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Abs t rac t .  The paper shows that, by an appropriate choice of a rich as- 
sertionat language, it is possible to extend the utility of symbolic model 
checking beyond the realm of BDD-represented finite-state systems into 
the domain of infinite-state systems, leading to a powerful technique for 
uniform verification of unbounded (parameterized) process networks. 
The main contributions of the paper are a formulation of a general frame- 
work for symbolic model checking of infinite-state systems, a demonstra- 
tion that many individual examples of uniformly verified parameterized 
designs that appear in the literature are special cases of our general ap- 
proach, verifying the correctness of the Futurebus+ design for all single- 
bus configurations, extending the technique to tree architectures, and es- 
tablishing that the presented method is a precise dua~ to the top-down 
invariant generation method used in deductive verification. 

1 I n t r o d u c t i o n  

The problem of uniform verification of parameterized systems is one of the most 
thoroughly researched problems in computer-aided verification. The problem seems 
particularly elusive for systems that  consist of regularly connected finite-state pro- 
cesses (a process network). Such a system can be verified for any given configura- 
tion, but this does not provide a conclusive evidence for the question of uniform 
verification, i.e., showing that  the system is correct for all possible configurations. 

We have had a recent experience with the Futurebus+ system, which has been 
verified for many configurations in [CGH+93].  Using the TLV system [PS96], we 
were able to analyze additional (and larger) configurations and detected a bug 
that  escaped the previous verification efforts. Having corrected the bug, all of 
the configurations we have been able to check, verified correctly. However, the 
question of whether the Futurebus+ protocol in its last version contains another 
lurking bug, which makes its appearance only in a configuration much larger than 
anyone was able to check, still remains unresolved. One of our main motivations in 
the research reported in this paper is to develop a method by which uniform ver- 
ification of parameterized designs such as the Fnturebus+ can be algorithmicaIly 
performed. 

Many methods have been proposed for the uniform verification of parame- 
terized systems. These include explicit induction ([EN95], [SG92]), network in- 
variants, which can be viewed as implicit induction ([KM89], [WL89], [HLR92], 
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[LHR97]), methods that can be viewed as abstraction and approximation of net- 
work invariants ([BCG86], [SG89], [CGJ95]), and other methods which can be 
viewed as based on abstraction ([ID96], [EN96]). 

In this methodologically simplistic paper, we go back to basics and claim that, 
with an appropriate choice of an expressive but decidable assertional language, 
the good old paradigm of symbolic model checking is adequate for uniform verifi- 
cation of parameterized systems. The paper demonstrates this claim by studying 
in detail symbolic model checking with the assertional languages of regular sets 
and tree regular sets. For the case of regular sets of strings, we show that many 
of the examples previously verified using specialized representations or additional 
theories, such as the examples considered in [CGJ95], [ID96], and [EN96], can 
be solved by this single and simple approach. The use of regular assertional tree 
languages is new (except for a brief mention in [H J J+96]) and its application to a 
uniform verification of the Futurebus+ system will be a very convincing evidence 
to the power of the approach advocated here. 

One of the inspirations to the work reported here was [CGJ95] (and its prede- 
cessor [SG89]), where regular languages was the main instrument used at the end. 
However, we strongly felt that, with some restrictions, the same verification ca- 
pabilities can be obtained without the elaborate theory developed in [CGJ95]. In 
particular, we felt that there exists a redundancy between the network grammar 
used in [CGJ95] just to define the network topology and structure and the addi- 
tional means for representing the dynamic behavior by another regular language. 
In our approach, we use a single regular language to describe both the topology 
and the local states of the participating processes. However, we cannot handle as 
general network topologies as are considered in [CGJ95], and must restrict our- 
selves to either array or tree topologies. The general principle is still applicable to 
other topologies but it requires the development of a different assertional language 
for each family of topologies. 

