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Abst rac t .  We present an approach to designing verified digital systems 
by a sequence of small local refinements. Refinements in this approach are 
not limited to a library of predefined transformations for which theorems 
have been previously established. Rather, the approach relies on localiz- 
ing the refinement steps in such a way that they can be verified efficiently 
by model checking. Toward this end, a compositional rule is proposed by 
which each design refinement may be verified independently, in an ab- 
stract environment. This rule supports the use of downward refinement 
maps, which translate abstract behavior detailed behavior. These maps 
may involve temporal transformations, including delay. The approach is 
supported by a verification tool based on symbolic model checking. 

1 I n t r o d u c t i o n  

Although significant progress has been made in automated verification of digital 
systems, most designs are still far too large and complex to be verified in a fully 
automatic way. The classical solution proposed to this problem is compositional 
reasoning. This means that  properties of individual modules or components of a 
large system are verified in isolation, and these properties are then combined to 
prove properties of the system as a whole. One commonly proposed specification 
language for these properties is temporal  logic [Pnu85], and systems of composi- 
tional inference rules have been developed to support "assume-guarantee" style 
proofs [Lain83] using various temporal logics (e.g., [GL94]). In a compositional 
proof, one reasons thus: 

Q ~ r  

P l i Q V r  

Here, P and Q are processes, and r is an environment assumption, necessary 
to prove that  P satisfies specification r Typically, however, the environment 
assumptions needed to verify interacting processes are interdependent. For ex- 
ample, process P may guarantee to satisfy an invariant r up to time t + 1 only if 
Q satisies r up to time t, and vice versa. Such an inductive argument cannot be 
expressed in the above rule. If one at tempts it, the result is a circular argument. 
One way to break the circularity is to model the environment as an abstract 
process. Kurshan [Kur87, Kur94] introduced the following style of reasoning for 
Moore machines: 
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PIIQ' ::> P' 
P ' [ IQ:cQ'  

P [[ 0 3  fi' It Q' 

where ~ can be replaced by any suitable process preorder. Here, the abstract 
process Q' takes the role of environment assumption when verifying P, and P '  
does the sarne when verifying Q. The circularity is broken inductively, as a result 
of the delay of one time unit from input to output of the Moore machines. Alur 
and Henzinger [AH96] extended this to the case of Mealy machines where there 
are no combinational cycles. 

A limitation of this kind of proof rule is that the abstract processes P~ and 
Q' do not typically have the same inputs and outputs as the detailed processes 
P and Q. In order for P '  and Q~ to be simple, they necessarily communicate at a 
more abstract level. In Kurshan's methology, this problem is approached by using 
process homomorphisms. This means that the user provides a function r that 
maps detailed signals to abstract signals. One can thus reason compositionally 
as follows: 

r  ~ P '  
Q' 

r II Q) IIQ' 
Note, however, that we cannot use Qt as an environment assumption unless we 
are able to effectively invert the function ~. This is necessary to translate outputs 
of the abstract process QS into inputs of the detailed process P. On the other 
hand, downward maps can be used effectively to provide the both the inputs 
of P (i.e., its environment) and also the correctness conditions for its outputs, 
as a function of the abstract behavior of P~ and Q~. This effectively puts the 
verification of P in an abstract context, an Observation has been made in the 
context of symbolic simulation by Bryant and Beatty [BB94] and in the context 
of theorem provers by Cyrluk [Cyr96]. 

Note also that upward maps can be very complex. In the case of pipelines, 
for example, the upward abstraction map involves flushing the entire state of 
the pipeline, which may contain many instructions. Although in some cases this 
complexity can be dealt with, using BDD's [BF89] or sophisticated decision pro- 
cedures [BD94, JDB95], we would prefer a methodology that decomposes the 
verification problem into small subproblems. In the case of pipelines, for exam- 
ple, downward refinement maps involving delay can yield separate verification 
subproblems for each stage of the pipeline. 

To support such a compositional methodology in a model checking context, 
we present a system based on a generalized compositional rule for Mealy ma- 
chines. It allows both upward and downward refinement maps, which are rep- 
resented as arbitrary processes. Hence, maps may involve state and delay, if 
necessary. Further, the system is flexible enough to allow non-hierarchical ab- 
stractions. That is, an abstract specification may have a different structural 
decomposition from the low level implementation, and many abstract-level com- 
ponents may be multiplexed onto the same collection of low-level components. 
This flexibility to choose an arbitrary decomposition of the specification can be 
used to simplify the resulting verification subproblems. The system is imple- 
mented on top of the SMV symbolic model checker [McM93]. 
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2 A c o m p o s i t i o n a l  r u l e  f o r  M e a l y  m a c h i n e s  

We begin by introducing a compositional rule for Mealy machines. For the 
present purposes, a Mealy machine will be defined as a collection of recurrence 
equations involving either zero delay or unit delay. For flexibility in specification, 
we allow machines to be underspecified, in the sense that  there may be many 
solutions of the equations for any given input sequence. This does not however, 
imply nondeterminism in the automata  theoretic sense, since our "machines" 
have no notion of internal state. 

