
HAL Id: hal-00620006
https://hal.science/hal-00620006

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct construction of compact Directed Acyclic Word
Graphs

Maxime Crochemore, Renaud Vérin

To cite this version:
Maxime Crochemore, Renaud Vérin. Direct construction of compact Directed Acyclic Word Graphs.
Combinatorial Pattern Matching (Aarhus, 1997), 1997, France. pp.116-129. �hal-00620006�

https://hal.science/hal-00620006
https://hal.archives-ouvertes.fr

Direct construction ofCompact Directed Acyclic Word GraphsMaxime Crochemore and Renaud V�erinInstitut Gaspard MongeUniversit�e de Marne-La-Vall�ee,2, rue de la Butte Verte, F-93160 Noisy-Le-Grand.http://www-igm.univ-mlv.frAbstract. The Directed Acyclic Word Graph (DAWG) is an e�cientdata structure to treat and analyze repetitions in a text, especiallyin DNA genomic sequences. Here, we consider the Compact DirectedAcyclic Word Graph of a word. We give the �rst direct algorithm toconstruct it. It runs in time linear in the length of the string on a �xedalphabet. Our implementation requires half the memory space used byDAWGs.Keywords: pattern matching algorithm, su�x automaton, DAWG, Com-pact DAWG, su�x tree, index on text.1 IntroductionIn the classical string-matching problem for a word w and a text T , we want toknow if w occurs in T , i.e., if w is a factor of T . In many applications, the sametext is queried several times. So, e�cient solutions are based on data structuresbuilt on the text that serve as an index to look for any word w in T . The typicalrunning of various implementations of the search is O(jwj) (on a �xed alphabet).Among the implementations, the su�x tree ([13]) is the most popular. Its sizeand construction time are linear in the length of the text. It has been studiedand used extensively. Apostolico [2] lists over 40 references on it, and Manberand Myers [12] mention several others. Many variants have been developed, likesu�x arrays [12], PESTry [11], su�x cactus [10], or su�x binary search trees[9]. Besides, the su�x trie, the non-compact version of the su�x tree, has beenre�ned to the su�x automaton (Directed Acyclic Word Graph, DAWG). Thisautomaton is a good alternative to represent the whole set of factors of a text.It is the minimal automaton accepting this set. It has been fully exposed byBlumer [3] and Crochemore [7]. As for the su�x tree, its construction and sizeis linear in the length of the text.In the genome research �eld, DNA sequences can be viewed as words over thealphabet fa; c; g; tg. They become subjects for linguistic and statistic analysis.For this purpose, su�x automata are useful data structures. Indeed, the structureis fast to compute and easy to use.Meanwhile, the length of sequences in databases grows rapidly and the bot-tleneck to using the above data structures is their size. Keeping the index in main

memory is more and more di�cult for large sequences. So, having a structureusing as little space as possible is appreciable for its construction as well as forits utilization. Compression methods are of no use to reduce the memory spaceof such indexes because they eliminate the direct access to substrings. On thecontrary, the Compact Directed Acyclic Word Graph (CDAWG) keeps the directaccess while requiring less memory space. The structure has been introduced byBlumer et al. [4, 5]). The automaton is based on the concatenation of factors is-sued from a same context. This concatenation induces the deletion of all states ofoutdegree one and of their corresponding transitions, excepting terminal states.This saves 50% of memory space. At the same time, the reduction of the numberof states (2=3 less) and transitions (about half less) makes the applications runfaster. Both time and space are saved.In this paper, we give an algorithm to build compact DAWGs. This directconstruction avoids constructing the DAWG �rst, which makes it suitable forthe actual DNA sequences (more than 1:5 million nucleotides for some of them).The compact DAWG allows to apply standard treatment on sequences twice aslong in reasonable time (a few minutes).In Section 2 we recall the basic notions on DAWGs. Section 3 introduces thecompact DAWG, also called compact su�x automaton, with the bounds on itssize. We show in Section 4 how to build the CDAWG from the DAWG in timelinear in the size of this latter structure. The direct construction algorithm forthe CDAWG is given in Section 5. A conclusion follows.2 De�nitionsLet � be a nonempty alphabet and �� the set of words over �, with " as theempty word. If w is a word in ��, jwj denotes its length, wi its ith letter, andwi::j its factor (subword) wiwi+1 : : :wj. If w = xyz with x; y; z 2 ��, then x, y,and z denote some factors or subwords of w, x is a pre�x of w, and z is a su�xof w. S(x) denotes the set of all su�xes of x and F (x) the set of its factors.For an automaton, the tuple (p; a; q) denotes a transition of label a startingat p and ending at q. A roman letter is used for mono-letter transitions, a greekletter for multi-letter transitions. Moreover, (p; �] denotes a transition from pfor which � is a pre�x of its label.Here, we recall the de�nition of the DAWG, and a theorem about its imple-mentation and its size proved in [3] and [7].De�nition1. The Su�x Automaton of a word x, denoted DAWG(x), is theminimal deterministic automaton (not necessarily complete) that accepts S(x),the (�nite) set of su�xes of x.For example, Figure 1 shows the DAWG of the word gtagtaaac. States whichare double circled are terminal states.Theorem2. The size of the DAWG of a word x is O(jxj) and the automaton canbe computed in time O(jxj). The maximum number of states of the automatonis 2jxj � 1, and the maximum number of edges is 3jxj � 4.

