
Parallel Knowledge Discovery
Using Domain Generalization Graphs

Robert J. Hilderman, Howard J. Hamilton,
Robert J. Kowalchuk, and Nick Cercone

Department of Computer Science
University of Regina

Regina, Saskatchewan, Canada, $4S 0A2
{hilder,hamilton,kowalc,nick} @cs.uregina.ca

A b s t r a c t . Multi-Attribute Generalization is an algorithm for attribute-
oriented induction in relational databases using domain generalization
graphs. Each node in a domain generalization graph represents a differ-
ent way of summarizing the domain values associated with an attribute.
When generalizing a set of attributes, we show how a serial implementa-
tion of the algorithm generates all possible combinations of nodes from
the domain generalization graphs associated with the attributes, result-
ing in the presentation of all possible generalized relations for the set. We
then show how the inherent parallelism in domain generalization graphs
is exploited by a parallel implementation of the algorithm. Significant
speedups were obtained using our approach when large discovery tasks
were partitioned across multiple processors. The results of our work en-
able a database analyst to quickly and efficiently analyze the contents of
a relational database from many different perspectives.

1 Introduct ion

Knowledge discovery from database (KDD) algorithms can be broadly classified
into two general areas: summarizat ion and anomaly detection. Summarization
algorithms find concise descriptions of data, such as parti t ioning the da ta into
disjoint groups. Anomaly detection algorithms identify unusual features of data,
such as combinations that occur with greater or lesser frequency than expected.

Attribute-oriented induction (AOI) [7, 8, 9] is a summarizat ion algori thm
tha t has been effective for KDD. AOI summarizes the information in a relational
database by repeatedly replacing specific at tr ibute values with more general con-
cepts according to user-defined concept hierarchies (CHs). A concept hierarchy
associated with an at t r ibute in a database is represented as a tree where leaf
nodes correspond to actual domain values in the database, intermediate nodes
correspond to a more general representation of the domain values, and the root
node corresponds to the most general representation of the domain values. For
example, a CH for the Location at t r ibute in a sales database is shown in Fig-
ure l(a) . Knowledge about the higher level concepts can be learned through
generalization of the sales da ta at each node.

26

ANY

Y o r k

O f f i c e l O f f i c e 2 O f f i c e 3 Of f :Loe4 O f f i c e s Of f :Lce6 O f f i c e ? O f s Of f :l.ce9 O f f i c e

(a) (b)

Fig. 1. A concept hierarchy (a) and a domain generalization graph (b)

As the result of recent research, AOI methods are considered among the
most efficient of KDD methods for knowledge discovery from databases [1, 2,
3, 4, 7, 10]. In particular, algorithms for generalizing relational databases are
presented in [1] that run in O(n) time, where n is the number of tuples in the
input relation, and require O(p) space, where p is the number of tuples in the
generalized relation (typically p < < n). In [1], it is also proven that an AOI
algorithm which runs in O(n) time is optimal for generalizing a relation.

The complexity of the CHs is a primary factor determining the interestingness
of the results [6]. If several CHs are available for the same attribute, which means
knowledge about the attribute can be expressed in different ways, current AOI
methods require the user to select one. Thus, a fundamental problem is that AOI
methods present only one possible generalization to the user without evaluating
the relative merits of other possible generalizations consistent with the CHs.

To facilitate other possible generalizations, domain generalization graphs
(DGGs) were proposed to enable the data in a relational database to be repre-
sented in different ways [5, 11]. Informally, a DGG defines a partial order which
represents a set of generalization relations for an attribute. A DGG always in-
cludes a single source (the node at the lowest level corresponding to the domain
of the attribute) and a single sink (the node at the highest level correspond-
ing to the most general representation of the domain and which contains the
value ANY). For example, the levels of the CH in Figure l(a) correspond to the
nodes in the more general representation of the DGG in Figure l(b). Any CH
corresponds to a single-path DGG.

When there are multiple single-path DGGs associated with an attribute,
a multi-path DGG can be constructed. For example, Figure 2(c) shows how a
multi-path DGG can be constructed from the single-path DGGs in Figures 2(a)
and 2(b). Here we assume if a common name is used in multiple DGGs, then
the name represents the same partition of the domain in the underlying CHs.