By adopting the idea that a set of possible configurations of an unbounded 
array of processes can be represented as a set of strings over the process alpha- 
bet, we can go further and view the transitions of the system as rewrite rules 
applied to these strings. Hence the model-checking problem for networks can be 
reduced to the problem of calculating predecessors of a language via a rewriting 
system consisting of a finite set of length-preserving rules 5. In IBM96], a technique 
for calculating the reachable states of an alternating push-down process (i.e. an 
automaton with one unbounded variable, a push-down stack) was presented and 
used in order to model-check such processes against /z-calculus formulae. This 
technique (inspired by the construction given in [BO93], pages 91-93) is based 
on representing a regular set L of stack configurations by an automaton A and 
then calculating the set of predecessors of L via a rewrite rule by modifying A. 
In the case of push-down processes the algorithm is guaranteed to converge, but 
experience shows that it converges in many other cases. 

In this paper we generalize this idea in few directions. First, by using finite- 
state transducers we extend the technique to treat a more general class of rewrite 

If we ignore process creation and annihilation. 
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rules. We transfer the concept from theory to practice by implementing it into 
a working system and applying it successfully to several examples including all 
single-bus configurations of the Futurebus+. Secondly, we treat processes arranged 
in a tree architecture. To this end we define sets of process configurations as regular 
tree languages, employ bottom-up tree automata to represent them, and use tree 
transducers in order to define predecessors. 

The implementation owes much to the MONA system and its underlying prin- 
ciples [HJJ+96]. Similar to MONA, we adopt an SIS-inspired language for the 
user interface with the system, which is then translated into finite automata  rep- 
resented with BDD-labeled edges. However, unlike some of the applications to 
verification reported in [H J J+96] and [BK95], which are essentially deductive in 
nature, we use similar tools for symbolic model checking. A similar implementa- 
tion for trees is in the making, with the intended goal of verifying the Futurebus+ 
for all multiple-bus configurations. 

2 S y m b o l i c  M o d e l  C h e c k i n g  
In Fig. 1 we present the well-known symbolic model checking procedure for show- 
ing that  the invariance property []  g (AG g in CTL) is satisfied by system P, where 
g is an assertion (state formula). This procedure was already formulated in the 
early 80's (see [CE81], [QS82], [CES86]). It became practical and widely usable 
only with implementations based on ordered binary decision diagrams (OBDDS) 
[Bry86], such as [BCM+92] and [McM93]. Procedure SYMB-MC attempts to com- 
pute an assertion characterizing all the states from which a -~g-state can be 
reached by a finite number of P-steps. If the search loop terminates at itera- 
tion i, then ~i provides such an assertion. By checking that  none of the "bad" 
states characterized by pi are allowed as initial states of P,  we verify that  there 
is no -~g-state reachable from a P-initial state, so g is an invariant of system P. 

Procedure  SYMB-MC(g: assertion); 
assertion: ~ o ,  ~ 1 , . . .  ; 

Let ~0 := "~g ; 
For i -- 0, 1,. . .  repeat  

Let ~i+1 := ~ Vpredp(~i) ; 
unti l  ~i+1 = ~r ; 

Check that ~ A initp = F 
end procedure  

Fig. 1. A procedure for symbolic model checking. 

The procedure uses the assertion initp as a characterization of all the P-initial 
states, and the predicate transformer predp. For an assertion ~, predp(~) is an 
assertion characterizing all states that  have a p-state as a P-successor. 

As recommended by the rich-language symbolic model checking (RSMC) method- 
ology expounded in this paper, in order to verify that  assertion g is an invariant 
of the (possibly infinite-state) system P, one chooses an assertional language s 
and uses it to apply the SYMB-MC procedure. To be applicable, the language s 
should satisfy the following minimal requirements: 

- The property g and the assertion init e should be expressible in s 
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- The language/ :  should be effectively closed under the boolean operations of 
negation and disjunction, and possess an algorithm for deciding equivalence 
of two assertions. 

- There should exist an algorithm for constructing the predicate transformer 
predp : E H / 2  for every system P. 

We refer to a language satisfying these three requirements as a language adequate 
for symbolic model checking. Note that  identifying an adequate assertional lan- 
guage only guarantees that  Procedure SYMB-MC is applicable. It is still only a 
semi-algorithm which, when terminating, provides either proof of correctness or a 
counter example, but may fail to terminate. In fact, due to the theoretical results 
of [AK86], the invariance checking problem for parameterized systems is in general 
undecidable, and the best we can hope for in the general case is a semi-algorithm. 

In the remaining sections, we will consider several useful adequate assertional 
languages and illustrate their application to parameterized systems of interest. 