I 1 2 3 4 5 6 7 9 F8 10g t a g t a a a cg a a cca ct aFig. 1. DAWG(gtagtaaac)Recall that the right context of a factor u of x is u�1S(x). The syntacticcongruence, denoted by �S(x), associated with S(x) is de�ned, for x; u; v 2 ��,by: u �S(x) v () u�1S(x) = v�1S(x).We call classes of factors the congruence classes of the relation �S(x). Thelongest word of a class of factors is called the representative of the class. States ofDAWG(x) are exactly the classes of the relation �S(x). Since this automaton isnot required to be complete, the class of words not occurring in x, correspondingto the empty right context, is not a state of DAWG(x).Moreover, we induce a selection among the congruence classes that we callstrict classes of factors of �S(x) and that are de�ned as follows:De�nition3. Let u be a word of C, a class of factors of �S(x). If at least twoletters a and b of � exist such that ua and ub are factors of x, then we say thatC is a strict class of factors of �S(x).We also introduce the function endposx : F (x)! N, de�ned, for every wordu, by: endposx(u) = minfjwj j w pre�x of x and u su�x of wgand the function lengthx de�ned on states of DAWG(x) by :lengthx(p) = juj; with u representative of p:The word u also corresponds to the concatenated labels of transitions of thelongest path from the initial state to p in DAWG(x). The transitions thatbelong to the spanning tree of longest paths from the initial state are calledsolid transitions. Equivalently, for each transition (p; a; q) we have the property:(p; a; q) is solid () lengthx(q) = lengthx(p) + 1:The function lengthx works as well for multi-letter transitions, just replacing 1 inthe above equivalence by the length of the label of the transition. This extendsthe notion of solid transitions to multi-letter transitions:(p; �; q) is solid () lengthx(q) = lengthx(p) + j�j:In addititon, we de�ne the su�x link for a state of DAWG(x) by:

De�nition4. Let p be a state of DAWG(x), di�erent from the initial state, andlet u a word of the equivalence class p. The su�x link of p, denoted by sx(p), isthe state q which representative v is the longest su�x z of u such that u 6�S(x) z.Note that, consequently to this de�nition, we have lengthx(q) < lengthx(p). Then,by iteration, su�x links induce su�x paths in DAWG(x), which is an importantnotion used by the construction algorithm. Indeed, as a consequence of the aboveinequality, the sequence (p; sx(p); s2x(p); :::) is �nite and ends at the initial stateof DAWG(x). This sequence is called the su�x path of p.3 Compact Directed Acyclic Word Graphs3.1 De�nitionThe compression of DAWGs is based on the deletion of some states and theircorresponding transitions. This is possible using multi-letter transitions and theselection of strict classes of factors de�ned in the previous section (De�nition 3).Thus, we de�ne the Compact DAWG as follows.De�nition5. The Compact Directed Acyclic Word Graph of a word x,denoted by CDAWG(x), is the compaction of DAWG(x) obtained by keepingonly states that are either terminal states or strict classes of factors accordingto �S(x), and by labeling transitions accordingly.Consequently to De�nition 3, the strict classes of factors correspond to the statesthat have an outdegree greater than one. So, we can delete every state havingoutdegree one exactly, except terminal states. Note that initial and �nal statesare terminal states too, so they are not deleted.I 23 4 Fca gtata gtaaacaaca gtaaacc accFig. 2. CDAWG(gtagtaaac)The construction of the DAWG of a word including some repetitions showsthat many states have outdegree one only. For example, in Figure 1, the DAWGof the word gtagtaaac has 12 states, 7 of which have outdegree one; it has 18transitions. Figure 2 displays the result after the deletion of these states, usingmulti-letter transitions. The resulting automaton has only 5 states and 11 edges.

