
A Compositional Rule for Hardware Design
Refinement

K. L. McMillan

Cadence Berkeley Labs
1919 Addison St., suite 303

Berkeley, CA 94704-1144
mcmillan@cadence.com

Abst rac t . We present an approach to designing verified digital systems
by a sequence of small local refinements. Refinements in this approach are
not limited to a library of predefined transformations for which theorems
have been previously established. Rather, the approach relies on localiz-
ing the refinement steps in such a way that they can be verified efficiently
by model checking. Toward this end, a compositional rule is proposed by
which each design refinement may be verified independently, in an ab-
stract environment. This rule supports the use of downward refinement
maps, which translate abstract behavior detailed behavior. These maps
may involve temporal transformations, including delay. The approach is
supported by a verification tool based on symbolic model checking.

1 I n t r o d u c t i o n

Although significant progress has been made in automated verification of digital
systems, most designs are still far too large and complex to be verified in a fully
automatic way. The classical solution proposed to this problem is compositional
reasoning. This means that properties of individual modules or components of a
large system are verified in isolation, and these properties are then combined to
prove properties of the system as a whole. One commonly proposed specification
language for these properties is temporal logic [Pnu85], and systems of composi-
tional inference rules have been developed to support "assume-guarantee" style
proofs [Lain83] using various temporal logics (e.g., [GL94]). In a compositional
proof, one reasons thus:

Q ~ r

P l i Q V r

Here, P and Q are processes, and r is an environment assumption, necessary
to prove that P satisfies specification r Typically, however, the environment
assumptions needed to verify interacting processes are interdependent. For ex-
ample, process P may guarantee to satisfy an invariant r up to time t + 1 only if
Q satisies r up to time t, and vice versa. Such an inductive argument cannot be
expressed in the above rule. If one at tempts it, the result is a circular argument.
One way to break the circularity is to model the environment as an abstract
process. Kurshan [Kur87, Kur94] introduced the following style of reasoning for
Moore machines:

25

PIIQ' ::> P'
P ' [IQ:cQ'

P [[0 3 fi' It Q'

where ~ can be replaced by any suitable process preorder. Here, the abstract
process Q' takes the role of environment assumption when verifying P, and P '
does the sarne when verifying Q. The circularity is broken inductively, as a result
of the delay of one time unit from input to output of the Moore machines. Alur
and Henzinger [AH96] extended this to the case of Mealy machines where there
are no combinational cycles.

A limitation of this kind of proof rule is that the abstract processes P~ and
Q' do not typically have the same inputs and outputs as the detailed processes
P and Q. In order for P ' and Q~ to be simple, they necessarily communicate at a
more abstract level. In Kurshan's methology, this problem is approached by using
process homomorphisms. This means that the user provides a function r that
maps detailed signals to abstract signals. One can thus reason compositionally
as follows:

r ~ P '
Q'

r II Q) IIQ'
Note, however, that we cannot use Qt as an environment assumption unless we
are able to effectively invert the function ~. This is necessary to translate outputs
of the abstract process QS into inputs of the detailed process P. On the other
hand, downward maps can be used effectively to provide the both the inputs
of P (i.e., its environment) and also the correctness conditions for its outputs,
as a function of the abstract behavior of P~ and Q~. This effectively puts the
verification of P in an abstract context, an Observation has been made in the
context of symbolic simulation by Bryant and Beatty [BB94] and in the context
of theorem provers by Cyrluk [Cyr96].

Note also that upward maps can be very complex. In the case of pipelines,
for example, the upward abstraction map involves flushing the entire state of
the pipeline, which may contain many instructions. Although in some cases this
complexity can be dealt with, using BDD's [BF89] or sophisticated decision pro-
cedures [BD94, JDB95], we would prefer a methodology that decomposes the
verification problem into small subproblems. In the case of pipelines, for exam-
ple, downward refinement maps involving delay can yield separate verification
subproblems for each stage of the pipeline.