In [11], we introduced the Path-Based Generalization (PBG) and Bias-Based
Generalization (BBG) algorithms for generalization using DGGs. Although PBG
and BBG avoid unnecessary re-generalization by determining which intermediate
generalized relations to store for possible future use, the DGG associated with
an attribute is considered independently of the DGGs for other attributes. To
resolve this problem, we introduced the Serial Multi-Attribute Generalization

27

T T
Divlslon CoUntry

l l
C i t y C i t y

l l
O f f i c e O f f i c o

Divlslon Count ~

--,.. f
T

O f f i c e

(a) (~) (c)

Fig. 2. Constructing a multi-path DGG

algorithm in [5] for generalizing a set of attributes using DGGs. There we show
that a set of attributes can be considered a single attr ibute whose domain is
the cross product of the individual attr ibute domains. A generalization from
this domain is described as all possible combinations of nodes from the set of
attributes, with one node from the DGG associated with each attribute.

In this paper, we introduce the Parallel Multi-Attribute Generalization algo-
ri thm. When generalizing a set of attributes in parallel, a distinct combination
of paths from the DGGs associated with the set can be assigned to separate pro-
cessors, where the generalization along those paths can be done independently of
the others. This data parallel algorithm enables us to perform intensive investi-
gation of databases where a few attributes have been determined to be relevant
and for which considerable domain knowledge is available (represented as CHs
and DGGs). This strategy reflects our experience in applying data mining tech-
niques to a variety of sponsors' commercial databases in the areas of health care,
education, and home entertainment.

The remainder of this paper is organized as follows. In the following section,
we restate the formal definition of a DGG from [5]. In Section 3, we review
the Serial Multi-Attribute Generalization algorithm and introduce the Parallel
Multi-Attribute Generalization algorithm. In Section 4, we present experimental
results. In Section 5, we summarize our results and suggest future research.

2 D e f i n i t i o n s

Given a set S = {sl, s 2 , . . . , s,~} (the domain of an attribute), S can be parti-
tioned in many different ways, for example O1 - {{sl}, {s2} , . . . , {s,~}}, 02 =
{{s l} ,{s2 , . . . , s ,~}}, etc. Let D be the set of partitions of set S, and ___ be a
nonempty binary relation (called a generalization relation) defined on D, such
that Di _ Dj if for every di E D~ there exists dj E Dj such that d~ C dj. The
generalization relation ~ is a partial order relation and (D, __} defines a partial
order set from which we can construct a lattice called a domain generalization
graph (D, E} as follows. First, the nodes of the graph are elements of D. And sec-
ond, there is a directed arc from Di to Dj (denoted by E(D~, Dj)) iff D~ r Dj,
Di -4 Dj, and there is no Dk E D such that Di ~ Dk and Dk ~ Dj.

28

Let Dg = { S } and Dd = {{sl},{s~},... ,{sn}}. For any Di E D we have
Dd _ D~ and D~ _ Dg, where Dd and Dg are called the least and greatest
elements of D, respectively. We call the nodes (elements of D) domains, where
the least element is the most specific level of generality and the greatest element
is the most general level. There is a trivial DGG where the least element is
mapped directly to the greatest element (i.e., Dd is mapped to Dg).

For example, given S = { Vancouver, Toronto, Montreal, Los Angeles, New
York, St. Louis}, let D = { Office, City, Division, Country, ANY}, where Dg =
{S} = {{ Vancouver, Toronto, Montreal, Los Angeles, New York, St. Louis}},
D3 = {{ Vancouver, Toronto, Montreal}, {Los Angeles, New York, St. Louis}},
D2 = {{ Vancouver, Toronto}, {Montreal, Los Angeles}, {New York, St.Louis} },
D1 -- {{ Vancouver, Toronto}, {Montreal}, {Los Angeles}, {New York, St.Louis} },
and Dd = {{ Vancouver}, {Toronto}, {Montreal}, {Los Angeles}, {New York},
{St. Louis}}, then these partitions are described by the DGG shown in Figure 2.

