
VeriSoft: A Tool for the A u t o m a t i c Ana lys i s of
Concurrent R e a c t i v e Sof tware

Patrice Godefroid

Bell Laboratories
Lucent Technologies

1000 E. Warrenville Road
Naperville, IL 60566, U.S.A.

god@bell-labs, com
http ://www. bell-labs, com/" god

A b s t r a c t . VeriSoft is a tool for systematically exploring the state spaces
of systems composed of several concurrent processes executing arbitrary
code written in full-fledged programming languages such as C or C-t--t-.
It can automatically detect coordination problems between concurrent
processes . Specifically, VeriSoft searches the state space of the system for
deadlocks, livelocks, divergences, and violations of user-specified asser-
tions. An interactive graphical simulator/debugger is also available for
following the execution of all the processes of the concurrent system.

1 Introduction

State-space exploration techniques are increasingly being used for analyzing the
correctness of concurrent reactive systems. These techniques consist of exploring
a directed graph, called the state space, representing the combined behavior of
all concurrent components in a system. In the case of software systems, existing
state-space exploration tools can compute automatically a state space from an
abstract description of such a system, specified in a modeling language. Exam-
ples of such tools are CAESAR [FGM+92], COSPAN [HK90], CWB [CPS93],
MURPHI [DDHY92], SMV [McM93], SPIN [Ho191], and VFSMvalid [FHS95],
among others. In many cases, analyses of complex concurrent systems using
state-space exploration techniques were able to reveal quite subtle design errors
(for instance, see [Rud92, CGH+93, BG96]).

VeriSoft extends the previous results by being able to directly analyze the
implementation of a concurrent reactive software system, rather than a hand-
written model of it. Specifically, VeriSoft is a tool for systematically exploring
the state spaces of systems composed of several concurrent processes executing
arbitrary code written in full-fledged programming languages such as C or C + + .
It can automatically detect coordination problems between concurrent processes.
An interactive graphical simulator/debugger is also available for following the
execution of all the processes of the system.

In the next section, we define the state space of a concurrent system composed
of processes executing arbitrary code. Then, we present the properties that can
be checked with VeriSoft. We conclude with a brief presentation of the tool itself.

477

2 C o n c u r r e n t S y s t e m s a n d D y n a m i c S e m a n t i c s

We consider a concurrent system composed of a finite set 7 9 of processes and a
finite set of communication objects. Each process Pi E 79 executes a sequence of
operations, that is described in a sequential program written in a programming
language such as C or C + + for instance. Such programs are deterministic: ev-
ery execution of the program on the same data performs the same sequence of
operations. We assume that processes communicate with each other by perform-
ing operations on communication objects. Examples of communication objects
are shared variables, semaphores, and FIFO buffers. At any time, at most one
operation can be performed on a given communication object (operations on a
same communication object are mutually exclusive). Operations on communica-
tion objects are called visible operations, while other operations are by default
called invisible. The execution of an operation is said to be blocking if it can-
not be completed. We assume that only executions of visible operations may be
blocking.

The concurrent system is said to be in a global state when the next operation
to be executed by every process in the system is a visible operation. We assume
that every process in the system always eventually a t tempts to execute a visible
operation. This implies that initially, after the creation of M1 the processes of the
system, the system may reach a first and unique global state So, called the initial
global state of the system. We define a transition as a visible operation followed
by a finite sequence of invisible operations performed by a single process. A
transition whose visible operation is blocking in a global state s is said to be
disabled in s. Otherwise, the transition is said to be enabled in s. A transition t
that is enabled in a global state s can be executed from s. Once the execution of
t from s is completed, the system reaches a global state s ~, called the successor
of s by t. The state space of the concurrent system is composed of the global
states that are reachable from the initial global state So, and of the transitions
that are possible between these.

All operations on objects are deterministic, except one special operation
"VS_toss", which is used to express a valuable feature of modeling languages,
not found in programming languages: nondeterminism. Indeed, we consider here
ctosed concurrent systems, where the environment of one process is formed by
the other processes in the system. This implies that , in the case of a single
"open" reactive system, the environment in which this system operates has to
be represented, possibly using other processes. In practice, a complete represen-
tation of such an environment may not be available, or may be very complex.
It is then convenient to use a simplified representation (software stub) for the
environment to simulate its observable behavior. Another reason for providing
a specific representation of the environment is to test the system under specific
external constraints (test driver). The operation VS_toss takes as argument a
positive integer n, and returns an integer in [0, n]. The operation is visible and
nondeterministic: the execution of a transition starting with VSAoss(n) may
yield up to n + 1 different successor states~ corresponding to different values
returned by VS_toss.

478

3 Properties

In [God97], it is shown that deadlocks and assertion violations can be detected
by exploring only the global states of a concurrent system as defined in the
previous section. Deadlocks are States where the execution of the next operation
of every process in the system is blocking. Assertions can be specified by the
user with the special operation "VS_assert". This operation can be inserted in
the code of any process, and is considered visible. It takes as its argument a
boolean expression that can test and compare the value of variables and data
structures local to the process. When "VS_assert(expression)" is executed, the
expression is evaluated. If the expression evaluates to false, the assertion is said
to be violated.