According to experiments to construct DAWGs of biological DNA sequences,considering them as words over the alphabet � = fa; c; g; tg, we got that morethan 60% of states have an outdegree one. So, the deletion of these states isworth, it provides an important saving. The average analysis of the number ofstates and edges is done in [5] in a Bernouilly model of probability.When a state p is deleted, the deletion of outgoing edges is realized by addingthe label of the outgoing edge of the deleted state to the labels of its incomingedges. For example, let r, p and q be states linked by transitions (r; b; p) and(p; a; q). We replace the edges (r; b; p) and (p; a; q) by the edge (r; ba; q). Byrecursion, we extend this method to every multi-letter transition (r; �; p).In the example (Figure 1), one can note that, inside the word gtagtaaac,occurrences of g are followed by ta, and those of t and gt by a. So, gta is therepresentative of state 3 and it is not necessary to create states for g and (gt ort). Then, we directly connect state I to state 3 with edges (I,gta,3) and (I,ta,3).States 1 and 2 are so deleted.The su�x links de�ned on states of DAWGs remain valid when we reducethem to CDAWGs because of the next lemma.Lemma6. If p is a state of CDAWG(x), then sx(p) is a state of CDAWG(x).3.2 Size boundsBy Theorem 2 DAWG(x) is linear in jxj. As we shall see below (Section 3.3),labels of multi-letter transitions are implemented in constant space. So, the sizeof CDAWG(x) is also O(jxj). Meanwhile, as we delete many states and edges,we review the exact bounds on the number of states and edges of CDAWG(x).They are respectively denoted by States(x) and Edges(x).Corollary7. Given x 2 ��, if jxj = 0, then States(x) = 1; if jxj = 1, thenStates(x) = 2; else jxj � 2, then 2 � States(x) � jxj+ 1 and the upper bound isreached when x is in the form ajxj, where a 2 �.Corollary8. Given x 2 ��, if jxj = 0, Edges(x) = 0; if jxj = 1, Edges(x) = 1;else jxj � 2, then Edges(x) � 2jxj � 2 and this upper bound is reached when xis in the form ajxj�1c, where a and c are two di�erent letters of �.3.3 Implementation and ResultsTransition matrices and adjacency lists are the classical implementations of au-tomata. Their principal di�erence lies in the implementation of transitions. The�rst one gives a direct access to transitions, but requires O(States(x)� card(�)).The second one stores only the exact number of transitions in memory, but needsO(log card(�)) time to access them. When the size of the alphabet is big andthe transition matrix is sparse, adjacency lists are preferable. Otherwise, likefor genomic sequences, transition matrix is a better choice, as shown by the

experiments below. So, we only consider here transition matrices to implementCDAWGs.We now describe the exact implementation of states and edges. We do thison a four-letter alphabet, so characters take 0:25 byte. We use integers encodedwith 4 bytes. For each state, to encode the target state of outgoing edges, tran-sitions matrices need a vector of 4 integers. Adjacency lists need, for each edge,2 integers, one for the target state and another one for the pointer to the nextedge.The basic information required to construct the DAWG is composed of atable to implement the function sx and one boolean value (0:125 byte) for eachedge to know if it is solid or not. For the CDAWG, in order to implement multi-letter transitions, we need one integer for the endposx value of each state, andanother integer for the label length of each edge. And that is all.Indeed, we can �nd the label of a transition by cutting o� the length of thistransition from the endposx value of its ending state. Then, we got the position ofthe label in the source and its length. Keeping the source in memory is negligibleconsidering the global size of the automaton (0:25 byte by character). This isquite a convenient solution also used for su�x trees. Figure 3 displays how the00I0 00I000I0 00I0 aac lengthxsxendposxState Number 3322I32 2346 9IF81 cgtaaac cacaa tagta c gtaaac
Fig. 3. Data Structure of CDAWG(gtagtaaac)states of CDAWG(gtagtaaac) are implemented.Then, respectively for transitions matrices and adjacency lists, each staterequires 20:5 and 17:13 bytes for the DAWG, and 40:5 and 41:21 bytes for theCDAWG. As a reference, su�x trees, as implemented by McCreight [13], need28:25 and 20:25 bytes per state. Moreover, for CDAWG and su�x trees thesource has to be stored in main memory. Theoretical average numbers of states,