3 M u l t i - A t t r i b u t e G e n e r a l i z a t i o n

3.1 Basic Idea

Given the simple, single-path DGGs for attributes A, B, and C shown in Fig-
ure 3, Figure 4 shows the complete generalization state space for all possible
combinations of nodes from the set of attributes. The objective of the Multi-
Attribute Generalization algorithm is to visit each node in the generalization
state space once, generating all possible summaries consistent with the DGGs
for the set of attributes being generalized. The number of nodes in the general-
ization state space is O(1-Iim__l IDi I), where m is the number of attributes and ID, I
is the number of nodes in the DGG for attribute i. Node (Ad, Bd, Cd), contain-
ing the least element from each of the individual DGGs in Figure 3, is called an
input or ungeneralized relation. Its domain corresponds to the cross-product of
the values contained in the individual attribute domains. All other nodes, called
generalized relations, correspond to a different possible generalization of node
(Ad, Ba, Cdl. For example, assume that a, bl and b~, and c describe the general-
ization relations for attributes A, B, and C, respectively. Applying a, bl, b2, and
c, in the order specified, we obtain generalizations of (Ad, Ba, Cd) corresponding
to nodes (Ag, Bd, Cd), (Ag, B1, Ca}, (Ag, Bg, Ca}, and (Ag, Bg, Cg~, respectively.
Node (Ag, Bg, C~}, containing the greatest element from each of the individual
DGGs in Figure 3, corresponds to the most general case where all attributes are
generalized to ANY. Other generalizations can be obtained by applying different
combinations of the generalization relations in a similar manner.

3.2 The Serial A lgor i thm

Given a relation R, a set of m DGGs, and a set of m attributes, where one
DGG is associated with each attribute, the All_Gen algorithm, shown in Fig-
ure 5, generates all possible generalized relations consistent with the DGGs for

29

Fig. 3. A set of DGGs for attributes A, B, and C

Fig. 4. Generalization state space for attributes A, B, and C

the set of attributes. In All_Gen, the function Node_Count (line 4) determines
the number of nodes in DGG Di. The function Generalize (line 9) returns a
generalized relation where attribute i in the target relation has been generalized
to the level of node Dik (that is, Di~ is the k-th node of DGG Di). Any of the
generalization algorithms presented in [1, 2, 3, 4, 7] may be used to implement
the Generalize function. The procedure Output (line 10) saves the generalized
relation and combination of nodes from which the generalized relation was gen-
erated. The computational complexity of the serial algorithm is O(n I"L~=I IDol),
where n is the number of tuples, m is the number of attributes, and IDil is the
number of nodes in the DGG for attribute i.

The initial call to All_Gen is All_Gen (R, 1, m, D, D,~oae~), where R is the
input relation for this discovery task, 1 is an identifier corresponding to the first
attribute, m is an identifier corresponding to the last attribute, D is the set of rn
DGGs associated with the m attributes, and Dnodes is a vector in which the i-th
element is initialized to Dil (we assume the first node in each Di corresponds to
the domain of Di). Dnodes is used to store the combination of nodes from which
each generalized relation is generated.

30

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.
11.
12.

p r o c e d u r e All_Gen (relat ion, i, rn, D, D nodcs)
b e g i n

work_rela t ion +-- relat ion
f o r k = 1 t o Node_Count (D i) - 1 d o b e g i n

i f i < m t h e n
All_Gen (work_relat ion, i -b 1, rn, D, D uode~)

e n d
D~odr +- D.k+ 1
work_relat ion +- Genera l i ze (relat ion, i, D ik + 1)
O u t p u t (work_relat ion, D,~o4~)

e n d
e n d

Fig. 5. Serial multi-attribute generalization algorithm

The algorithm is described as follows. In the i-th call to All_Gen (correspond-
ing to the i-th attribute), one pass is made through the for loop (lines 4 to 11)
for each non-domain node in Di (i.e., the DGG associated with attribute i). If
the i-th call to All_Gen is not also the m-th call (that is, corresponding to the
last attribute) (line 5), then the i + 1-th call to All_Gen is made (line 6). The
i + 1-th call to All_Gen is All_Gen (work_relation, i+ 1, m, D, Dnodes), where the
values of m, D, and Dno~es do not change from the i-th call. The first parameter,
work_relation, was previously set to the value of relation prior to entering the
for loop (line 3). The second parameter, i, is incremented by one (corresponding
to the i + 1-th attribute). In the first pass through the for loop (i.e., k = 1) for
the i-th call, the value of work_relation is R (i.e., the original input relation).