3 Regular Languages are Adequate 
In this section we demonstrate the use of the class of regular languages as adequate 
assertional languages. As a running example, we will use program MUX of Fig. 2 
that  implements mutual exclusion by synchronous communication. 

M 

II P[i] :: 
i = 1  

i n  M : integer where M > 1 
local a : array [1..M] of channel  of b o o l e a n  

local has: boolean where has-= (i=l) 

when has A i < M do 
if-~has A i > 1 t h e n  

a[i - 1] =~ has 

~ , ~  await h a s ~  

Fig. 2. Parameterized Program MUX. 

The body of the program is a variable-size parallel composition of processes 
P[1] , . . . ,  P[M]. Each process P[i] has two local state variables: a local boolean 
variable has and a control variable rr ranging over the set of locations {N, T, C} 
(the noncritical section, the trying section, and the critical section, respectively). 
Process P[i] sends the boolean value T on channel a[i] to its right neighbor (if 
i < M) and reads into variable has a boolean value from its left neighbor on 
channel a [ i -  1] ( i f /  > 1). As seen in the program, process P[i] can enter its 
critical section only if P[i].has = T. 

A local state of process P[i] is a valuation of the local state variables. For 
example, (Tr : C, has : T) is a local state in which P[i] is in its critical section 
while its variable has has the value T. We abbreviate (Tr : C, has : T) to (C, T), 
listing just the values assigned to the variables. 
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A global state (also called a configuration) of system MUX, is a sequence of 
local states. Note that  every configuration of system MUX can be viewed as a 
word over the finite alphabet 

~mvx: {iN, F}, (T, F), (C, F), (N, T), (T, T), (C, T)}. 
Consequently, we can view a set of configurations of program MUX as a language 
over the alphabet ~M,X. Examining procedure SYMB-MC, we identify two lan- 
guages and one language transformer which need to be syntactically characterized. 
We will consider each of these in turn. 

3.1 E x p r e s s i n g  t h e  In i t i a l  C o n d i t i o n  i n i tp  a n d  t h e  D e s i r e d  I n v a r i a n t  g 
Our general recommendation is to use as an assertional language for a process 
array system P, such as program MUX, the language of regular expressions over 
the alphabet Sp .  A regular expression over Zp defines a language which charac- 
terizes a set of global states. For example, the initial condition for program MUX 
can be expressed by the regular expression 

inilMcX: (N, T)((N, F))*. 
While we propose to use regular expressions in the user interface with the aSMC 

support system, the internal representation of the data structure "assertion" used 
in procedure SYMB-MC, is that of a finite-state a u t o m a t o n  (FSA) over Zp.  We con- 
sider such an automaton to be given by A: (Zp,  Q, q0, 5, F) ,  where ~p  is the input 
alphabet, Q is the set of aulomaton states, qo E Q is the initial automaton stale, 
5: Q x Zp ~ 2 Q is the transition function, and F C_ Q is the set of accepting slates. 

Next, we consider the desired property g. For the case of program MUX, the 
required property is that of mutual exclusion requiring that at most one process 
reside in its critical section at any given instance. This property can be expressed 
by the regular expression 

g: [ = # C ]  + + [ x # C ] * [ x = C ] [ x # C ] * ,  
where we use the abbreviations [x = C] = (C, T) + {C, F) and 

r c ]  = - = c] .  

3.2 E x p r e s s i n g  t h e  predp T r a n s f o r m e r  

To express the predp transformer, we first a t tempt to describe the change in 
configurations as a result of a single program step. Consider our running example, 
program MUX. The (parameterized) fair transition system IMP95] corresponding 
to this program has two kinds of transitions. There are transitions that  affect only 
a single process and represent internal movements and variable changes within this 
process. The other kind is the transition that  involves two contiguous processes, 
i.e., P[i] and P[i + 1] for some i E {1, M -  1}. This transition corresponds to 
the synchronous communication in which process P[i] sends the boolean value T, 
which process P[i + 1] receives and stores into has. 