To be more specific, let $ be a finite collection of signals, and let ~ be a finite 
universe of values. We interpret a signal as a sequence of values, or a function 
]N --+ )2. Let a model be any function ~r : 8 --+ IN -+ )2. A machine is a predicate 
M of the form: 

A M ~  
aE$ 

The assertions M~, called components, may be in one of two forms, representing 
generalized gates and latches. A gate is of the form: 

V = - �9 �9 

J 

where the signals V1...  "f~ are the inputs of the gate, and f is a function )2 k -~ ]2. 
The finite disjunction allows the output  of the gate to be incompletely specified 
as a function of its inputs. A latch is similar to a gate, but  involves one time 
unit of delay, and a set of possible initial values. It is a component M~ of the 
form: 

V a ( t  + 1) = f ( 7 , ( t ) . . . 7 ~ ( t ) )  
J 

A 

V a(O) = initj 
J 

This specifies the possible values of a at time t + 1 as of function of the inputs 
at time t, and also specifies the possible values initj at time t = 0. 

We will tacitly identify a machine with the set of models that  satisfy it. We 
will say that  machine Q implements machine P when Q ~ P,  which is the same 
as saying that  the set of models of Q is contained in the set of models of P.  

Now, suppose we wish to prove that  Q ~ P.  Since P is a conjunction of 
assertions P~, expressible in temporal  logic, we could simply use model checking 
to verify Q ~ P~ for each a. However, this would be unlikely to be effective in 
practice, since the state space of Q would be too large. To simplify the model 
checking problem, we could take only a subset of the components of Q as the 
"environment" when checking P~ (a technique called localization), but  it still 
might require a large number of components. Instead, assuming that  P is simple 
and abstract, while Q is complex, we might like to take some other components 
of P as environment assumptions while proving P~. Intuitively, this would put  
the verification of P~ in a more "abstract" context. Thus, for example, we might 
assume P~, is correctly implemented when checking P~ and vice versa. We can 
show that  this reasoning is sound, provided there are no cycles of "gates". 
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To be more precise, let <M, the dependency relation of machine M, be the 
set of pairs (% a) such that  Me is a gate (has zero delay) and ~f is and input 
of M~. Now suppose there are no cycles in the joint dependency relations of 
machines Q and P.  To verify Q =v P~, we may instead verify $~ ~ P~, where 
E ~ is an "environment" machine, made up of arbitarily chosen components of P 
and Q, provided of course we do not chose P~ itself. 

T h e o r e m  1. Let P and Q be machines. For all a E S,  let E ~ be a machine such 
that: 

- for all ~1 E signals: E~, = P~, or ~ ,  = Q~,, and 

Let <* be the relation (<p  t2 <Q)*. I f  <* is irreflexive then the following infer- 
ence rule is sound: 

for all a: C a ~ P~ 
Q ~ P  

Proof. Define a lexical order < over ]N • S where (~1 al) < (~_ a) iff v' < v, 
or T I ---- 7" and at<*a. Further, let Pr denote Pa for t = T. Now, consider a 
model ~. Assume ~ ~ Q and assume by inductive hypothesis tha t  ~ ~ E~, (v') 
for all (at,T ') < (T,a). Note that  by definition, 7r ~ E~(7), since E~ = Q~. 

Now construct a model 7r I from 7r by changing only the values ~1(TI) for 
(~, T) < (a', TI), such that  r '  ~ E ~ This can be done because <* containts <cv, 
hence each a'(7') can be chosen only as a function of previous values w.r.t. <. 
Since E ~ ~ P~ it follows in particular that  7J ~ P~ (T), and hence 9: ~ P~ (~-). 
By induction over <, it follows that  r ~ P.  

We can extend the above result to the case of proving that  Q simultaneously 
implemements a collection of specifications P 1 , . . . ,  Pn. This theorem forms the 
basis of a system for design refinement, described in the next section. The proof 
is omitted here, but is along the same lines as the previous theorem. 