calculated by Blumer et al. ([5]), are 0:54n for CDAWG, 1:62n for DAWG, and1; 62n for su�x trees, when n is the length of x. This gives respective sizes inbytes per character of the source: 45:68 and 32:70 for su�x trees, 33:26 and 27:80for DAWGs, and 22:40 and 22:78 for CDAWGs.Considering the complete data structures required for applications, the func-tion endposx has to be added for the DAWG and the su�x tree. In addition,the occurrence number of each factor has to be stored in each state for all thestructures. Therefore, the respective sizes in bytes per character of the sourcebecome : 58:66 and 45:68 for su�x trees, 46:24 and 40:78 for DAWGs, and 24:26and 24:72 for CDAWGs.Sourcex jxj Nb statesjxj Nb transitionsjxj Nb transitionsNb states memorygaindawg cdawg dawg cdawg dawg cdawgchro II 807188 1,64 0,54 2,54 1,44 1,55 2,66 50,36%coli 499951 1,64 0,54 2,54 1,44 1,53 2,66 51,95%bs 1 183313 1,66 0,50 2,50 1,34 1,50 2,66 54,78%bs 115 49951 1,64 0,54 2,54 1,44 1,55 2,66 50,16%random 500000 1,62 0,55 2,54 1,47 1,57 2,68 49,53%random 100000 1,62 0,55 2,55 1,47 1,57 2,68 49,35%random 50000 1,62 0,54 2,54 1,46 1,56 2,68 49,68%random 10000 1,62 0,54 2,54 1,46 1,56 2,68 49,47%theor. aver. ratios 1,63 0,54 2,54 1,46 1,56 2,67 50,55%Table 1. Statistic table with account between DAWG and CDAWG.Moreover, Table 1 compares sizes of DAWG and CDAWGmeant for applica-tions to DNA sequences. Sizes for random words of di�erent lengths and j�j = 4are also given. DNA sequences are Saccharomyces cerevisiae yeast chromosomeII (chro II), a contig of Escherichia Coli DNA sequence (coli), and contigs 1and 115 of Bacillus Subtilis DNA sequence (bs). Number of states and edgesaccording to the length of the source and the memory space gain are displayed.Theoretical average ratios are given, calculated from Blumer et al. ([5]). First,we observe there are 2=3 less states in the CDAWG, and near of half edges.Second, the memory space saving is about 50%. Third, the number of edges bystate is going up to 2:66. With a four-letter alphabet, this is interesting becausethe transition matrix becomes smaller than adjacency lists. At the same time,we keep a direct access to transitions.4 Constructing CDAWG from DAWGThe DAWG construction is fully exposed and demonstrated in [3] and [7]. As weshow in this section, the CDAWG is easily derived from the DAWG.