We can summarize the transformation effected by the various transitions by 
the following list of rewrile rules: 

I ( N ' F ) - + ( T ' F )  , (C, F) --~ (N, F) , (T, T) --+ (C, T) } 
U: - (N, T) ~ (T, T) , (C, T> ~ (N, T) 

. g  

M: { (N, T> (T, <N, <T, T) } 
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where U (the unary rewrites) represents changes that affect only a single process, 
while M is a binary rewrite rule representing a joint transition of two contiguous 
processes. For example, applying the rewrite rule (N, T) (T, F) ~ (N, F / (T, T) 
to the configuration (N, T) (T, F) (g ,  F / yields the successor configuration 
(N, F) (T, T / (N, F), representing the result of passing a token from PIll  to P[2]. 

A precise characterization of the transformation caused by each of these rewrite 
rules can be provided by a finite-state transducer (FST) "-if: (~p  X ~p, Q, qo, 5, F), 
which is an FSA over the alphabet 

Zp • Zp = {[a,b]la, b E Zp}. 
Let u = al . . -a~ and v = bl .." bk be two Zp-words of equal length. We define 

their cross product u • v to be the Zp • ~ - w o r d  ([el, b l ] . . . [ak,  bk]). We say 
that word v is a transduction of word u by the FST 7- if the cross word u x v is 
accepted by 7-. 

Consider the FST '1" 2 presented in Fig. 3. The label id appearing in the trans- 
ducer stands for the set {(a, a) l a 6 ZMUX}, representing the identity transforma- 
tion. The transducer T2 represents the rewrite rule (N, T) (T, F) --+ (N, F) (T, T). 
For example, the configuration v = (N, F) (T, T) (N, F) is a T2-transduction of the 
configuration u = (N, T) (T, F) (N, F), because the joint word 

u •  = ([(N, Ti, (N, F)] [(T, F), (T, T)] [(N, F), (N, F)]) 
is accepted by "T2. 

T 
i d @ C  

[(N,  T),  (N,  F ) ] > ~  [(T, F), (T,  T ) ] > ( C ~  ) 
id 

Fig. 3. Transducer T2 representing a two-state rewrite. 

In a similar way, we can construct a transducer corresponding to each of the 
remaining rewrite rules, expressing the effect of a single transition in program 
MUX. Since the class of regular languages is closed under union, it is possible 
to construct a single transducer 7-MUX such that the configuration v is a 7-MUX- 
transduction of a configuration u iff v can be obtained from u by a single step of 
program MUX. We refer to TMux aS the step transducer for program MUX. 

Given a transducer T = (Z  x ~,  R, r0, 6~., F~) and an FSA 
A = (Z', Q, Q0, 6A, FA/, we define their composition to be the automaton 

7"oA = (Z, /~ x Q,[ro, qo],5, F T x FA), 
where It2, q2] C 5([rl, ql], a) iff there exists a b E ~V such that r2 C 5~-(rl, [a, b]) 
and q2 E 5A (ql, b). 
It is possible to establish the following claim: 

C la im  1 The language accepted by the composition T o A consists of all words 
having a T-transduction which is accepted by A. 

Going back to the use of FSAs as an assertional language, we observe that if 
A is an automaton characterizing a set of states of system P and "Tp is the step 
transducer for P, then the precondition transformer predp required in procedure 
SYMR-~C is ~iven bv ,red (A) = T_ o A 
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3.3 A p p l i c a b i l i t y  o f  F S A s  as A s s e r t i o n a l  L a n g u a g e s  

We can summarize the previous discussions by the following claim: 

C l a i m  2 I f  P is a system with an encoding of its global states into words over an 
alphabet Zp ,  such that 

- the initial condition initp and the goal assertion g can be represented by ~ , , -  
automata, and 

- the global transition relation of P can be represented by a step transducer q-e, 

then procedure SYMB-MC can be applied to the verification of P ~ [] g, using 
FSA 'S as the assertional language. 

Claim 2 does not guarantee that  the application of SYMB-MC will terminate. 
We have constructed an implementation of a system that  accepts as inputs the 

automata  representing init e and g and the step transducer Te, and checks whether 
g is a P-invariant,  although it may fail to terminate. We managed to verify 
program MUX and other simple programs including versions of MUX with either 
synchronous or asynchronous communication where the processes are arranged in 
a ring rather than an array. Finally, two of the four safety specifications which 
were verified in [CGIt+93] and [PS96] were checked for a single-bus version of the 
Futurebus+ protocol and were found to be correct. 