T h e o r e m  2. Let Q and p1 . . .  p~ be machines. For all i =- 1 . . .  n and (7 C S,  
let E i~ be a machine such that: 

- for all a' e signals: E~ ~, = Q~, or E~ ~, = PJ, for some j ,  and 

Let <* be the relation [([Jl <p~)U <Q]*. If <* is irreflexive then the following 
inference rule is sound: 

for all i, ~ : ~ ~ P~ 
Q~ A~P~ 

3 P a r t i a l  m a c h i n e s  a n d  r e f i n e m e n t  

We now introduce a refinement framework, that  makes it possible to define a 
design by a collection of incremental changes to a specification machine, and to 
verify that  the resulting machine (called the implementation machine) implies 
the orignal abstract machine. Each incremental change will be referred to as a 
layer, and is essentially a partially defined machine. 

Let a layer M be an assertion of the form A~cS(M)M ~ where S ( M )  C S and 
the assertions M~ are either gates or latches, as before. A design is a partial order 
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7) = (JM, <z)), where 3d is a set of layers. The intuition behind <z) is that  Q<z)P 
when Q is intended as an incremental modification of P,  in which case we say Q 
refines P. In order for an implementation to be uniquely defined, we require that  
for any signal a, there is a unique least layer Z ~ w.r.t. <z) such that  a E 8(Z~). 
The conjunction of these minimal definitions Z ~ is termed the implementation 
machine of 7) and is denoted 2% ). In the simplest case <z) will be a linear 
order over machines 2 t d l , . . . , 3 d ~ .  In this case, the implementation machine 
is the result obtained by starting with 341 (the specification) and substituting 
components of M 2 , . . . ,  34~ in sequence. 

A design 7) will be said to be correct when 

that  is, when the implementation machine implies every layer of 7). In the linear 
order case, this implies in particular that  it implements the original specification 
341. 

Note that  we can verify correctness of a design compositionally using the 
inference rule of theorem 2. This requires us to choose an environment machine 
g M~ to verify each component M ,  of each layer M in the design, excepting the 
implementation components. While the environments may be chosen manually, 
the following two heuristics can be applied automatically: 

- For each a, choose g"  = M~, where M is the maximal layer under < 9  that  
defines a. 

- Drop any signal definitions that  topologically cannot influence a. 

If we use these rules when verifying a sequence of local modifications, the verifi- 
cation of any given modification does not see the other modifications, since the 
environment is selected from the earliest, most abstract definitions. 

3.1 I m p l e m e n t a t i o n  in S M V  

The verification framework described in the previous two sections has been im- 
plemented on top of the SMV model checker. The system has a simple language 
for describing Mealy machines. In this language, a gate is described by a state- 
ment of the form: 

<a> := <f (71 , - - . ,Tk)>;  
while a latch is specified in the following way: 

init(<a>) := <init~>; 
next (<0">) := < f ( 7 1 , ' " , % ) > ;  

In either case, we can leave a signal underspecified by indicating a choice of 
values in set brackets. For example, 

x := y + { o , 1 } ;  

stands for 

x( t )  = y + o 

V 

x( t )  = v § 1 
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The language also includes some "syntactic sugar" over the basic gates and 
latches, including nested conditional statements, and a method of specifying 
default values when one branch of a conditional is unspecified. 

Each layer of the design is given a name, and is introduced by the keyword 
"layer". The partial order < 9  is specified by statements of the form: 

<Q> r e f i n e s  <P>; 

which denotes Q<vP. The SMV system verifies that  the design thus specified 
is correct, according to the definition of the previous section. It does this by 
translating each non-implementation component of M~ of each layer M into 
temporal  logic. 1 For each such component an evironmeont E Ma is selected, using 
user input and the above described heuristics. This environment is used as a 
model for model checking the temporal  formula. The system also verifies the 
side condition of the compositional rule, requiring that  the joint dependency 
relation be acyclic. 

3.2 Example 

As an example of compositional verification using the system, consider a "re- 
source manager" circuit, which is used to allocate and free a collection of re- 
sources (say a collection of packet buffers). The module maintains a vector of 
status bits tha t  indicate, for each resource, whether it is currently allocated or 
not. When an "allocate" request is received, the module may output  the index 
of some free resource (changing the status of this resource to "allocated") or 
it may output  a negative acknowledgement (NACK). When a "free" request is 
received, the module inputs a resource index and changes the status of that  
resource to "free". Allocation requests have either high or low priority. A low 
priority request must result in a NACK if fewer than k buffers are currently free 
(where k is a fixed constant). 