Indeed, we just need to apply the de�nition of the CDAWG recursively. Thisis computed by the function Reduction, given below. Observe that, in this func-tion, state(p; a] denotes the state pointed to by the transition (p; a]. The com-putation is done with a depth-�rst traversal of the automaton, and runs in timelinear in the number of transitions of DAWG(x). Then, by theorem 2, the com-putation also runs in time linear in the length of the text.However, this method needs to construct the DAWG �rst, which spendstime and memory space proportional to DAWG(x), though CDAWG(x) is sig-ni�cantly smaller. So, it is better to construct the CDAWG directly.Reduction (state E) returns (ending state, length of redirected edge)1. If (E not marked) Then2. For all existing edge (E; a] Do3. (state(E; a] , jlabel((E; a])j) Reduction(state(E; a]);4. mark(E) TRUE;5. If (E is of outdegree one) Then6. Let (E; a] this edge ;7. Return (state(E; a] , 1 + jlabel((E; a])j);8. Else9. Return (E,1);5 Direct Construction of CDAWGIn this section, we give the direct construction of CDAWGs and show that therunning time is linear in the size of the input word x on a �xed alphabet.5.1 AlgorithmSince the CDAWG of x is a minimization of its su�x tree, it is rather naturalto base the direct construction on McCreight's algorithm [13]. Meanwhile, prop-erties of the DAWG construction are also used, especially su�x links (notionthat is di�erent from the su�x links of McCreight's algorithm), lengths, andpositions, as explained in the previous section.First, we introduce the notions used by the algorithm, some of them aretaken from [13]. The algorithm constructs the CDAWG of the word x of lengthn, noted x0::n�1. The automaton is de�ned by a set of states and transitions,especially with I and F, the initial and �nal states. A partial path represents aconnected sequence of edges between two states of the automaton. A path is apartial path that begins at I. The label of a path is the concatenation of thelabels of corresponding edges.The locus, or exact locus, of a string is the end of the path labeled by thestring. The contracted locus of a string � is the locus of the longest pre�x of �whose locus is de�ned.

Preliminary Algorithm Basically, the algorithm to build CDAWG inserts thepaths corresponding to all the su�xes of x from the longest to the shortest. Wede�ne sufi as the su�x xi::n�1 of x. We denote by Ai the automaton constructedafter the insertion of all the sufj for 0 � j � i.A BC DI F I 1 FI 12 F I 12 3 Faabbabbc a abbabbcbbabbcbbabbcab abbabbcbbabbcbabbcabbc ab bbb abbccabbabbcabbcccFig. 4. Construction of CDAWG(aabbabbc)Figure 4 displays four steps of the construction of CDAWG(aabbabbc). In thisFigure (and the followings), the dashed edges represent su�x links of states,which are used subsequently. We initialize the automaton A" with states I andF. At step i (i > 0), the algorithm inserts a path corresponding to sufi in Ai�1and produces Ai. The algorithm satis�es the following invariant properties:P1: at the beginning of step i, all su�xes sufj, 0 � j < i, are paths in Ai�1.P2: at the beginning of step i, the states ofAi�1 are in one-to-one correspondencewith the longest common pre�xes of pairs of su�xes longer than sufj .We de�ne headi as the longest pre�x of sufi which is also a pre�x of sufj forsome j < i. Equivalently, headi is the longest pre�x of sufi which is also a pathof Ai�1. We de�ne taili as head�1i sufi. At step i, the preliminary algorithm hasto insert taili from the locus of headi in Ai�1 (see Figure 5).To do so, the contracted locus of headi in Ai�1 is found with the help offunction SlowFind that compares letter-to-letter the right path of Ai�1 to sufi.This is similar to the corresponding McCreight's procedure, except on whatis explained below. Then, if necessary, a new state is created to split the lastencountered edge, state that is the locus of headi. The automaton B of Figure 4,displays the creation of state 1 during the insertion of suf1=abbabbc. Note that,if an already existing state matches the strict class of factor of headi, the last

tailiI FheadiFig. 5. Scheme of the insertion of a sufi in Ai�1.encountered edge is split in the same way, but it is redirected to this state. Suchan example appears in the same example (case D): the insertion of suf5=bbcinduces the redirection of the edge (2,babbc,F) that becomes (2,b,3). Then, anedge labeled by taili is created from the locus of headi to F. We can write thepreliminary algorithm as follows:Preliminary Algorithm1. For all sufi (i 2[0..n-1]) Do2. (q;
) SlowFind(I);3. If (
 = ") Then4. insert (q,taili,F);5. Else6. create v locus of headi splitting (q;
]and insert (v,taili,F);or redirect (q;
] onto v,the last created state;7. End For all;8. mark terminal states;Note �rst that SlowFind returns the last encountered state. This keeps ac-cessible the transition (q;
] that can be split if this state is not an exact locus.Second, as in the DAWG construction, if a non-solid edge is encounteredduring SlowFind, its target state has to be duplicated in a clone and the non-solid edge is redirected to this clone. But, if the clone has just been created atthe previous step, the edge is redirected to this state. Note that, in the two cases,the redirected transition becomes solid.Finally, when taili = " at the end of the construction, terminal states aremarked along the su�x path of F.From the above discussion, a proof of the invariance of properties P1 and P2can be derived. Thus, at the end of the algorithm all subwords of x and onlythese words are labels of paths in the automaton (property P1). By property P2,states correspond to strict classes of factors (when the longest common pre�x ofa pair of su�xes is not equal to any of them) or to terminal states (when thecontrary holds). This gives a sketch of the correctness of the algorithm.