The representation of automata  in our implementation uses OSDD-encoded 
assertions over the local state variables instead of explicit enumeration of the 
local states which allow a transition from one automaton state to another. Thus, 
our transition function has the type ~: Q x locaLassertions ~-+ 2 Q, where a local 
assertion is an assertion over the local state variables. 

4 T r e e  L a n g u a g e s  

In this section, we extend the method of regular expressions over strings to deal 
with regular tree languages (see [TW68], [GS70], [D70]). This will enable us to 
handle process networks organized in a tree topology. Since process trees may 
have different out-degrees for different nodes, we have to generalize the notion of 
tree automata  to deal with varying arity, s 

4.1 B o t t o m - U p  T r e e  A u t o m a t a  

We define a tree structure S to be a finite subset of N* (i.e. a finite set of sequences 
of natural numbers) satisfying: 

- S contains the empty sequence A. 
- If S contains the sequence (o~1,..., c~), then it also contains the (possibly 

empty) sequence (c~1, . . . ,  o~k-1) and the sequences (o~1,..., o~k-1, r),  for every 
r, 0 < r < ~k. 

We refer to the elements of S as the nodes of the tree structure S. Obviously, S 
represents a node by specifying the path that  has to be followed from the root 
in order to get to the node. Thus, in a tree structure, A represents the root, and 

An extension of tree automata to arbitrary arity was made in [KG96] but in a top-down 
infinite context. 
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(1, 0) represents the node which is the first child of the second child of the root. 
A node ~ E S is a leaf, if it is not a prefix of any other member of S. 

Let A be an arbitrary alphabet, i.e. a finite set of symbols. An A-tree T: IS, A) 
consists of a tree structure S and a labeling function ,~: S ~ A, mapping each node 
of the tree to an A label. We will often refer to nodes in the tree as n E T and to 
their labels as ,~(n). 

A (variable-arity) bottom-up tree automaton (BTA) B: (Z, Q, A, F)  where Z,  
Q and F C Q are the standard finite alphabet, set of states, and set of accepting 
states, while 

A: Q* x ~ ~ 2 Q 
is a regular transition function, i.e. for every a 6 ~U and ~) C_ Q, the set of words 
{w 6 Q* ] A(w, a) = Q} is regular. In our presentations of BTAs, we write A 
as a finite number of entries of the form A(Ei, Zi) = Qi, where Ei is a regular 
expression over Q, Zi c Z,  and Qi c Q indicating that  for q 6 Q, w E Q*, and 
a 6 Z,  q 6 A(w, a) iff q E A(Ei, a) for some Eli such that  w E L(Ei). 

The way a BTA operates when applied to a Z-tree T is that  it proceeds from the 
leaves towards the root, annotating the tree nodes with automaton states. A single 
annotation step can be applied to the tree node n E T only when all of its children 
have been already annotated. Assume that  the children of n have been annotated 
with ql,. . . ,qk. Then, n can be annotated by q E Q if q 6 A(q~'"qk,A(n)). 

More formally, a run of the BTA B over the tree T = (S, A) is a mapping 
r: S ~ Q satisfying: 

For each n E S with children nl , . . . ,  n~, r(n) 6 A ( r ( n l ) . . .  r(n~), ~(n)). 

A BTA is deterministic if IA(w, a)l = 1, for every w E Q* and a E Z.  
E x a m p l e :  Let us define a BTA B which recognizes all variable-arity trees, labeled 
by Z = {a, b}, with the requirement that  precisely one node is labeled by b. For 
the components of B, we choose as follows: ~ :  {a,b}, Q:{q0,  ql,q2}, F:  {ql}, 

A :Defined as follows: 
A(q;, a) = {q0} 
A(q~, b) = A(q~qlq~, a) = {ql} 
A(Q*q~Q*q~Q*, {a, b}) = A(Q*q2Q*, {a, b}) = A(q~q~q~, b) = {q2} 

The BTA B is obviously deterministic. Given an {a, b}-tree T, au toma ton /3  
will a n n o t a t e b y  q0 all the nodes n such that  the subtree rooted at n is only 
labeled by a. Nodes rooting a subtree such that  precisely one node in the subtree 
is labeled by b will be annotated by ql. All other nodes are annotated by q2. The 
tree T is accepted by B iff its root is annotated by ql. 