A naive and somewhat underspecified original specification of the resource 
manager is shown in figure 1. When an allocate request is received, it chooses a 
resource arbitrarily. If that  resource is currently allocated, it produces a NACK. 
To check whether a low priority request is allowed, it simply sums up the vector 
of "allocated" bits and compares the result to k. Notice the "dafault" construct 
in the definition of "allocated". The meaning of this construct is that  the first 
s tatement provides the default value for any given element of the vector when 
the second statement does not define it. For a latch, the default in case neither 
statement defines it is to keep the old value. 

There are two refinements we would like to make to this specification. First, 
it is too time consuming to sum up the vector of "allocated" bits on every cycle. 
We would prefer to use an up/down counter to maintain a running total the 
number of "allocated" bits that  are set. This refinement is shown in figure 2. 
Second, we need to choose a policy for selecting a resource to allocate. To do 
this, we will use a priority encoder to choose the unallocated resource of lowest 
index. To compute the NACK signal more quickly, we simply test the "sum" 

1 Note, this requires a minor extension to CTL that allows the "next" value of a 
variable to be expressed. This does not increase the complexity of the model checking 
problem over ordinary CTL. 
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layer toplevel : 
init(allocated) := O; 

index_out := 0 ..(n - 1); 
NACK := alloc_req & (allocated[index outS 

i -high_priority ~ (n - sum) < k); 

default 
if(free_req)next(allocated[index_in]) := O; 

in 
if(alloc_req ~ ~NACK)next(allocated[index_out]) := i; 

sum := si~na(i = 0: i < n; i = i + 1)allocated[i]; 

Fig. 1. Original specification of resource manager. 

value to see if there are any available resources. This refinement is shown in 
figure 2. 

layer refinement1 : { 

init(sum) := O; 

next(sum) := sum + (alloc_req & ~NACK) 

- (free_req ~ allocated[index inS); 
} 

refinement1 refines toplevel; 

layer refinement2 : { 

index_out := priority_encode('allocated); 

NACK := alloc_req & (highpriority ? sum = n : (n - sum) < k); 
} 

refinement2 refines toplevel; 

Fig. 2. Two refinements of the resource manager. 

Note that  these two refinements are mutually dependent. Tha t  is, if the 
refined "sum" logic computes its value incorrectly~ then the NACK signal we 
produce may be incorrect. On the other hand, if the refined "NACK" logic is 
incorrect, causing an already allocated buffer to be allocated, then the "sum" 
counter will be corrupted. These two parts of the circuit are, in effect, engaged 
in a protocol, where each part  guarantees to produce a correct output  only if 
all its previous inputs have been correct. Despite this circularity, we can use 
the compositional rule to verify the two refinements separately, where each re- 
finement uses the original specification as its environment. This simplifies the 
verification process, since the original specification has fewer latches than the 
refined version. Note also, that  if the resource manager is used as part  of the 
system, we can use the simple original specification as part  of the enviroment 
when verifying other parts of the system, and need not take into account the 
refinements. 

4 H i d i n g  i n t e r n a l  s t a t e  o f  s p e c i f i c a t i o n s  

Typically, a specification contains some intermediate signals tha t  are not in- 
tended to be part  of the implementation per se, but are used only for specifi- 
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cation purposes. For example, we might want to specify that  a machine counts, 
producing a one at its output for every n ones occurring at the input. To do 
this, we could introduce a signal representing, for example, a binary modulo-n 
counter: 

i n i t ( c o u n t )  := O; 
next(count) := count +• mod n; 
out := inp & (count = n - I); 

There is, however, no reason why "count" should appear in the implementa- 
tion, as it would be perfectly valid for the implementation to use, for example, 

a "one hot" encoded counter. What  we would actually like to specify is that,  
for any implementation behavior, there exists a valuation for the signal "count" 
that  makes it a legal behavior of the specification. In other words, we would like 
to be able to hide certain signals in the specification, in order to specify only 
externally visible behavior. Toward this end, we define a notion of "projected 
design" that  makes it possible to write specifications with hidden internal state. 