To support such a compositional methodology in a model checking context,
we present a system based on a generalized compositional rule for Mealy ma-
chines. It allows both upward and downward refinement maps, which are rep-
resented as arbitrary processes. Hence, maps may involve state and delay, if
necessary. Further, the system is flexible enough to allow non-hierarchical ab-
stractions. That is, an abstract specification may have a different structural
decomposition from the low level implementation, and many abstract-level com-
ponents may be multiplexed onto the same collection of low-level components.
This flexibility to choose an arbitrary decomposition of the specification can be
used to simplify the resulting verification subproblems. The system is imple-
mented on top of the SMV symbolic model checker [McM93].

26

2 A c o m p o s i t i o n a l r u l e f o r M e a l y m a c h i n e s

We begin by introducing a compositional rule for Mealy machines. For the
present purposes, a Mealy machine will be defined as a collection of recurrence
equations involving either zero delay or unit delay. For flexibility in specification,
we allow machines to be underspecified, in the sense that there may be many
solutions of the equations for any given input sequence. This does not however,
imply nondeterminism in the automata theoretic sense, since our "machines"
have no notion of internal state.

To be more specific, let $ be a finite collection of signals, and let ~ be a finite
universe of values. We interpret a signal as a sequence of values, or a function
]N --+)2. Let a model be any function ~r : 8 --+ IN -+)2. A machine is a predicate
M of the form:

A M ~
aE$

The assertions M~, called components, may be in one of two forms, representing
generalized gates and latches. A gate is of the form:

V = - �9 �9

J

where the signals V1... "f~ are the inputs of the gate, and f is a function)2 k -~]2.
The finite disjunction allows the output of the gate to be incompletely specified
as a function of its inputs. A latch is similar to a gate, but involves one time
unit of delay, and a set of possible initial values. It is a component M~ of the
form:

V a (t + 1) = f (7 , (t) . . . 7 ~ (t))
J

A

V a(O) = initj
J

This specifies the possible values of a at time t + 1 as of function of the inputs
at time t, and also specifies the possible values initj at time t = 0.

We will tacitly identify a machine with the set of models that satisfy it. We
will say that machine Q implements machine P when Q ~ P, which is the same
as saying that the set of models of Q is contained in the set of models of P.

Now, suppose we wish to prove that Q ~ P. Since P is a conjunction of
assertions P~, expressible in temporal logic, we could simply use model checking
to verify Q ~ P~ for each a. However, this would be unlikely to be effective in
practice, since the state space of Q would be too large. To simplify the model
checking problem, we could take only a subset of the components of Q as the
"environment" when checking P~ (a technique called localization), but it still
might require a large number of components. Instead, assuming that P is simple
and abstract, while Q is complex, we might like to take some other components
of P as environment assumptions while proving P~. Intuitively, this would put
the verification of P~ in a more "abstract" context. Thus, for example, we might
assume P~, is correctly implemented when checking P~ and vice versa. We can
show that this reasoning is sound, provided there are no cycles of "gates".

27

To be more precise, let <M, the dependency relation of machine M, be the
set of pairs (% a) such that Me is a gate (has zero delay) and ~f is and input
of M~. Now suppose there are no cycles in the joint dependency relations of
machines Q and P. To verify Q =v P~, we may instead verify $~ ~ P~, where
E ~ is an "environment" machine, made up of arbitarily chosen components of P
and Q, provided of course we do not chose P~ itself.

T h e o r e m 1. Let P and Q be machines. For all a E S, let E ~ be a machine such
that:

- for all ~1 E signals: E~, = P~, or ~ , = Q~,, and

Let <* be the relation (<p t2 <Q)*. I f <* is irreflexive then the following infer-
ence rule is sound:

for all a: C a ~ P~
Q ~ P

Proof. Define a lexical order < over]N • S where (~1 al) < (~_ a) iff v' < v,
or T I ---- 7" and at<*a. Further, let Pr denote Pa for t = T. Now, consider a
model ~. Assume ~ ~ Q and assume by inductive hypothesis tha t ~ ~ E~, (v')
for all (at,T ') < (T,a). Note that by definition, 7r ~ E~(7), since E~ = Q~.

