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A b s t r a c t .  Multi-Attribute Generalization is an algorithm for attribute- 
oriented induction in relational databases using domain generalization 
graphs. Each node in a domain generalization graph represents a differ- 
ent way of summarizing the domain values associated with an attribute. 
When generalizing a set of attributes, we show how a serial implementa- 
tion of the algorithm generates all possible combinations of nodes from 
the domain generalization graphs associated with the attributes, result- 
ing in the presentation of all possible generalized relations for the set. We 
then show how the inherent parallelism in domain generalization graphs 
is exploited by a parallel implementation of the algorithm. Significant 
speedups were obtained using our approach when large discovery tasks 
were partitioned across multiple processors. The results of our work en- 
able a database analyst to quickly and efficiently analyze the contents of 
a relational database from many different perspectives. 

1 Introduct ion 

Knowledge discovery from database (KDD) algorithms can be broadly classified 
into two general areas: summarizat ion and anomaly detection. Summarization 
algorithms find concise descriptions of data,  such as parti t ioning the da ta  into 
disjoint groups. Anomaly detection algorithms identify unusual features of data,  
such as combinations that  occur with greater or lesser frequency than expected. 

Attribute-oriented induction (AOI) [7, 8, 9] is a summarizat ion algori thm 
tha t  has been effective for KDD. AOI summarizes the information in a relational 
database  by repeatedly replacing specific at tr ibute values with more general con- 
cepts according to user-defined concept hierarchies (CHs). A concept hierarchy 
associated with an at t r ibute  in a database is represented as a tree where leaf 
nodes correspond to actual domain values in the database,  intermediate nodes 
correspond to a more general representation of the domain values, and the root 
node corresponds to the most  general representation of the domain values. For 
example,  a CH for the Location at t r ibute in a sales database is shown in Fig- 
ure l(a) .  Knowledge about  the higher level concepts can be learned through 
generalization of the sales da ta  at each node. 
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Fig.  1. A concept hierarchy (a) and a domain generalization graph (b) 

As the result of recent research, AOI methods are considered among the 
most efficient of KDD methods for knowledge discovery from databases [1, 2, 
3, 4, 7, 10]. In particular, algorithms for generalizing relational databases are 
presented in [1] that  run in O(n) time, where n is the number of tuples in the 
input relation, and require O(p) space, where p is the number of tuples in the 
generalized relation (typically p < <  n). In [1], it is also proven that  an AOI 
algorithm which runs in O(n) time is optimal for generalizing a relation. 

The complexity of the CHs is a primary factor determining the interestingness 
of the results [6]. If several CHs are available for the same attribute, which means 
knowledge about the attribute can be expressed in different ways, current AOI 
methods require the user to select one. Thus, a fundamental problem is that  AOI 
methods present only one possible generalization to the user without evaluating 
the relative merits of other possible generalizations consistent with the CHs. 

To facilitate other possible generalizations, domain generalization graphs 
(DGGs) were proposed to enable the data  in a relational database to be repre- 
sented in different ways [5, 11]. Informally, a DGG defines a partial order which 
represents a set of generalization relations for an attribute. A DGG always in- 
cludes a single source (the node at the lowest level corresponding to the domain 
of the attribute) and a single sink (the node at the highest level correspond- 
ing to the most general representation of the domain and which contains the 
value ANY). For example, the levels of the CH in Figure l(a) correspond to the 
nodes in the more general representation of the DGG in Figure l(b). Any CH 
corresponds to a single-path DGG. 

When there are multiple single-path DGGs associated with an attribute, 
a multi-path DGG can be constructed. For example, Figure 2(c) shows how a 
multi-path DGG can be constructed from the single-path DGGs in Figures 2(a) 
and 2(b). Here we assume if a common name is used in multiple DGGs, then 
the name represents the same partition of the domain in the underlying CHs. 

In [11], we introduced the Path-Based Generalization (PBG) and Bias-Based 
Generalization (BBG) algorithms for generalization using DGGs. Although PBG 
and BBG avoid unnecessary re-generalization by determining which intermediate 
generalized relations to store for possible future use, the DGG associated with 
an attribute is considered independently of the DGGs for other attributes. To 
resolve this problem, we introduced the Serial Multi-Attribute Generalization 
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Fig.  2. Constructing a multi-path DGG 

algorithm in [5] for generalizing a set of attributes using DGGs. There we show 
that  a set of attributes can be considered a single attr ibute whose domain is 
the cross product of the individual attr ibute domains. A generalization from 
this domain is described as all possible combinations of nodes from the set of 
attributes, with one node from the DGG associated with each attribute. 

