(B<~(pcl = C1 Ape2 = C2)+)+) - . The temporal operator 30 is marked with
'%" which means that we need an upper bound for the set of states violating
mutual exclusion. The upper bound Q is computed using the multi-polyhedra
widening technique in 9 iterations (with a CPU time of 7.32 seconds). However,
since we are actually computing -,3C'(pcl = Ct A pc~ = C2), the model checker
computes S - Q, which is a lower approximation for the states which respect
mutual exclusion. Then, shows that I C (S - 0).

We also wish to prove starvation-freedom. Negation-labeling converts process
l 's relevant formula to: (--(3<5((pcl = W~) + A (~ (YO(pc l = C1)-)-)+)+)+) - .
Because of the double negation, the inner fixpoint (V�9 is marked with " - " (i.e.,
a lower bound), whereas the outer fixpoint (30) is marked with "+." The model
checker computes the VO property exactly, in 5 fixpoint iterations; hence the
lower bound turns out to be exact. Then it computes an upper bound for the
3�9 property in 7 iterations, by using the widening technique (for a total CPU
time of 27.03 seconds). After the lower bound for the whole formula is computed,
it reports that all the initial states do indeed satisfy the liveness property.

5 R e m a r k s

We have presented a new symbolic model checker for infinite-state programs,
which evaluates safety and liveness properties. We demonstrated our method
on two example programs. While they do not contain many lines of code, they
exhibit subtle interplay between the infinite-state variables and predicates con-
trolling execution flow. They are the sort of programs usually analyzed in hand
proofs.

There is much work remaining. While our multiple-potyhedra widening ap-
proximation helped solve one of the problems in this paper, it can often be rather
coarse. In general it sacrifices precision for finite termination. We are currently
developing more precise methods for reachability properties using transitive clo-
sure computation techniques for Presburger formula.s [16]. As we acquire more
experience with both types of approximations, we hope to determine which tech-
niques work best for different classes of programs, and why.

We also plan to investigate compositional approaches. We currently form our
state-partitions over the Cartesian-product of all variable domains. When we
scale to large numbers of processes we will obviously need a more compositional
approach. To this end, we believe we can use many of the analogous methods
developed for finite-state systems.

411

R e f e r e n c e s

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3-34, 1995.

2. G. R. Andrews. Concurrent Programming, Principles and Practice. The Ben-
jamin/Cummings Publishing Company, 1991.

3. A. Arnold. Finite Transition Systems: Semantics of Communicating Systems.
Prentice Hall, 1994.

4. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293-318, 1992.

5. J. R. Butch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang. Symbolic
model checking: 102~ states and beyond. In Proc. 5th Annual IEEE Symp. on Logic
in Computer Science, pages 428-439, 1990.

6. T. Bultan, J. Fischer, and R. Gerber. Compositional verification by model checking
for counter-examples. In Proc. 1996 Int. Syrup. on Software Testing and Analysis,
pages 224-238, 1996.

7. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. A CM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

8. E. M. Clarke, O. Grumberg, D. E. Long Model checking and abstraction. In Proc.
18th Annual A CM Symp. on Principles of Programming Languages, pages 343-354,
1992.

9. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking.
In Proc. 4th Annual IEEE Syrup. on Logic in Computer Science, pages 464-475,
1989.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
~th Annual A CM Symp. on Principles of Programming Languages, pages 238-252,
1977.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proc. 5th Annual A CM Syrup. on Principles of Programming
Languages, pages 84-97, 1978.

12. J. Dingel, and T. Filkorn. Model checking for infinite state systems using data ab-
straction, assumption-commitment style reasoning and theorem proving. In Proc.
7th Int. Conference on Computer Aided Verification, LNCS 939, pages 54-69, 1995.

13. M. J. Fischer and M. O. Rabin. Super-Exponential Complexity of Presburger
Arithmetic. SIAM-AMS Proc., Volume 7, pages 27-41, 1974.

14. P. Godefroid. Partial-order methods for the verification of concurrent systems: An
approach to the state-explosion problem. Ph.D. Thesis, Universite De Liege, 1994.

15. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman and D. Won-
nacott. The Omega Library (version 1.00) interface guide. Available at
<http: / /www.cs.umd.edu/projects/omega>.

16. W. Kelly, W. Pugh, E. Rosser and T. Shpeisman. Transitive closure of infinite
graphs and its applications. Technical Report CS-TR-3457, UMIACS-TR-95-48,
Department of Computer Science, University of Maryland, 1994.

17. W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, 8:102-104, 1992.

18. A. Udaya Shankar. An introduction to assertional reasoning for concurrent sys-
tems. ACM Computing Surveys, 25(3):225-262, 1993.