Now construct a model 7r I from 7r by changing only the values ~1(TI) for
(~, T) < (a', TI), such that r ' ~ E ~ This can be done because <* containts <cv,
hence each a'(7') can be chosen only as a function of previous values w.r.t. <.
Since E ~ ~ P~ it follows in particular that 7J ~ P~ (T), and hence 9: ~ P~ (~-).
By induction over <, it follows that r ~ P.

We can extend the above result to the case of proving that Q simultaneously
implemements a collection of specifications P 1 , . . . , Pn. This theorem forms the
basis of a system for design refinement, described in the next section. The proof
is omitted here, but is along the same lines as the previous theorem.

T h e o r e m 2. Let Q and p1 . . . p~ be machines. For all i =- 1 . . . n and (7 C S,
let E i~ be a machine such that:

- for all a' e signals: E~ ~, = Q~, or E~ ~, = PJ, for some j , and

Let <* be the relation [([Jl <p~)U <Q]*. If <* is irreflexive then the following
inference rule is sound:

for all i, ~ : ~ ~ P~
Q~ A~P~

3 P a r t i a l m a c h i n e s a n d r e f i n e m e n t

We now introduce a refinement framework, that makes it possible to define a
design by a collection of incremental changes to a specification machine, and to
verify that the resulting machine (called the implementation machine) implies
the orignal abstract machine. Each incremental change will be referred to as a
layer, and is essentially a partially defined machine.

Let a layer M be an assertion of the form A~cS(M)M ~ where S (M) C S and
the assertions M~ are either gates or latches, as before. A design is a partial order

28

7) = (JM, <z)), where 3d is a set of layers. The intuition behind <z) is that Q<z)P
when Q is intended as an incremental modification of P, in which case we say Q
refines P. In order for an implementation to be uniquely defined, we require that
for any signal a, there is a unique least layer Z ~ w.r.t. <z) such that a E 8(Z~).
The conjunction of these minimal definitions Z ~ is termed the implementation
machine of 7) and is denoted 2%). In the simplest case <z) will be a linear
order over machines 2 t d l , . . . , 3 d ~ . In this case, the implementation machine
is the result obtained by starting with 341 (the specification) and substituting
components of M 2 , . . . , 34~ in sequence.

A design 7) will be said to be correct when

that is, when the implementation machine implies every layer of 7). In the linear
order case, this implies in particular that it implements the original specification
341.

Note that we can verify correctness of a design compositionally using the
inference rule of theorem 2. This requires us to choose an environment machine
g M~ to verify each component M , of each layer M in the design, excepting the
implementation components. While the environments may be chosen manually,
the following two heuristics can be applied automatically:

- For each a, choose g" = M~, where M is the maximal layer under < 9 that
defines a.

- Drop any signal definitions that topologically cannot influence a.

If we use these rules when verifying a sequence of local modifications, the verifi-
cation of any given modification does not see the other modifications, since the
environment is selected from the earliest, most abstract definitions.

3.1 I m p l e m e n t a t i o n in S M V

The verification framework described in the previous two sections has been im-
plemented on top of the SMV model checker. The system has a simple language
for describing Mealy machines. In this language, a gate is described by a state-
ment of the form:

<a> := <f (71 , - - . ,Tk)>;
while a latch is specified in the following way:

init(<a>) := <init~>;
next (<0">) := < f (7 1 , ' " , %) > ;

In either case, we can leave a signal underspecified by indicating a choice of
values in set brackets. For example,

x := y + { o , 1 } ;

stands for

x(t) = y + o

V

x(t) = v § 1

29

The language also includes some "syntactic sugar" over the basic gates and
latches, including nested conditional statements, and a method of specifying
default values when one branch of a conditional is unspecified.