In this paper, we introduce the Parallel Multi-Attribute Generalization algo- 
ri thm. When generalizing a set of attributes in parallel, a distinct combination 
of paths from the DGGs associated with the set can be assigned to separate pro- 
cessors, where the generalization along those paths can be done independently of 
the others. This data  parallel algorithm enables us to perform intensive investi- 
gation of databases where a few attributes have been determined to be relevant 
and for which considerable domain knowledge is available (represented as CHs 
and DGGs). This strategy reflects our experience in applying data  mining tech- 
niques to a variety of sponsors' commercial databases in the areas of health care, 
education, and home entertainment.  

The remainder of this paper is organized as follows. In the following section, 
we restate the formal definition of a DGG from [5]. In Section 3, we review 
the Serial Multi-Attribute Generalization algorithm and introduce the Parallel 
Multi-Attribute Generalization algorithm. In Section 4, we present experimental 
results. In Section 5, we summarize our results and suggest future research. 

2 D e f i n i t i o n s  

Given a set S = {sl, s 2 , . . . ,  s,~} (the domain of an attribute),  S can be parti- 
tioned in many different ways, for example O1 - {{sl}, {s2} , . . . ,  {s,~}}, 02  = 
{{s l} ,{s2 , . . . , s ,~}},  etc. Let D be the set of partitions of set S, and ___ be a 
nonempty binary relation (called a generalization relation) defined on D, such 
that  Di _ Dj if for every di E D~ there exists dj E Dj such that  d~ C dj. The 
generalization relation ~ is a partial order relation and (D, __} defines a partial 
order set from which we can construct a lattice called a domain generalization 
graph (D, E} as follows. First, the nodes of the graph are elements of D. And sec- 
ond, there is a directed arc from Di to Dj (denoted by E(D~, Dj)) iff D~ r Dj, 
Di -4 Dj, and there is no Dk E D such that  Di ~ Dk and Dk ~ Dj. 
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Let Dg = { S } and Dd = {{sl},{s~},... ,{sn}}. For any Di E D we have 
Dd _ D~ and D~ _ Dg, where Dd and Dg are called the least and greatest 
elements of D, respectively. We call the nodes (elements of D) domains, where 
the least element is the most specific level of generality and the greatest element 
is the most general level. There is a trivial DGG where the least element is 
mapped directly to the greatest element (i.e., Dd is mapped to Dg). 

For example, given S = { Vancouver, Toronto, Montreal, Los Angeles, New 
York, St. Louis}, let D = { Office, City, Division, Country, ANY}, where Dg = 
{S} = {{ Vancouver, Toronto, Montreal, Los Angeles, New York, St. Louis}}, 
D3 = {{ Vancouver, Toronto, Montreal}, {Los Angeles, New York, St. Louis}}, 
D2 = {{ Vancouver, Toronto}, {Montreal, Los Angeles}, {New York, St.Louis} }, 
D1 -- {{ Vancouver, Toronto}, {Montreal}, {Los Angeles}, {New York, St.Louis} }, 
and Dd = {{ Vancouver}, {Toronto}, {Montreal}, {Los Angeles}, {New York}, 
{St. Louis}}, then these partitions are described by the DGG shown in Figure 2. 

3 M u l t i - A t t r i b u t e  G e n e r a l i z a t i o n  

3.1 Basic Idea 

Given the simple, single-path DGGs for attributes A, B, and C shown in Fig- 
ure 3, Figure 4 shows the complete generalization state space for all possible 
combinations of nodes from the set of attributes. The objective of the Multi- 
Attribute Generalization algorithm is to visit each node in the generalization 
state space once, generating all possible summaries consistent with the DGGs 
for the set of attributes being generalized. The number of nodes in the general- 
ization state space is O(1-Iim__l IDi I), where m is the number of attributes and ID, I 
is the number of nodes in the DGG for attribute i. Node (Ad, Bd, Cd), contain- 
ing the least element from each of the individual DGGs in Figure 3, is called an 
input or ungeneralized relation. Its domain corresponds to the cross-product of 
the values contained in the individual attribute domains. All other nodes, called 
generalized relations, correspond to a different possible generalization of node 
(Ad, Ba, Cdl. For example, assume that a, bl and b~, and c describe the general- 
ization relations for attributes A, B, and C, respectively. Applying a, bl, b2, and 
c, in the order specified, we obtain generalizations of (Ad, Ba, Cd) corresponding 
to nodes (Ag, Bd, Cd), (Ag, B1, Ca}, (Ag, Bg, Ca}, and (Ag, Bg, Cg~, respectively. 
Node (Ag, Bg, C~}, containing the greatest element from each of the individual 
DGGs in Figure 3, corresponds to the most general case where all attributes are 
generalized to ANY. Other generalizations can be obtained by applying different 
combinations of the generalization relations in a similar manner. 

