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Abstract. In this paper we present an overview of the verification tool gcke. It 
is an implementation of a BDD-based g-calculus model checker and uses several 
optimization techniques that are lifted from special purpose model checkers to the 
g-calculus. This gives the user more expressibility without loosing efficiency. 

Introduction 

In [5] ~t-calculus model checking with BDDs has been proposed as a general framework 
for various verification problems like model checking of LTL and CTL or testing for 
bisimulation equivalence and language containment. With a g-calculus model checker 
all these verification tasks could be handled with one tool. Also some applications of 
symbolic model checking [16] need the ~t-calculus as a specification language. On the 
other hand the most successful applications of model checking [7,2,15,10] all used a 
model checker with a less expressive specification language than the g-calculus. The 
reason for this restriction was that for special purpose specification languages optimized 
model checkers can easily be build [5]. 

For example the SMV system of/vlcMillan [14] uses fixed allocations of BDD vari- 
ables for ~-calculus variables (ordering of BDD variables) for current and next state vari- 
ables and specialized algorithms ( c o l l a p s e )  for the computation of the set of states 
reachable in one step from a given set of states. 

Other optimizations [4,14] that avoid the construction of the global transition re- 
lation (incremental transition relation generation, partitioning, MBFS) or speed up the 
computation (forward analysis, frontier set simplification) were only presented for state 
space analysis or CTL model checking. 

In [3] we have shown that all these optimizations can be lifted to the g-calculus. Es- 
pecially an automatic allocation algorithm for BDD variables is given. It operates on 
allocation constraints to generate an allocation that respects the heuristic that all substi- 
tutions needed for the evaluation of a g-calculus term should be fast (fast substitutions 
do not change the structure of a BDD but only change the variable markings). This is a 
generalization of the annotation mechanism of [ 11 ]. 

We also presented the composeite3 algorithm that is a generalization of the BDD al- 
gorithm c o l l a p s e  of the SMV system and of the prelmg-Operator of [8]. It performs 
a substitution, the calculation of "if.then.else" and a quantification in one pass and thus 
avoids the unnecessary construction of intermediate results. 

For the evaluation of these methods we implemented the g-calculus model checker 
gcke. The main goal was to construct a g-calculus model checker that is as efficient as 
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special purpose model checkers like the SMV system and also easy to use. In addition 
it should be more expressive and more flexible. 

Although we found some properties that are more naturally described with the g- 
calculus than f. e. with CTL, the g-calculus is in general not very comprehensible and 
should not be used as an interface for an engineer that is involved in the design of a 
system to be verified. A front end that translates the formal specification produced by 
the engineer into the g-calculus should be used instead. This front end must be changed 
for different optimizations and different application domains. To ease these adaptions the 
input language of gcke is similar to C (C++), a widespread used programming language. 

Another point is that for special purpose model checkers there exist algorithms for 
the generation of counter examples if the verification fails. Here we used the method of 
[13] for the construction of counter examples for the whole g-calculus. 

The author is aware of three further implementations of g-calculus model checkers 
[ 11,12,18] based on decision diagrams. The first and third implementation do not use 
automatic allocation algorithms and the user has to provide the allocation himself. The 
system of Janssen [12] (used in [17]) uses dynamic variable reordering [19] instead. We 
used this approach in a first prototype of gcke too and we were not able to achieve an 
equally high performance as the SMV system. The reason for the problems with this 
approach is that the BDD variables allocated for g-calculus variables bounded by quan- 
riflers may also be reordered by dynamic reordering. So there is no way to enforce fast 
substitutions. Some simple verification problems like the calculation of the set of reach- 
able states of an n-bit counter and a simple arbiter suggested that gcke is 6 to 9 times 
faster than [ 12]. 

gcke 

In this section we give an example of the input language of the gcke model checker and 
show how the optimization of forward analysis can be formulated in the g-calculus. The 
example is a version of the alternating bit protocol [6,1] with an explicit description of 
the channels between sender and receiver. The control state of the sender is an enumer- 
ation type and is the first part of the total state of the sender. It also has an alternating bit 
and needs a place to store the data for retransmission if the first transmission failed. 

class StateOfSender { 
ControlStateOfSender state; bool ab; Data data; }; 

The states of the channels and the receiver are defined in the same way. The global state 
of the system consists of the states of the sender, the receiver and the states of the two 
channels and of a running variable used to model the interleaving semantic: 

class State { 
Running running; S2RChannel s2r; R2SChannel r2s; 

StateOfSender sender; StateOfReceiver receiver; }; 

Now we define the transition relation of the Sender and the global transition relation with 
a syntax similar to the definition of a function in C without curly parentheses enclosing 
the body: 
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bool TransSender(State s, State t) 

s.running = sender & CoStabSender(s,t) & ( 

case 

s.sender.state = get : 

t~ = send & t.sender.ab = s.sender.ab 

t.sender.data = s.sender.data & 

t.s2r.in = s.s2r.in & t.r2s.out = s.r2s.out; 

s.sender.state = send : 

); 
bool Trans(State s, State t) TransSender(s,t) I 

One (weak) property we want to verify is that it is always possible that the control state 
of the sender will eventually be g e t  - or AGEF s e n d e r ,  s t a t e  = g e t  as CTL 
formula. Translated to the I,t-calculus using the optimization of forward analysis (the - f  
option of SMV) this results in the definition of four recursive predicates: 

mu bool Reachable(State s) 

Start(s) 1 (exists State t. Trans(t,s) & Reachable(t)); 

mu bool EF_sender_state_get(State s) 

Reachable(s) & (s.sender.state = get I 

(exists State t. Trans(s,t) & EF sender_state get(t))); 

nu bool AG EF sender_state_get(State s) 

Reachable(s) & (EF_sender_state get(s) & 

(forall State t. Trans(s,t) -> AG EF sender_state_get(t))); 

forall State s. Start(s) -> AG EF sender state_get(s); 

The model checker p~cke now evaluates this last line and answers with true or false. If 
the user wants to have a counter example or a witness for the formula he must request 
this separately. Other optimizations mentioned in the introduction can be handled the 
same way as equivalence preserving term rewriting rules. 