Each layer of the design is given a name, and is introduced by the keyword
"layer". The partial order < 9 is specified by statements of the form:

<Q> r e f i n e s <P>;

which denotes Q<vP. The SMV system verifies that the design thus specified
is correct, according to the definition of the previous section. It does this by
translating each non-implementation component of M~ of each layer M into
temporal logic. 1 For each such component an evironmeont E Ma is selected, using
user input and the above described heuristics. This environment is used as a
model for model checking the temporal formula. The system also verifies the
side condition of the compositional rule, requiring that the joint dependency
relation be acyclic.

3.2 Example

As an example of compositional verification using the system, consider a "re-
source manager" circuit, which is used to allocate and free a collection of re-
sources (say a collection of packet buffers). The module maintains a vector of
status bits tha t indicate, for each resource, whether it is currently allocated or
not. When an "allocate" request is received, the module may output the index
of some free resource (changing the status of this resource to "allocated") or
it may output a negative acknowledgement (NACK). When a "free" request is
received, the module inputs a resource index and changes the status of that
resource to "free". Allocation requests have either high or low priority. A low
priority request must result in a NACK if fewer than k buffers are currently free
(where k is a fixed constant).

A naive and somewhat underspecified original specification of the resource
manager is shown in figure 1. When an allocate request is received, it chooses a
resource arbitrarily. If that resource is currently allocated, it produces a NACK.
To check whether a low priority request is allowed, it simply sums up the vector
of "allocated" bits and compares the result to k. Notice the "dafault" construct
in the definition of "allocated". The meaning of this construct is that the first
s tatement provides the default value for any given element of the vector when
the second statement does not define it. For a latch, the default in case neither
statement defines it is to keep the old value.

There are two refinements we would like to make to this specification. First,
it is too time consuming to sum up the vector of "allocated" bits on every cycle.
We would prefer to use an up/down counter to maintain a running total the
number of "allocated" bits that are set. This refinement is shown in figure 2.
Second, we need to choose a policy for selecting a resource to allocate. To do
this, we will use a priority encoder to choose the unallocated resource of lowest
index. To compute the NACK signal more quickly, we simply test the "sum"

1 Note, this requires a minor extension to CTL that allows the "next" value of a
variable to be expressed. This does not increase the complexity of the model checking
problem over ordinary CTL.

30

layer toplevel :
init(allocated) := O;

index_out := 0 ..(n - 1);
NACK := alloc_req & (allocated[index outS

i -high_priority ~ (n - sum) < k);

default
if(free_req)next(allocated[index_in]) := O;

in
if(alloc_req ~ ~NACK)next(allocated[index_out]) := i;

sum := si~na(i = 0: i < n; i = i + 1)allocated[i];

Fig. 1. Original specification of resource manager.

value to see if there are any available resources. This refinement is shown in
figure 2.

layer refinement1 : {

init(sum) := O;

next(sum) := sum + (alloc_req & ~NACK)

- (free_req ~ allocated[index inS);
}

refinement1 refines toplevel;

layer refinement2 : {

index_out := priority_encode('allocated);

NACK := alloc_req & (highpriority ? sum = n : (n - sum) < k);
}

refinement2 refines toplevel;

Fig. 2. Two refinements of the resource manager.

Note that these two refinements are mutually dependent. Tha t is, if the
refined "sum" logic computes its value incorrectly~ then the NACK signal we
produce may be incorrect. On the other hand, if the refined "NACK" logic is
incorrect, causing an already allocated buffer to be allocated, then the "sum"
counter will be corrupted. These two parts of the circuit are, in effect, engaged
in a protocol, where each part guarantees to produce a correct output only if
all its previous inputs have been correct. Despite this circularity, we can use
the compositional rule to verify the two refinements separately, where each re-
finement uses the original specification as its environment. This simplifies the
verification process, since the original specification has fewer latches than the
refined version. Note also, that if the resource manager is used as part of the
system, we can use the simple original specification as part of the enviroment
when verifying other parts of the system, and need not take into account the
refinements.