3.2 The  Serial A lgor i thm 

Given a relation R, a set of m DGGs, and a set of m attributes, where one 
DGG is associated with each attribute, the All_Gen algorithm, shown in Fig- 
ure 5, generates all possible generalized relations consistent with the DGGs for 
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Fig.  3. A set of DGGs for attributes A, B, and C 

Fig.  4. Generalization state space for attributes A, B, and C 

the set of attributes. In All_Gen, the function Node_Count (line 4) determines 
the number of nodes in DGG Di. The function Generalize (line 9) returns a 
generalized relation where attribute i in the target relation has been generalized 
to the level of node Dik (that is, Di~ is the k-th node of DGG Di). Any of the 
generalization algorithms presented in [1, 2, 3, 4, 7] may be used to implement 
the Generalize function. The procedure Output (line 10) saves the generalized 
relation and combination of nodes from which the generalized relation was gen- 
erated. The computational complexity of the serial algorithm is O(n I"L~=I IDol), 
where n is the number of tuples, m is the number of attributes, and IDil is the 
number of nodes in the DGG for attribute i. 

The initial call to All_Gen is All_Gen (R, 1, m, D, D,~oae~), where R is the 
input relation for this discovery task, 1 is an identifier corresponding to the first 
attribute, m is an identifier corresponding to the last attribute, D is the set of rn 
DGGs associated with the m attributes, and Dnodes is a vector in which the i-th 
element is initialized to Dil (we assume the first node in each Di corresponds to 
the domain of Di). Dnodes is used to store the combination of nodes from which 
each generalized relation is generated. 
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e n d  
e n d  

Fig.  5. Serial multi-attribute generalization algorithm 

The algorithm is described as follows. In the i-th call to All_Gen (correspond- 
ing to the i-th attribute), one pass is made through the for loop (lines 4 to 11) 
for each non-domain node in Di (i.e., the DGG associated with attribute i). If 
the i-th call to All_Gen is not also the m-th call (that is, corresponding to the 
last attribute) (line 5), then the i + 1-th call to All_Gen is made (line 6). The 
i +  1-th call to All_Gen is All_Gen (work_relation, i+ 1, m, D, Dnodes), where the 
values of m, D, and Dno~es do not change from the i-th call. The first parameter, 
work_relation, was previously set to the value of relation prior to entering the 
for loop (line 3). The second parameter, i, is incremented by one (corresponding 
to the i + 1-th attribute). In the first pass through the for  loop (i.e., k = 1) for 
the i-th call, the value of work_relation is R (i.e., the original input relation). 

In the m-th call to All_Gen, or when the i + 1-th call returns control to the 
i-th call (line 6), the i-th call determines the next level of generalization for 
attribute i (i.e., Did+l) and saves it in the i-th element of the vector Dnodes (line 
8). The relation used as input to the i-th call to All_Gen is generalized to the 
level of node Di~+l (line 9), and the resulting generalized relation is saved along 
with the combination of nodes from which the generalized relation was generated 
(line 10). In all passes through the for loop, other than the first (i.e., k > 1), 
the value of work_relation passed by the i-th call to the i + 1-th call is relation 
generalized to the level of Dik+l. 

3.3 T h e  Pa ra l l e l  A l g o r i t h m  

The size of the generalization state space depends only on the number of nodes 
in the DGGs; it is not dependent upon the number of tuples in the input re- 
lation. When the number of attributes to be generalized is large or the DGGs 
associated with a set of attributes is complex, we can improve the performance of 
the serial algorithm through parallel generalization. Our parallel algorithm does 
not simply assign one node in the generalization state space to each processor, 
because the startup cost for each processor was considered too great in compari- 
son to the actual work performed. Through experimentation, we adopted a more 
coarse-grained approach, where a unique combinations of paths, including one 
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1. p r o c e d u r e  Par_All_Gen (relation, i, m, D, Dpa*hs, D,oae~ ) 
2. b e g i n  
3. f o r  k -- 1 t o  P a t h . C o u n t  (D , )  d o  b e g i n  
4. Dpa,hs[k] +- D~ 
5. i f  i <: m t h e n  
6. Par_A.11_Gen (relation, i + 1, rn, D, D p~h~ , Dnod~ ) 
7. e l s e  
8. f o r k  All_Gen (relation, 1, m, Dpa,h~, D~oa~) 
9. end 

10. e n d  
11. e n d  

Fig.  6. Parallel multi-attribute generalization algorithm 

path through the DGG for each attribute, was assigned to each processor. For ex- 
ample, given attribute A with three possible paths through its DGG, attribute 
B with 4, and attribute C with 2, our approach creates 3 • 4 • 2 = 24 pro- 
cesses. The Par_All_Gen algorithm, shown in Figure 6, creates parallel All_Gen 
child processes on multiple processors (line 8). In Par_All_Gen, the function 
Path_Count (line 3) determines the number of paths in DGG Di. 