In the m-th call to All_Gen, or when the i + 1-th call returns control to the
i-th call (line 6), the i-th call determines the next level of generalization for
attribute i (i.e., Did+l) and saves it in the i-th element of the vector Dnodes (line
8). The relation used as input to the i-th call to All_Gen is generalized to the
level of node Di~+l (line 9), and the resulting generalized relation is saved along
with the combination of nodes from which the generalized relation was generated
(line 10). In all passes through the for loop, other than the first (i.e., k > 1),
the value of work_relation passed by the i-th call to the i + 1-th call is relation
generalized to the level of Dik+l.

3.3 T h e Pa ra l l e l A l g o r i t h m

The size of the generalization state space depends only on the number of nodes
in the DGGs; it is not dependent upon the number of tuples in the input re-
lation. When the number of attributes to be generalized is large or the DGGs
associated with a set of attributes is complex, we can improve the performance of
the serial algorithm through parallel generalization. Our parallel algorithm does
not simply assign one node in the generalization state space to each processor,
because the startup cost for each processor was considered too great in compari-
son to the actual work performed. Through experimentation, we adopted a more
coarse-grained approach, where a unique combinations of paths, including one

31

1. p r o c e d u r e Par_All_Gen (relation, i, m, D, Dpa*hs, D,oae~)
2. b e g i n
3. f o r k -- 1 t o P a t h . C o u n t (D ,) d o b e g i n
4. Dpa,hs[k] +- D~
5. i f i <: m t h e n
6. Par_A.11_Gen (relation, i + 1, rn, D, D p~h~ , Dnod~)
7. e l s e
8. f o r k All_Gen (relation, 1, m, Dpa,h~, D~oa~)
9. end

10. e n d
11. e n d

Fig. 6. Parallel multi-attribute generalization algorithm

path through the DGG for each attribute, was assigned to each processor. For ex-
ample, given attribute A with three possible paths through its DGG, attribute
B with 4, and attribute C with 2, our approach creates 3 • 4 • 2 = 24 pro-
cesses. The Par_All_Gen algorithm, shown in Figure 6, creates parallel All_Gen
child processes on multiple processors (line 8). In Par_All_Gen, the function
Path_Count (line 3) determines the number of paths in DGG Di.

The initial call to Par_All_Gen is Par_All_Gen (R, 1, m, D, ~, Dnodes), where
R, 1, m, D, and Dnodes have the same meaning as in the serial algorithm, and

initializes Dpath~. Dpaths is a vector in which the i-th element is assigned a
unique path from Di.

The algorithm is described as follows. In the i-th call to Par_All_Gen, one
pass is made through the forloop (lines 3 to 10) for each distinct path in Di. The
current path, D~, is determined and saved in the k-th element of Dpaths (line
4), where D~ is the k-th path in Di. If the i-th call to Par_All_Gen is not also
the m-th call (line 5), then the i § 1-th call to Par_All_Gen is made (line 6). The
i-t- 1-th call to Par_All_Gen is Par_All_Gen (relation, i+ 1, m, D, Dpaths , Dnodes) ,

where the values for relation, m, D, and Dnodes do not change from the i-th
call. The second parameter is incremented by one. The fifth parameter, Dpaths,
was previously set to D~ (line 4). When the i + 1-th call returns control to the
i-th call (line 6), the next pass through the for loop begins (line 4).

In the m-th call to Par_All_Gen, an All_Gen child process is created (line 8).
The call to All_Gen is All_Gen (relation, 1, m, Dpath~, Dnodes), where relation,
m, and Dnode8 are unchanged from the values passed as parameters to the m-th
call to Par_All_Gem The second parameter, 1, is an identifier corresponding to
the first attribute. The fourth parameter, Dpath~, is a unique vector containing
m paths from Di (i.e., one from each DGG for the set of attributes). The All_Gen
child process then follows the serial algorithm described in the previous section.

4 E x p e r i m e n t a l R e s u l t s

We ran all of our experiments on a 64-node Alex AVX Series 2, a MIMD dis-
tributed memory parallel computer. Each inside-the-box compute node consists
of a T805 processor, with 8 MB of local memory, paired with an i860 processor,

32

with 32 MB of shared memory (the pair communicates through the shared mem-
ory). Each i860 processor runs at 40 MHz and each T805 processor runs at 20
MHz with a bandwidth of 20 Mbits/second of bi-directional data throughput on
each of its four links. The compute nodes run version 2.2.3 of the Alex-Trollius
operating system. The front-end host computer system is a Sun Sparc 20 with
32 MB of memory, running version 2.4 of the Solaris operating system.