4 H i d i n g i n t e r n a l s t a t e o f s p e c i f i c a t i o n s

Typically, a specification contains some intermediate signals tha t are not in-
tended to be part of the implementation per se, but are used only for specifi-

31

cation purposes. For example, we might want to specify that a machine counts,
producing a one at its output for every n ones occurring at the input. To do
this, we could introduce a signal representing, for example, a binary modulo-n
counter:

i n i t (c o u n t) := O;
next(count) := count +• mod n;
out := inp & (count = n - I);

There is, however, no reason why "count" should appear in the implementa-
tion, as it would be perfectly valid for the implementation to use, for example,

a "one hot" encoded counter. What we would actually like to specify is that,
for any implementation behavior, there exists a valuation for the signal "count"
that makes it a legal behavior of the specification. In other words, we would like
to be able to hide certain signals in the specification, in order to specify only
externally visible behavior. Toward this end, we define a notion of "projected
design" that makes it possible to write specifications with hidden internal state.

Let a projected design be a structure P = (I) ,Ap), where 7) = (M, <~)
is a design, and Ap C_ 8 is the set of internal, or unobservable signals. The
implementation of a projected design is

(r!i~A~

That is, in the projected design, the implementation includes only those imple-
mentation components of 7:) that are not considered internal to the specification.
A projected design P is said to be correct when

I ~ ~ 3A~. A M y

That is, for every behavior of the implementation, there must exist a valuation
of the internal signals such that every layer in :D is satisfied. This is in fact
guaranteed to hold provided 7:) is correct, and the unprojected implementation
machine 2:l) satisfies a simple condition: no signal not in Ap may depend on a
signal in Av, via a gate or a latch. Put another way, the signals that remain in
the projected implementation must be closed under the dependency relation. If
this is the case, then for every model of the projected implementation, we can
construct a valuation for the internal signals to create a model of the unprojected
implementation. Thus, if the unprojected design is correct, then the projected
design must also be correct.

Note that in the unprojected implementation, we do allow a dependency of
internal signals on "visible" signals. These functions play the role of witness
functions for the hidden signals, as we see in the proof of the following theorem:

T h e o r e m 3 . Let P = (7),Ap) be a projected design, such that]or all a ~ Ap,
]or all inputs "7 o] I~ , ~/ ~_ A~. If

ZT ~ ~ A.A,t~

then
~" ~ 3A~. A A4v

32

Proof. Let 7r be a model of 7: p and let < be the same lexical order used in
the proof of theorem 1. By modifying only the values of signals in AT,, we can
construct a model 7d of Z v , the unprojected design. This is because the values of
these signals depend functionally on only previous values w.r.t <, and no signals
not in AT, depend on values tha t are modified. I t follows tha t 7d ~ A ~47~ and
hence ~ ~ 3Ap. A .h4z).

4.1 R e f i n i n g i n t e r n a l s igna l s - w i t n e s s f u n c t i o n s

An internal signal that is underspecified may be thought of as representing a
nondeterministic choice. By refining this signal, we can in effect provide a "wit-
ness" tha t shows why any given execution of the implementat ion satisfies the
specification. Note tha t neither the original specification nor the refinement of
an internal signal is par t of the implementation. The witness function merely
serves as par t of the proof of correctness of the design.