The initial call to Par_All_Gen is Par_All_Gen (R, 1, m, D, ~, Dnodes), where 
R, 1, m, D, and Dnodes have the same meaning as in the serial algorithm, and 

initializes Dpath~. Dpaths  is a vector in which the i-th element is assigned a 
unique path from Di. 

The algorithm is described as follows. In the i-th call to Par_All_Gen, one 
pass is made through the forloop (lines 3 to 10) for each distinct path in Di. The 
current path, D~, is determined and saved in the k-th element of Dpaths (line 
4), where D~ is the k-th path in Di. If the i-th call to Par_All_Gen is not also 
the m-th call (line 5), then the i § 1-th call to Par_All_Gen is made (line 6). The 
i-t- 1-th call to Par_All_Gen is Par_All_Gen (relation, i+ 1, m, D, Dpaths ,  Dnodes ) , 

where the values for relation, m, D, and Dnodes do not change from the i-th 
call. The second parameter is incremented by one. The fifth parameter, Dpaths, 
was previously set to D~ (line 4). When the i + 1-th call returns control to the 
i-th call (line 6), the next pass through the for loop begins (line 4). 

In the m-th call to Par_All_Gen, an All_Gen child process is created (line 8). 
The call to All_Gen is All_Gen (relation, 1, m, Dpath~, Dnodes), where relation, 
m, and Dnode8 are unchanged from the values passed as parameters to the m-th 
call to Par_All_Gem The second parameter, 1, is an identifier corresponding to 
the first attribute. The fourth parameter, Dpath~, is a unique vector containing 
m paths from Di (i.e., one from each DGG for the set of attributes). The All_Gen 
child process then follows the serial algorithm described in the previous section. 

4 E x p e r i m e n t a l  R e s u l t s  

We ran all of our experiments on a 64-node Alex AVX Series 2, a MIMD dis- 
tributed memory parallel computer. Each inside-the-box compute node consists 
of a T805 processor, with 8 MB of local memory, paired with an i860 processor, 
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with 32 MB of shared memory (the pair communicates through the shared mem- 
ory). Each i860 processor runs at 40 MHz and each T805 processor runs at 20 
MHz with a bandwidth of 20 Mbits/second of bi-directional data  throughput  on 
each of its four links. The compute nodes run version 2.2.3 of the Alex-Trollius 
operating system. The front-end host computer system is a Sun Sparc 20 with 
32 MB of memory, running version 2.4 of the Solaris operating system. 

The Parallel Multi-Attribute Generalization algorithm has been implemented 
in C as an extension to DB-Discover, a software tool for knowledge discovery 
from databases [1, 3, 4]. The parallel implementation functions as three types 
of communicating modules: a slave program runs on an inside-the-box compute 
node and executes the discovery tasks that it is assigned, the master program 
assigns discovery tasks to the slave programs, and the bridge program coordinates 
access between the slave programs and the database. 

The parallel algorithm may generalize the same combination of nodes in 
Dnodes on multiple processors. This can occur when a node in a DGG resides 
on more than one path. To prevent this would require prior analysis of the 
generalization state space or some form of communication and synchronization 
between processors, introducing additional overhead. For these experiments, we 
consider this redundant generalization to be tolerable because it only occurs in a 
small percentage of the total number of states in the generalization state space. 

Input data  was from a large database supplied by a commercial partner in the 
telecommunications industry. Queries read approximately 675,000 tuples from 
three tables which contained a cumulative total of 28 attributes. Our experience 
in applying data  mining techniques to the databases of our commercial partners 
has shown that  domain experts typically perform discovery tasks on a few at- 
tributes that  have been determined to be relevant. Consequently, we present the 
results for experiments where two and three attributes were selected for gener- 
alization and the DGGs associated with the selected attributes contained from 
three to seven unique paths. The characteristics of the DGGs associated with 
each at tr ibute are shown in Table 1, where the No. of Paths column describes 
the number of unique paths, the No. of Nodes column describes the number of 
nodes, and the Avg. Path Length column describes the average path length. 