The transition function A determines the annotation of a node n, based on the 
annotation of its children and the Z-character labeling n. According to the table, 
n will be annotated by q0 if all its children are annotated by q0 and n's label is a. 
This also takes care of the a-labeled leaves, since the empty word belongs to the 
language q~. Node n will be annotated by ql if either all children are annotated 
by q0 and n is labeled by b, or all children are annotated by q0 except for one 
child which is annotated by ql and n is labeled by a. In all other cases, n will 
be annotated by q2 which implies that  at least two b's have been detected in the 
tree. _, 
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A tree T is said to be accepted by the BTA B if there exists a run r of B over T 
such that  r(A) E F. We denote by L(B) the set of trees accepted by B. The BTAs 
B1 and B2 are said to be equivalent if L(Bt) = L(B2). By applying the standard 
subset construction, we can establish the following claim: 

C l a i m  3 
1. Every BTA is equivalent to a deterministic BTA.  

2. The class of tree languages recognizable by a BTA iS close under the boolean 
operations of complementation and union. 

4.2 C o n f i g u r a t i o n s  o f  a P r o c e s s  T r e e  as a T r e e  L a n g u a g e  

As a running example, consider program P E R C O L A T E  of Fig. 4. The assertion 
leaf(c~, S) holds for tree address c~ E S iff (~ is a leaf of S. 

[t : :  
a E o  o 

in S : t ree  s t ruc tu re  

local val : {0, 1, u} where  lea](~, S) *-~ val e {0, 1}" 

M := {mlc~ . m e S} 1 repea t  
ifVm E M : P[cr. m].valTs u 

t hen  val := VmeM P[ol. m]. val 
unt i l  vat # u 

Fig. 4. Process tree program PERCOLATE. 

Program PERCOLATE consists of a tree of processes, each having its local vari- 
able val, which ranges over the set of values {0, 1, u}. The value u should be 
interpreted as "undefined yet", which implies that  it will eventually change to 
either 0 or 1. Initially, all the leaf processes in the tree have val E {0, 1} and all 
other processes have val = u. The purpose of program PERCOLATE i s  to percolate 
to the root of the tree a value i if at least one of the leaves has value 1, and a 
value of 0, if all leaves have value 0. If P[a]  does not yet have a defined value 
but  all its childrens' values are defined then P[a]  sets its value to the disjunction 
of the values of its children. Consequently, we can represent a configuration of 
program P E R C O L A T E  aS a tree over the alphabet ZpERcoLAT~: {0, 1, U}. 

The specification of program P E R C O L A T E  can be given by the formula 

P[A].vaI 7s u -+ (P[Al.val = Vleaf(~,s) P[oe],vat), g: 

This formula states that  if the root has a defined value then its value equals 
the disjunction of all val values at the leaves. It is not difficult to construct a BTA 
which will accept precisely the trees that  have the property specified by g. In a 
similar way, it is straightforward to construct a BTA which will accept the initial 
configurations of the program. 

To complete the demonstration that  the assertional language of nTA'S is ade- 
quate for symbolic model checking of program PEaCOLATE, we should specify a 
tree transducer that  will represent the state transformations due to execution of 
statements within the individual processes. 
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Let T1 = (S, ~1) and T2 = (S, ~2) be two S-trees over the same tree structure 
S. These can be viewed as two different labeling of the same underlying tree. We 
define the cross product of T1 and T2 as the Z • Z tree T1 • T2 -- (S, ~x), where, 
for each a E S, Ax(a) = [)~l(a), )~2(a)]. 