The Parallel Multi-Attribute Generalization algorithm has been implemented
in C as an extension to DB-Discover, a software tool for knowledge discovery
from databases [1, 3, 4]. The parallel implementation functions as three types
of communicating modules: a slave program runs on an inside-the-box compute
node and executes the discovery tasks that it is assigned, the master program
assigns discovery tasks to the slave programs, and the bridge program coordinates
access between the slave programs and the database.

The parallel algorithm may generalize the same combination of nodes in
Dnodes on multiple processors. This can occur when a node in a DGG resides
on more than one path. To prevent this would require prior analysis of the
generalization state space or some form of communication and synchronization
between processors, introducing additional overhead. For these experiments, we
consider this redundant generalization to be tolerable because it only occurs in a
small percentage of the total number of states in the generalization state space.

Input data was from a large database supplied by a commercial partner in the
telecommunications industry. Queries read approximately 675,000 tuples from
three tables which contained a cumulative total of 28 attributes. Our experience
in applying data mining techniques to the databases of our commercial partners
has shown that domain experts typically perform discovery tasks on a few at-
tributes that have been determined to be relevant. Consequently, we present the
results for experiments where two and three attributes were selected for gener-
alization and the DGGs associated with the selected attributes contained from
three to seven unique paths. The characteristics of the DGGs associated with
each at tr ibute are shown in Table 1, where the No. of Paths column describes
the number of unique paths, the No. of Nodes column describes the number of
nodes, and the Avg. Path Length column describes the average path length.

From these experiments, we draw three main conclusions. First, as the com-
plexity of the DGGs associated with a set of attributes used in a discovery task
increases (either by adding more paths or more nodes to paths), the complex-
ity and traversal t ime of the generalization state space also increases. This was
expected based upon the complexity analysis given in Section 3.2. Second, as
the number of processors used in a discovery task increases, the t ime required to

T a b l e 1. Characteristics of the DGGs for three attributes
No. ojqNo, oj~Avg. Path

Attribute Paths INodes] Length

B 3 17 5.6
C 4 22 5.5

33

120,

100

80

6O

4O

2O

i

0
:~ 4 6 8 10 12 14 16 18 20 22

No. of processors

" L o ,

36:2 -4 - -
70:3 -4--.

550:10 - a
668:12 --x-,

1736:21 -.,=,-,-

;, ' , , ,
26 28 30

Fig. 7. Relative performance generalizing two attributes

3500�84

300O

2500 I

200O

1500

1000

50O

o

396:2 - ~
1694:8 -+---

3563:24 -t~-.
7996:54 ..~

12436:84 -~. -

\

. "~" " . x : .

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
NO. o! processors

Fig. 8. Relative performance generalizing three attributes

traverse the generalization state space decreases. And third, significant speedups
can be obtained using multiple processors. These results are shown in the graphs
of Figures 7 and 8, where the number of processors is plotted against execution
time. The legend for each curve in these graphs is of the form x:y, where z is the
number of nodes in the generalization state space and y is the number of unique
path combinations (i.e., the maximum number of processors).

In both experiments, we varied the number of paths through the DGGs for
each attribute in the discovery task and the number of processors assigned to the
discovery task. A maximum of 32 processors were available. The graphs show
that as the complexity of the generalization state space increases, the time re-
quired to traverse the generalization state space also increases. For example, in

34

T a b l e 2. Speedup results obtained using the parallel algorithm

Attributes No. o/ Nodes
Experiment Generalized in State Space

1 A,B 36
70

550
668

1736
2 A ,B ,C 396

1694
3553
7996

12436

No. of No. of Serial P zrallel
Sub- Tasks Pracessors Time Pime Speedup

2 2 7.74 4.16 1.9
3 3 12.48 4.59 2.7
10 10 51.06 6.60 7.7
12 12 57.86 5.72 10.1
21 21 115.44 6.60 17.5
2 2 89.32 47.15 1.9
12 12 380.18 42.13 9.0
24 24 867.87 44.92 19.3
54 32 1952.70 101.07 19.3
84 32 3037.55 131.86 23.0

Figure 7, showing the results of the two-attribute experiment, when running on
a single processor, the time to generalize varies from 7.74 seconds for a gener-
alization state space containing 36 nodes to 115.44 seconds for a generalization
state space containing 1736 nodes. The less complex discovery tasks could not
be parti t ioned usefully across 32 processors. For example, all the discovery tasks
in Figure 7 and three in Figure 8 used fewer than 32 processors.