From these experiments, we draw three main conclusions. First, as the com- 
plexity of the DGGs associated with a set of attributes used in a discovery task 
increases (either by adding more paths or more nodes to paths), the complex- 
ity and traversal t ime of the generalization state space also increases. This was 
expected based upon the complexity analysis given in Section 3.2. Second, as 
the number of processors used in a discovery task increases, the t ime required to 

T a b l e  1. Characteristics of the DGGs for three attributes 
No. ojqNo, oj~Avg. Path 

Attribute Paths INodes] Length 

B 3 17 5.6 
C 4 22 5.5 
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traverse the generalization state space decreases. And third, significant speedups 
can be obtained using multiple processors. These results are shown in the graphs 
of Figures 7 and 8, where the number of processors is plotted against execution 
time. The legend for each curve in these graphs is of the form x:y, where z is the 
number of nodes in the generalization state space and y is the number of unique 
path combinations (i.e., the maximum number of processors). 

In both experiments, we varied the number of paths through the DGGs for 
each attribute in the discovery task and the number of processors assigned to the 
discovery task. A maximum of 32 processors were available. The graphs show 
that as the complexity of the generalization state space increases, the time re- 
quired to traverse the generalization state space also increases. For example, in 
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T a b l e  2. Speedup results obtained using the parallel algorithm 

Attributes No. o/ Nodes 
Experiment Generalized in State Space 

1 A,B 36 
70 

550 
668 

1736 
2 A ,B ,C  396 

1694 
3553 
7996 

12436 

No. of No. of Serial P zrallel 
Sub- Tasks Pracessors Time Pime Speedup 

2 2 7.74 4.16 1.9 
3 3 12.48 4.59 2.7 
10 10 51.06 6.60 7.7 
12 12 57.86 5.72 10.1 
21 21 115.44 6.60 17.5 
2 2 89.32 47.15 1.9 
12 12 380.18 42.13 9.0 
24 24 867.87 44.92 19.3 
54 32 1952.70 101.07 19.3 
84 32 3037.55 131.86 23.0 

Figure 7, showing the results of the two-attribute experiment, when running on 
a single processor, the time to generalize varies from 7.74 seconds for a gener- 
alization state space containing 36 nodes to 115.44 seconds for a generalization 
state space containing 1736 nodes. The less complex discovery tasks could not 
be parti t ioned usefully across 32 processors. For example, all the discovery tasks 
in Figure 7 and three in Figure 8 used fewer than 32 processors. 

The graphs also show that as the number of processors assigned to a dis- 
covery task is increased, the time required to traverse the generalization state 
space decreases. Increasing the number of processors divides the discovery task 
into smaller discovery tasks (i.e., sub-tasks). For example, in Figure 8, showing 
the results of the three-attribute experiment, the time to generalize in a gener- 
alization state space containing 12436 nodes varies from 3037.55 seconds on one 
processor to 131.86 seconds on 32 processors. Both of the largest discovery tasks 
in Figure 8 used all 32 processors. 

Speedups for the discovery tasks run in each experiment are shown in Ta- 
ble 2, where the No. of Nodes in State Space column is the number of nodes in 
the generalization state space, the No. of Sub-Tasks column is the number of 
unique path combinations from the set of DGGs, the No. of Processors column 
is the number of processors used, the Serial Time column is the time required 
to run the discovery task on one processor, the Parallel Time column is the 
time required on the actual number of processors used, and Speedup is the serial 
t ime divided by the parallel time. Significant speedups were obtained when a 
discovery task was run on multiple processors. For example, the speedups for 
the largest generalization state spaces were 17.5 on 21 processors and 23.0 on 32 
processors for the first and second experiments, respectively. 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We presented the Parallel Multi-Attribute Generalization algorithm for parallel 
attribute-oriented induction. The algorithm generates all possible generalized 
relations from the DGGs associated with a set of attributes by partit ioning 
path combinations from the DGGs across multiple processors. Increasing the 
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complexity of the DGGs associated with a set of at tr ibutes or increasing the 
number  of attr ibutes,  increases the complexity of the generalization state space. 
We showed tha t  increasing the number  of processors is effective for significantly 
reducing the t ime required to traverse the generalization state space. 

Future research will focus on ways to reduce the number  of generalized rela- 
tions generated. Prel iminary experiments have shown variance, the most  com- 
mon  measure of variability used in statistics, to be a useful measure for compar-  
ing the distribution defined by the structured tuples in a generalized relation to 
tha t  of a uniform distribution of the tuples. Heuristics which use the variance 
can then be used to prune those of least "interest". For example,  pruning all 
generalized relations except the one with the highest variance from each sub- 
task has been shown to be effective. A complementary  heuristic, which measures 
the complexity of generalized relations, can be used to break ties. 
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