A tree transducer (over L') is simply a BTA over the product alphabet ~2. For 
trees T1 and T2 as described above, we say that  T2 is a 7"-transduction of T1 if 
the tree T1 • T2 is accepted by 7-. 
E x a m p l e :  A tree transducer that represents the single transition (parameterized 
by the process address a) of program P E R C O L A T E  is defined as follows: 

Z: ZpE~COLATE • ~PEr~COLAT~. Q: {q0~l, q~, qd} F: {qd} 

A : Defined as follows: q~ 
A(Q~, [0, 0]) = {q0}  A(Q~, [1, 1]) = {ql} zS(Q~, [u, u]) = {q~} 
A(q~, [u, 0]) = A((q0 + ql)*ql(qo + ql)*, [u, 1]) = A(Q~qdQ~, id) = {qd} 

The transducer uses four states. Annotation of node ~ by the automaton states 
Q~ : {q0, ql, q~} reflects the value of P[a].val and also implies that  in the subtree 
rooted at a, all the S 2 labels are the identity id. Annotation of c~ by qd such that  
no descendant of ~ is annotated by qd identifies the only allowed node in the tree 
structure which is labeled by a ~2-character different from id. The rules for such 
annotations are given by the second line in the definition of A. This line allows a 
change of value from u to 0 if all the children of (~ are annotated by q0. It allows 
a change of value from u to 1 if at least one of the descendants is annotated by 1 
and all the rest are annotated by 0 or 1. 

Once the first (lowest) node is annotated by qd, this annotation propagates 
from each node to its parent, provided none of the siblings is annotated by qa. 
This guarantees that  only one process in the tree changes its value from u to 0 or 
1. .I 

Given a tree transducer 7- = ( ~ •  S,  R, ~T, FT) and a BTA A = (Z, Q, sa, Fa), 
we define their composition to be the BTA 

T o A  = (S, R x  Q,6, Fz • ra )  , 

where, for every r E R, q E Q, v E R*, and w E Q*, 

[r,q] E 6(v x w,a)  iff Sb E Z such that  r E 6~.(v,[a,b]) and q E 6a(w,b).  

C l a i m  4 The tree language accepted by the composition 7-o A consists of all trees 
having a T-transduction which is accepted by A. 

Going back to the use of BTAS as an assertional language, we observe that  if A 
is a BTA characterizing a set of configurations of system P and Tp is the step tree 
transducer for P,  then the precondition transformer predp required in procedure 
SYMB-MC is given by pred v (A) = 7- v o A. 

5 S y m b o l i c  M o d e l  C h e c k i n g  is D u a l  t o  I n v a r i a n t  G e n e r a t i o n  
An important component in all the modern support systems for deductive ver- 
ification, such as STeP [MAB+94] and PVS [SOR93], consists of algorithms and 
heuristics for the automatic generation of invariants. SeverM of these techniques 
have been presented in [MP95] and efficiently implemented as reported in [BBM95] 
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and [BLS96]. Perhaps the most powerful and widely applicable is the technique 
called top-down invariant generation. As described in IMP95] and [BBM95], the 
method starts with a goal assertion g, whose invariance we wish to prove, and 
applies a series of strengthening steps, until we obtain a stronger assertion r 
which implies g and is inductive. Using our notation, the strengthening procedure 
can be described as in Fig. 5. The predicate transformer pred v appearing in the 
procedure is dual to the predp transformer used in procedure SYMB-MC of Fig. 1. 

It can be defined either by the duality relation predV(r = -,predp(-,r or by 

saying that  a state s satisfies pred v (r iff all 7 P-successors of s satisfy r 

P rocedu re  STRENGTHEN(y: assertion); 
assertion: r r  ; 
Let  r := g ; 
For i = 0, 1, . . .  r epea t  

Let  r := r v A predp (r  ; 
unti l  r = r ; 

Check that initp ~ r 
end p rocedure  

Fig. 5. A procedure for top-down invariant generation. 

Procedure STl~ENGTHEN is a perfect dual of procedure SYMB-MC. One of the 
procedures terminates iff the other does and, when they terminate, they terminate 
after precisely the same number of steps. Furthermore, for every i = 0, 1 , . . . ,  
reached in the application of these procedures, r = -'~i, and one of them reports 
success (implying that  g is a P-invariant) iff the other does. 

So presenting the considered procedure as symbolic model checking or as part  
of the deductive set of tools is a mat ter  of taste. The successful verification cases re- 
ported in [BBM95] and [BLS96] will work equally well in the approach of symbolic 
model checking suggested here. Symmetrically, it shows that  the two assertional 
languages of regular languages and regular tree languages analyzed here can be 
imported into the invariant generation methodology with equal success. 
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