As an example, figure 3 shows an abs t rac t specification for a two-way syn-
chronous arbiter. An underspecified signal called "choice" determines which of
the two requesters will be acknowledged. This is an internal signal, declared
elsewhere using the keyword "abstract" . Note tha t "choice" is nondeterminis-
tic when both request simultaneously. Figure 3 also shows a refinement of this
specification, in which a latched signal called "turn" is used to break ties in a
fair manner. The signal "choice" is redefined to be a function of " turn". This
definition is not par t of the implementation, but is simply used to prove tha t
there exists a valuation of "choice" tha t makes the specification t rue in all cases.

l ayer top leve l : {
choice := (req[0] ~ "req[1]) ? 0 : (req[1] & ~req[0]) ? 1 : {0,1};
ack[0] := req[0] ~ (choice = 0);
ack[1] := req[1] ~ (choice : i);

}

l ayer refinement : {
i n i t (t u r n) :-- O;
i f (ack[turn]) n e x t (turn) := - turn;
ack[O] := req[O] ~ (~req[1] I turn = 0);
ack[1] := req[1] & (~req[O] I turn = 1);
choice := (req[O] & "req[1]) ? 0 : (req[1] & ~req[O]) ? 1 : turn;

}
refinement r e f ines top leve l ;

Fig. 3. Using a witness function for a nondeterministic choice.

5 R e f i n e m e n t m a p s

One impor tant use of refinements is in specifying the downward refinement maps
that give the detailed signals in terms of abst ract signals. In the present frame-
work, a refinement map is simply an i termediate layer in the design. To use a
refinement map, one creates a sequence of two layers. The first defines the re-
finement maps, giving some implementat ion signals as a function of specification

33

signals. Each component of the refinement map must be verified. When verifying
one component, we can we can choose to use any other refinement map com-
ponents in the environment. Thus, when verifying that the outputs of a given
module are correct, we can use the refinement maps to generate the inputs to
that module as a function of the abstract specification. In fact, the signal "sum"
in the example of figure 1 can be viewed as playing the role of a refinement map.
Notice how it divides the refinement verification problem into two parts, where
each can be verified in the environment of the abstract specification. Note also
that when we specify refinement maps, we can use any function that can be
defined by a Mealy machine. In particular, this allows us to use refinement maps
that involve delay. This is useful for hardware structures that have "latency",
such as pipelines. The refinement maps may also include arbi t rary finite state
machines.

5.1 E x a m p l e

As an example, suppose we would like to design a t ranmit ter / receiver pair that
sends n-bit bytes (for fixed n) serially over a single wire. The original specification
might look something like the code of figure 4. A "send" signal indicates tha t
input data are ready to be sent, "NACK" indicates that the t ransmit ter is busy,
"DAV" indicates that data are available at the receiving end, and "received"
indicates the the receiving end is ready for new data. Notice that "DAV" is
underspecified, in the sense that when data are available, it may be either true
or false. This is intended to allow for arbi trary delay in the actual transmission of
the data. Notice also the conditional in the definition of "output_data". Because
this is a gate, the default in case the condition is false is that the signal is
unspecified. This means the implementation may output any data value in the
case when "DAV" is false.

layer toplevel : {
init(full) := O;

next(full) := received ? 0 : send ? i : full;

NACK := send ~ full;

if(send & "full) next(data) := input_data;

DAV := full ? {0,I} : O;

if(DAY) output_data := data;

received := DAV ? {0,i} : O;

Fig. 4. Specification of transmitter/receiver.

The next step in the design is to formulate a refinement map that defines the
sequence of bits seen on the serial line as a function of the abstract specification
signals. To do this, we need to introduce some state, in the form of a counter
that keeps track of the bit number being transmitted. The refinement map is
shown in figure 5.

Given this refinement map, we can now design and verify the receiver and
transmit ter separately. The actual implementation of these components might
use shift registers, as shown in figure 6. The enviromnent for verifying each of

34

layer refinement_map : {
init(transmitting) := O;
if(send ~ ~NACK) next(transmitting) := I;
else if(count = (n - i)) next(transmitting)
init(count) := O;
if(transmitting){

next(count) := count + 1 mod n;
serial_line := data[count] ;

}
}
refinementmap refines toplevel;

:= 0;

Fig. 5. Refinement map definining serial line behavior

these two component refinements includes the refinement map and the abstract
specification, but not the other component. The purpose of the refinement map is
to define the interface between two components, and thus allow separate design
and verification of the two components. In general, refinement maps can provide
a way of managing the complexity of interfaces between modules, by defining
interface signals, which may be encoded in fairly complex ways, in terms of
simpler, more abstract data streams.