Let a projected design be a structure P = (I) ,Ap),  where 7) = (M,  <~)  
is a design, and Ap C_ 8 is the set of internal, or unobservable signals. The 
implementation of a projected design is 

(r!i~A~ 

That  is, in the projected design, the implementation includes only those imple- 
mentation components of 7:) that  are not considered internal to the specification. 
A projected design P is said to be correct when 

I ~ ~ 3A~. A M y  

That  is, for every behavior of the implementation, there must exist a valuation 
of the internal signals such that  every layer in :D is satisfied. This is in fact 
guaranteed to hold provided 7:) is correct, and the unprojected implementation 
machine 2:l) satisfies a simple condition: no signal not in Ap may depend on a 
signal in Av, via a gate or a latch. Put  another way, the signals that  remain in 
the projected implementation must be closed under the dependency relation. If 
this is the case, then for every model of the projected implementation, we can 
construct a valuation for the internal signals to create a model of the unprojected 
implementation. Thus, if the unprojected design is correct, then the projected 
design must also be correct. 

Note that  in the unprojected implementation, we do allow a dependency of 
internal signals on "visible" signals. These functions play the role of witness 
functions for the hidden signals, as we see in the proof of the following theorem: 

T h e o r e m 3 .  Let P = (7),Ap) be a projected design, such that ]or all a ~ Ap, 
]or all inputs "7 o] I~ ,  ~/ ~_ A~. If 

ZT ~ ~ A.A,t~ 

then 
~"  ~ 3A~. A A4v 
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Proof. Let 7r be a model of 7: p and let < be the same lexical order used in 
the proof  of theorem 1. By modifying only the values of signals in AT,, we can 
construct a model 7d of Z v ,  the unprojected design. This is because the values of 
these signals depend functionally on only previous values w.r.t <,  and no signals 
not in AT, depend on values tha t  are modified. I t  follows tha t  7d ~ A ~47~ and 
hence ~ ~ 3Ap. A .h4z). 

4.1 R e f i n i n g  i n t e r n a l  s igna l s  - w i t n e s s  f u n c t i o n s  

An internal signal that  is underspecified may  be thought  of as representing a 
nondeterministic choice. By refining this signal, we can in effect provide a "wit- 
ness" tha t  shows why any given execution of the implementat ion satisfies the 
specification. Note tha t  neither the original specification nor the refinement of 
an internal signal is par t  of the implementation.  The witness function merely 
serves as par t  of the proof of correctness of the design. 

As an example, figure 3 shows an abs t rac t  specification for a two-way syn- 
chronous arbiter. An underspecified signal called "choice" determines which of 
the two requesters will be acknowledged. This is an internal signal, declared 
elsewhere using the keyword "abstract" .  Note tha t  "choice" is nondeterminis-  
tic when both  request simultaneously. Figure 3 also shows a refinement of this 
specification, in which a latched signal called "turn" is used to break ties in a 
fair manner.  The signal "choice" is redefined to be a function of " turn".  This 
definition is not par t  of the implementation,  but  is simply used to prove tha t  
there exists a valuation of "choice" tha t  makes the specification t rue in all cases. 

l ayer  top leve l  : { 
choice := (req[0] ~ "req[1])  ? 0 : (req[1] & ~req[0]) ? 1 : {0,1}; 
ack[0] := req[0] ~ (choice = 0); 
ack[1] := req[1] ~ (choice : i); 

} 

l ayer  refinement : { 
i n i t ( t u r n )  :-- O; 
i f  (ack[ turn])  n e x t  (turn) := - turn;  
ack[O] := req[O] ~ (~req[1]  I turn = 0); 
ack[1] := req[1] & (~req[O] I turn = 1); 
choice := (req[O] & "req[1])  ? 0 : (req[1] & ~req[O]) ? 1 : turn;  

} 
refinement r e f ines  top leve l ;  

Fig. 3. Using a witness function for a nondeterministic choice. 

5 R e f i n e m e n t  m a p s  

One impor tant  use of refinements is in specifying the downward refinement maps 
that  give the detailed signals in terms of abst ract  signals. In the present frame- 
work, a refinement map is simply an i termediate layer in the design. To use a 
refinement map,  one creates a sequence of two layers. The  first defines the re- 
finement maps,  giving some implementat ion signals as a function of specification 
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signals. Each component of the refinement map must be verified. When verifying 
one component, we can we can choose to use any other refinement map com- 
ponents in the environment. Thus, when verifying that  the outputs of a given 
module are correct, we can use the refinement maps to generate the inputs to 
that  module as a function of the abstract specification. In fact, the signal "sum" 
in the example of figure 1 can be viewed as playing the role of a refinement map. 
Notice how it divides the refinement verification problem into two parts, where 
each can be verified in the environment of the abstract specification. Note also 
that  when we specify refinement maps, we can use any function that  can be 
defined by a Mealy machine. In particular, this allows us to use refinement maps 
that  involve delay. This is useful for hardware structures that  have "latency", 
such as pipelines. The refinement maps may also include arbi t rary finite state 
machines. 