Performance 

We translated our formulation of the alternating bit protocol into the input language of 
the SMV system and verified the property AGAF s e n d e r ,  s t a t e  = g e t  under fair 
execution of all four processes and fair channels. The performance under forward anal- 
ysis of the SMV system and ~tcke with the same algorithm (~tcke) and with simplifying 
the transition relation with the "restrict" operator of [8] (~tcke restrict) is shown in the 
following table (on a Pentium 120). Also a comparison of the performance of Izcke for 
the scheduler of Milner with [11] on the same machine (Sun 4/75) can be found. 

#bits SMV ~cke ~tcke restrict # [11] pcke .tcke restrict 
MB sec MB sec MB sec sec sec sec 

4 9.1 13.3 3.3 9.6 2.9 3.0 12 145 21.7 17.2 
5 9.4 36 4.0 42 3.4 7.2 14 233 31.2 22.6 
6 10.0 77 5.6 112 4.6 16.2 16 348 39.1 29.4 
7 11.3 202 8.8 289 6.0 49.2 18569 54.7 38.1 
8 14.4 696 17 807 12.5 122.3 20 850 67.6 46.5 
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Conclusion 

The gcke  model  checker shows that a g-calculus model  checker can be as efficient as 
special purpose model  checkers. Currently we investigate how to handle functions with 
other range types than boolean. Also we look for a way to include unions and inheritance 
into our type system. See h t:t:p : / / •  s e r a n .  •  u k a .  d e / ~ a t t a i n  for more informa- 
tion about gcke  or contact the author. 

References 

1. K. Bartlett, R. Scantlebury, and R Wilkinson. A note on reliable full-duplex transmissions 
over half-duplex lines. Communications of the ACM, 5(2):260-261, 1969. 

2. I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for 
practical formal verification of reactive hardware. In Dill [9], pages 182-193. 

3. A. Biere. Efficient Ix-Calculus Model Checking with Binary Decision Diagrams. PhD thesis, 
Fakult~it for Informatik, Universit/it Karlsruhe, Germany, Jan. 1997. In German. To appear. 

4. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model 
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems, 13(4):401--424, Apr. 1994. 

5. J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 102o states and 
beyond, lnformation and Computation, 98:142-170, 1992. 

6. E.M. Clarke, E. A. Emerson, and A. R Sistla. Automatic verification of finite-state concurrent 
systems using temporal logic specifications. ACM Transactions on Programming Languages 
and Systems, 8(2):244 - 263, April 1986. 

7. E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jab, D. E. Long, K. L. McMillan, and L. A. Ness. 
Verification of the futurebus+ cache coherence protocol. Formal Methods in System Design, 
6:217-232, 1995. 

8. O. Coudert and J. C. Madre. A unified framework for the formal verification of sequential 
circuits. In IEEE lntl. Conference on Computer-Aided Design, pages 126-129, 1990. 

9. D.L. Dill, editor. Computer Aided Verification, 6th International Conference, CA V'94, vol- 
ume 818 of LNCS. Springer-Verlag, June 1994. 

10. ,/~. T. Eiriksson and K. L. McMillan. Using formal verification/analysis methods on the crit- 
ical path in system design: A case study. In Wolper [20], pages 367-380. 

11. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking. Dis- 
tributed Computing, 6:155-164, 1993. 

12. G. Janssen. ROBDDsoftware. Technicalreport, Department of Electrical Engineering, Eind- 
hoven University of Technology, Oct. 1993. 

13. A. Kick. Generation of Counterexamples and Witnesses for Model Checking. PhD thesis, 
Fakult~it ftir Informatik, Universit~it Karlsmhe, Germany, July 1996. 

14. K. L. McMillan. Symbolic Model Checking. Kluwer, 1993. 
15. V. G. Naik and A. P. Sistla. Modeling and verification of a real life protocol using symbolic 

model checking. In Dill [9], pages 194-206. 
16. J. Philipps and P. Scholz. Formal verification of statecharts with instantaneous chain reac- 

tions. In TACAS'97, 1997. 
17. S. Rajan, N. Shankar, and M. K. Sfivas. An integration of model checking with automated 

proof checking. In Wolper [20], pages 84-97. 
18. A. Rauzy. Toupie = Ix-calculus + constraints. In Wolper [20], pages 114-126. 
19. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In IEEE Intl. 

Conference on Computer-Aided Design, pages 42-47, 1993. 
20. P. Wolper, editor. Computer Aided Verification, 7th International Conference, CAV'95, vol- 

ume 939 ofLNCS. Springer-Verlag, July 1995. 