In addition to deadlocks and assertion violations, VeriSoft also checks for
divergences and tivelocks. A "divergence" occurs when a process does not attempt
to execute any visible operation for more than a given (user-specified) amount of
time, while a "livelock" occurs when a process has no enabled transition during
a sequence of more than a given (user-specified) number of successive global
states. Note that these definitions of divergence and livelock differ from the
standard definitions for these notions~ which correspond to liveness properties,
i.e., properties that can only be violated by infinite sequences of operations or
transitions [Lam77, MP92]. In contrast, our notions of divergence and livetock
can be violated by finite sequences of operations or transitions, and therefore
are actually safety properties. (See [God97] for details.)

4 Systematic State-Space Exploration using VeriSoft

VeriSoft is a tool for systematically exploring the state spaces of concurrent
systems as defined in Section 2. In a nutshell, every process of the concurrent
system to be analyzed is mapped to a UNIX process. The execution of the system
processes is controlled by an external process, called the scheduler. This process
observes the visible operations performed by processes inside the system, and can
suspend their execution. By resuming the execution of (the next visible operation
of) one selected system process in a globM state, the scheduler can explore one
transition between two global states in the state space of the concurrent system.
By reinitializing the system, the scheduler can explore alternative paths in the
state space.

The scheduler also contains an implementation of a new search algorithm,
introduced in [God97], that makes it possible to systematically and efficiently
explore the state spaces of such systems without storing any intermediate states
in memory. This algorithm is built upon existing state-space pruning techniques
known as partial-order methods [God96]. For finite acyclic state spaces~ this al-
gorithm is guaranteed to terminate and can be used for detecting deadlocks
and assertion violations without incurring the risk of any incompleteness in the
verification results. In practice, VeriSoft can be used for systematically and effi-
ciently testing the correctness of any concurrent system, whether its state space
is acyclic or not.

479

VeriSoft searches the state spaces of concurrent systems for errors of the
types listed in Section 3. When an error is detected, a scenario leading to the
error state is exhibited to the user. An interactive graphical simulator/debugger
is also available for replaying scenarios and following their executions at the
instruction or procedure/fonction level. Values ot variables of each process can
be examined interactively. In manual-simulation mode, the user can also explore
any path in the state space of the system with the same set of debugging tools.

VeriSoft has been tested on various examples of concurrent reactive C pro-
grams to demonstrate the practicability of our approach. As an example, VeriSoft
successfully discovered a previously unknown error in a concurrent 2500-line C
program controlling robots operating in an unpredictable environment. These
encouraging experimental results bode well for the applicability of VeriSoft to
the analysis of actual software products. Several such applications are currently
being investigated in cooperation with switching-software development and test-
ing organizations in Lucent Technologies. Additional information on VeriSoft is
(and will be) available at h t t p : / / w w w . b e l l - 1 a b s , com/~god.

R e f e r e n c e s

[BG96]

[CCH+931

[CPS93]

[DDHY92]

[FGM+92]

[FHS951

[God96]

[God97]

[HK9O]

[Hol91]
[Lam77]

[McM93]
[MP92]

[Rud92]

B. Boigetot and P. Godefroid. Model checking in practice: An analysis of the AC-
CESS.bus protocol using SPIN. In Proceedings of Formal Methods Europe'96, vol-
ume 1051 of Lecture Notes in Computer Science, pages 465-478, Oxford, March 1996.
Springer-Verlag.
E. M. Clarke, O. Grumberg, It. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A.
Ness. Verification of the Futurebus+ cache coherence protocol. In Proceedings of the
Eleventh International Symposium on Computer Hardware Description Languages
and Their ApIIications. North-Holland, 1993.
R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics
based tool for the verification of concurrent systems. ACM Transactions on Program-
ming Languages and Systeras, 1(15):36-72, 1993.
D. L. Dill, A. J. Drexler~ A. J. Hu, and C. H. Yang. Protocol verification as a hard-
ware design aid. In 199~ IEEE International Conference on Computer Design: VLSI
in Computers and Processors, pages 522-525, Cambridge, MA, October 1992. IEEE
Computer Society.
J.C. Fernandez, H. Garavel, L. Mounter, A. Rasse, C. Rodriguez, and J. Sifakis. A
toolbox for the verification of LOTOS programs. In Proc. of the l$th International
Conference on Software Engineering ICSE'14, Melbourne, Australia, May 1992. ACM.
A. R. Flora-Holmquist and M. Staskauskas. Formal validation of virtual finite state
machines. In Proc. Workshop on Industrial-Strength Formal Specification Techniques
($VIFT'95), pages 122-129, Boca Raton, April 1995.
Patrlce Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, January 1996.
P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceed-
ings of the 2]tth A C M Symposium on Principles of Programming Languages, pages
174-186, Paris, January 1997.
Z. Har'E1 and R. P. Kurshan. Software for analytical development of communication
protocols. ATF~T Technical Journal, 1990.
G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.
L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, SE-3(2):125-143, 1977.
K. L. McMinan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Sprlnger-Verlag, 1992.
H. Rudin. Protocol development success stories: Part I. In Proc. l~th IFIP W G 6.1
International Symposium on Protocol Specification, Testing, and Verification, Lake
Buena Vista, Florida, June 1992. North-Holland.