5.1 E x a m p l e  

As an example, suppose we would like to design a t ranmit ter / receiver  pair that  
sends n-bit bytes (for fixed n) serially over a single wire. The original specification 
might look something like the code of figure 4. A "send" signal indicates tha t  
input data  are ready to be sent, "NACK" indicates that  the t ransmit ter  is busy, 
"DAV" indicates that  data  are available at the receiving end, and "received" 
indicates the the receiving end is ready for new data. Notice that  "DAV" is 
underspecified, in the sense that  when data  are available, it may be either true 
or false. This is intended to allow for arbi trary delay in the actual transmission of 
the data. Notice also the conditional in the definition of "output_data".  Because 
this is a gate, the default in case the condition is false is that  the signal is 
unspecified. This means the implementation may output  any data  value in the 
case when "DAV" is false. 

layer toplevel : { 
init(full) := O; 

next(full) := received ? 0 : send ? i : full; 

NACK := send ~ full; 

if(send & "full) next(data) := input_data; 

DAV := full ? {0,I} : O; 

if(DAY) output_data := data; 

received := DAV ? {0,i} : O; 

Fig. 4. Specification of transmitter/receiver. 

The next step in the design is to formulate a refinement map that  defines the 
sequence of bits seen on the serial line as a function of the abstract specification 
signals. To do this, we need to introduce some state, in the form of a counter 
that  keeps track of the bit number being transmitted. The refinement map is 
shown in figure 5. 

Given this refinement map, we can now design and verify the receiver and 
transmit ter  separately. The actual implementation of these components might 
use shift registers, as shown in figure 6. The enviromnent for verifying each of 
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layer refinement_map : { 
init(transmitting) := O; 
if(send ~ ~NACK) next(transmitting) := I; 
else if(count = (n - i)) next(transmitting) 
init(count) := O; 
if(transmitting){ 

next(count) := count + 1 mod n; 
serial_line := data[count] ; 

} 
} 
refinementmap refines toplevel; 

:= 0; 

Fig. 5. Refinement map definining serial line behavior 

these two component refinements includes the refinement map and the abstract 
specification, but not the other component. The purpose of the refinement map is 
to define the interface between two components, and thus allow separate design 
and verification of the two components. In general, refinement maps can provide 
a way of managing the complexity of interfaces between modules, by defining 
interface signals, which may be encoded in fairly complex ways, in terms of 
simpler, more abstract data streams. 

layer tx_refinement : { 
if(send ~ "NACK) next(tx_shifter) := input_data; 

else next(tx shifter) := tx_shifter >> I; 
serial_line := tx_shifter[O] ; 

} 
tx_refinement refines refinement_map; 

layer rx_refinement : { 
if(transmitting){ 

next(rx_shifter[n-1]) := serial_line; 
next(rx shifter[(n-2)..O]) := rx_shifter >> I; 

} 

DAV := full a "transmitting; 

output_data := rx_shifter; 
} 

rx_refinement refines refinement map; 

Fig .  6. Separate refinements of t ransmit ter  and receiver. 

6 C o n c l u s i o n s  

We have described a compositional framework for the verification of hardware 
designs. It is designed to allow the expression of downward refinement masps as 
Mealy machines, and to support design by a sequence of incremental modifica- 
tions that may be verified independently. The framework has been implemented 
on top of the SMV symbolic model checking system. Although it is not discussed 
here, the system also supports assume-guarantee style reasoning using linear time 
temporal logic. This is intended mainly for reasoning about eventualities. 
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One extension to the system that  is planned is to support  a notion of streams 
(such as streams of intructions of memory transactions) that  are ordered, but  
are not assigned specific times in the implementation. Each element of such 
a stream could be defined as a finite state machine representing the different 
stages of execution of the given operation in the machine. By making each ab- 
stract operation a distinct "layer" of the specification, one could verify in a 
modular way that  a single operation is processed through the system correctly, 
and then deal separately with other issues such as ordering guarantees and live- 
ness. Finally, it is also possible that  a hybrid approach could be taken, where 
some refinement obligations are handled by a model checker and others by a 
general-purpose proof assistant, or a collection of predefined transformations. 
This might be particularly useful for handling large, regular structures such as 
memories, and hardware that  manipulates large data  items, such as packets. A 
compositional framework of this sort could provide a practical way of integrating 
model checking and theorem proving. 
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