The running time of the preliminary algorithm is O(jxj2) (with an imple-mentation by transition matrix), like is the sum of lengths of all su�xes of theword x.Linear Algorithm To get a linear-time algorithm, we use together propertiesof DAWGs construction and of su�x trees construction. The main feature is thenotion of su�x links. They are de�ned as for DAWGs in Section 2. They are theclue for the linear-running-time of the algorithm.Three elements have to be pointed out about su�x links in the CDAWG.First, we do not need to initialize su�x links. Indeed, when suf0 is inserted,x0 is obviously a new letter, which directly induces sx(F)=I. Note that sx(I) isnever used, and so never de�ned. Second, traveling along the su�x path of astate p does not necessarily end at state I. Indeed, with multi-letter transitions,if sx(p)=I we have to treat the su�x a�1� (a 2 �) where � is the representativeof p. And third, su�x links induce the following invariant property satis�ed atstep i:P3: at the beginning of step i, the su�x links are de�ned for each state of Ai�1according to De�nition 4.The next remark allows redirections without having to search with SlowFindfor existing states belonging to a same class of factors.Remark. Let �� have locus p and assume that q = sx(p) is the locus of �. Then,p is the locus of su�xes of �� whose lengths are greater than j�j.The algorithm has to deal with su�x links each time a state is created.This happens when a state is duplicated, and when a state is created after theexecution of SlowFind.In the duplication, su�x links are updated as follows. Let w be the cloneof q. In regard to strict classes of factors and De�nition 4, the class of w isinserted between the ones of q and sx(q). So, we update su�x links by settingsx(w)=sx(q) and sx(q)=w.Moreover, the duplication has the same properties as in the DAWG construc-tion. Let (p;
; q) be the transition redirected during the duplication of q. Wecan redirect all non-solid edges that end the partial path
 and that start froma state of the su�x path of p. This is done until the �rst edge that is solid. Weare helped in this operation by the function FastFind, similar to the one usedin McCreight's algorithm [13], that goes through transitions just comparing the�rst letters of their labels. This function returns the last encountered state andedge. Note that it is not necessary to �nd each time the partial path
 from asu�x of p, we just need to take the su�x link of the last encountered state andthe label of the previous redirected transition.Let # be the representative of a state of the su�x path of p. Observe thatthe corresponding redirection is equivalent to insert sufi+j�j�j#j. Indeed, all op-erations done after this redirection will be the same as for the insertion of sufi,since they go through the same path.

I q vs r���
� s xFig. 6. Scheme of the search using su�x linksAfter the execution of SlowFind, if state v is created, we have to compute itssu�x link. Let
 be the label of the transition starting at q and ending at v. Tocompute the su�x link, the algorithm goes through the path having label
 fromthe su�x link of q, s = sx(q). The operation is repeated if necessary. Figure 6displays a scheme of this search. The thick dashed edges represent paths in theautomaton, and the thin dashed edge represents the su�x link of q. This searchwill allow to insert, as for the duplication, the su�xes sufj , for i < j < i+jheadij.To travel along the path, we use again the function FastFind. Let r and (r;]be the last state and transition encountered by FastFind. If r is the exact locusof
, it is the wanted state, and we set then sx(v) = r. Else, if (r;] is a solidedge, then we have to create a new node w. The edge (r;] is split, it becomes(r; ; w), and we insert the transition (w,taili,F). Else, (r;] is non-solid. Then,it is split and becomes (r; ; v). In the two last cases, since sx(v) is not found, werun FastFind again with sx(r) and , and this goes on until sx(v) is eventuallyfound, that is, when = ".The discussion shows how su�x links are updated to insure that propertyP3 is satis�ed. The operations do not in
uence the correctness of the algorithm,sketched in the last section, but yield the following linear-time algorithm. Itstime complexity is discussed in the next section.Linear Algorithm1. p I; i 0;2. While not end of x Do3. (q;
) SlowFind(p);4. If (
 = ") Then5. insert (q,taili,F);6. sx(F) q;7. If (q 6= I) Then p sx(q) Else p I;8. Else9. create v locus of headi splitting (q;
];10. insert (v,taili,F);11. sx(F) v;12. �nd r = sx(v) with FastFind;13. p r;14. update i;15. End While;16. mark terminal states;