layer tx_refinement : {
if(send ~ "NACK) next(tx_shifter) := input_data;

else next(tx shifter) := tx_shifter >> I;
serial_line := tx_shifter[O] ;

}
tx_refinement refines refinement_map;

layer rx_refinement : {
if(transmitting){

next(rx_shifter[n-1]) := serial_line;
next(rx shifter[(n-2)..O]) := rx_shifter >> I;

}

DAV := full a "transmitting;

output_data := rx_shifter;
}

rx_refinement refines refinement map;

Fig . 6. Separate refinements of t ransmit ter and receiver.

6 C o n c l u s i o n s

We have described a compositional framework for the verification of hardware
designs. It is designed to allow the expression of downward refinement masps as
Mealy machines, and to support design by a sequence of incremental modifica-
tions that may be verified independently. The framework has been implemented
on top of the SMV symbolic model checking system. Although it is not discussed
here, the system also supports assume-guarantee style reasoning using linear time
temporal logic. This is intended mainly for reasoning about eventualities.

35

One extension to the system that is planned is to support a notion of streams
(such as streams of intructions of memory transactions) that are ordered, but
are not assigned specific times in the implementation. Each element of such
a stream could be defined as a finite state machine representing the different
stages of execution of the given operation in the machine. By making each ab-
stract operation a distinct "layer" of the specification, one could verify in a
modular way that a single operation is processed through the system correctly,
and then deal separately with other issues such as ordering guarantees and live-
ness. Finally, it is also possible that a hybrid approach could be taken, where
some refinement obligations are handled by a model checker and others by a
general-purpose proof assistant, or a collection of predefined transformations.
This might be particularly useful for handling large, regular structures such as
memories, and hardware that manipulates large data items, such as packets. A
compositional framework of this sort could provide a practical way of integrating
model checking and theorem proving.

R e f e r e n c e s
[AH96] R. Alur and T. A. Henzinger. Reactive modules. In 11th annual IEEE symp.

Logic in Computer Science (LICS '96), 1996.
[BB94] D.L. Beatty and R. E. Bryant. Formally verifying a microprocessor using a

simulation methodology. In 31st Design Automation Conference, pages 596-
602, 1994.

[BD94] J .R. Burch and D. L. Dill. Automatic verification of pipelined microproces-
sor control. In D. L. Dill, editor, Conf. Computer-Aided Verification (CAV
'94) , volume 818 of LNCS. Springer-Verlag, 1994.

[BF89] S. Bose and A. Fisher. Verifying pipelined hardware using symbolic logic
simulation. In IEEE International Conference on Computer Design, 1989.

[Cyr96] D. Cyrluk. Inverting the abstraction mapping: a methodology for hard-
ware verification. In M. Srivas and A. Camilleri, editors, Formal Methods
in Computer-Aided Design (FMCAD '96), volume 1166 of LNCS. Springer-
Verlag, 1996.

[GL94] O. Gr/imberg and D. E. Long. Model checking and modular verification.
ACM Trans. Programming Languages and Systems, 16(3):843-871, 1994.

[JDB95] R. B. Jones, D. L. Dill, and J. R. Butch. Efficient validity checking for pro-
cessor verification. In IEEE/ACM Int. Conf. on Computer Aided Design
(ICCAD '95), 1995.

[Kur87] R.P. Kurshan. Reducibility in analysis of coordination. In LNCS, volume
103, pages 19-39. Springer-Verlag, 1987.

[Kur94] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes.
Princeton, 1994.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM Trans. Program-
ming Languages and Systems, 5:190-222, 1983.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.
[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about

programs. In K. Apt, editor, Logics and Models of Concurrent Systems, pages
123-144. Springer-Verlag, 1985.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72-99, 1983.