5.2 ComplexityTheorem9. The algorithm that builds the CDAWG of a word x of �� canbe implemented in time O(jxj) and in space O(jxj � card(�)) with a transitionmatrix, or in time O(jxj� log card(�)) and in space O(jxj) with adjacency lists.
I I vx �� � taili
 sufiheadii j kqs rFig. 7. Positions of labels when sufi is insertedSketch of the proofIt can be proved that each step of the algorithm leads to increase strictly variablesj or k in the generic situation displayed in Figure 7. These variables respectivelyrepresent the index of the current su�x being inserted, and a pointer on thetext. These variables never decrease. Therefore, the total running time of thealgorithm is linear in the length of x.6 ConclusionWe have considered the Compact Direct Acyclic Word Graph, which is an e�-cient compact data structure to represent all su�xes of a word. There are manydata structures representing this set. But, this one allows an interesting spacegain compared to the well-known DAWG, which is a reference. Indeed, on theone hand, the upper bounds are of jxj+ 1 states and 2jxj � 2 transitions. Thissaves jxj states and jxj transitions of the DAWG, which leads to faster utilisation.On the other hand, experiments on genomic DNA sequences and random stringsdisplay a memory space gain of 50% according to the DAWG. Moreover, whenthe size of the alphabet is small, transition matrices do not take more space thanadjacency lists, keeping direct access to transitions. Thus, we can construct the

data structure of twice larger strings, keeping them in main memory, which isactually important to get e�cient treatments.This work shows that the CDAWG can be constructed directly. The algorithmis linear in the length of the text. Of course, it is easier to compute, by reduction,the CDAWG from the DAWG. On the contrary, our algorithm saves time andspace simultaneously.References1. A. Anderson and S. Nilsson. E�cient implementation of su�x trees. Software,Practice and Experience, 25(2):129{141, Feb. 1995.2. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico & Z. Galil,editor, Combinatorial Algorithms on Words., pages 85{95. Springer-Verlag, 1985.3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.The smallest automaton recognizing the subwords of a text. Theoret. Comput.Sci., 40:31{55, 1985.4. A. Blumer, J. Blumer, D. Haussler, and R. McConnell. Complete inverted �lesfor e�cient text retrieval and analysis. Journal of the Association for ComputingMachinery, 34(3):578{595, July 1987.5. A. Blumer, D. Haussler, and A. Ehrenfeucht. Average sizes of su�x trees anddawgs. Discrete Applied Mathematics, 24:37{45, 1989.6. B. Clift, D. Haussler, R. McDonnell, T.D. Schneider, and G.D. Stormo. Sequencelandscapes. Nucleic Acids Research, 4(1):141{158, 1986.7. M. Crochemore. Transducers and repetitions. Theor. Comp. Sci., 45:63{86, 1986.8. M. Crochemore and W. Rytter. Text Algorithms, chapter 5-6, pages 73{130. Ox-ford University Press, New York, 1994.9. R. W. Irving. Su�x binary search trees. Technical report TR-1995-7, ComputingScience Department, University of Glasgow, April 1995.10. J. Karkkainen. Su�x cactus : a cross between su�x tree and su�x array. CPM,937:191{204, July 1995.11. C. Lefevre and J-E. Ikeda. The position end-set tree: A small automaton for wordrecognition in biological sequences. CABIOS, 9(3):343{348, 1993.12. U. Manber and G. Myers. Su�x arrays: A new method for on-line string searches.SIAM J. Comput., 22(5):935{948, Oct. 1993.13. E. McCreight. A space-economical su�x tree construction algorithm. Journal ofthe ACM, 23(2):262{272, Apr. 1976.14. E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14:249{260, 1995.
This article was processed using the LATEX macro package with LLNCS style