The graphs also show that as the number of processors assigned to a dis-
covery task is increased, the time required to traverse the generalization state
space decreases. Increasing the number of processors divides the discovery task
into smaller discovery tasks (i.e., sub-tasks). For example, in Figure 8, showing
the results of the three-attribute experiment, the time to generalize in a gener-
alization state space containing 12436 nodes varies from 3037.55 seconds on one
processor to 131.86 seconds on 32 processors. Both of the largest discovery tasks
in Figure 8 used all 32 processors.

Speedups for the discovery tasks run in each experiment are shown in Ta-
ble 2, where the No. of Nodes in State Space column is the number of nodes in
the generalization state space, the No. of Sub-Tasks column is the number of
unique path combinations from the set of DGGs, the No. of Processors column
is the number of processors used, the Serial Time column is the time required
to run the discovery task on one processor, the Parallel Time column is the
time required on the actual number of processors used, and Speedup is the serial
t ime divided by the parallel time. Significant speedups were obtained when a
discovery task was run on multiple processors. For example, the speedups for
the largest generalization state spaces were 17.5 on 21 processors and 23.0 on 32
processors for the first and second experiments, respectively.

5 C o n c l u s i o n a n d F u t u r e W o r k

We presented the Parallel Multi-Attribute Generalization algorithm for parallel
attribute-oriented induction. The algorithm generates all possible generalized
relations from the DGGs associated with a set of attributes by partit ioning
path combinations from the DGGs across multiple processors. Increasing the

35

complexity of the DGGs associated with a set of at tr ibutes or increasing the
number of attr ibutes, increases the complexity of the generalization state space.
We showed tha t increasing the number of processors is effective for significantly
reducing the t ime required to traverse the generalization state space.

Future research will focus on ways to reduce the number of generalized rela-
tions generated. Prel iminary experiments have shown variance, the most com-
mon measure of variability used in statistics, to be a useful measure for compar-
ing the distribution defined by the structured tuples in a generalized relation to
tha t of a uniform distribution of the tuples. Heuristics which use the variance
can then be used to prune those of least "interest". For example, pruning all
generalized relations except the one with the highest variance from each sub-
task has been shown to be effective. A complementary heuristic, which measures
the complexity of generalized relations, can be used to break ties.

References

1. C. L. Carter and H. J. Hamilton. Efficient attribute-oriented algorithms for knowl-
edge discovery from large databases. To appear in IEEE Trans. on Knowledge and
Data Engineering.

2. C. L. Carter and H. J. Hamilton. Fast, incremental generalization and regeneral-
ization for knowledge discovery from databases. In Proceedings of the 8th Florida
Artificial Intelligence Symposium, pages 319-323, Melbourne, Florida, April 1995.

3. C. L. Carter and H. J. Hamilton. A fast, on-line generalization algorithm for
knowledge discovery. Applied Mathematics Letters, 8(2):5-11, 1995.

4. C. L. Carter and H. J. Hamilton. Performance evaluation of attribute-oriented
algorithms for knowledge discovery from databases. In Proceedings of the Seventh
IEEE International Conference on Tools with Artificial Intelligence (ICTAI'95),
pages 486-489, Washington, D.C., November 1995.

5. H. J. Hamilton, R. J. Hilderman, and N. Cercone. Attribute-oriented induction
using domain generalization graphs. In Proceedings of the Eighth IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI'96), pages 246-253,
Toulouse, France, November 1996.

6. H.J. Hamilton and D.F. Fudger. Measuring the potential for knowledge discovery
in databases with DBLearn. Computational Intelligence, 11(2):280-296, 1995.

7. J. Han. Towards efficient induction mechanisms in database systems. Theoretical
Computer Science, 133:361-385, October 1994.

8. J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: an attribute-
oriented approach. In Proceedings of the 18th International Conference on Very
Large Data Bases, pages 547-559, Vancouver, August 1992.

9. J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in
relational databases. IEEE Trans. on Knowledge and Data Engineering, 5(1):29-
40, February 1993.

10. H.-Y. Hwang and W.-C. Fu. Efficient algorithms for attribute-oriented induction.
In Proceedings of the 1st International Conference on Knowledge Discovery and
Data Mining (KDD-95), pages 168-173, Montreal, August 1995.

11. W. Pang, R.J. Hilderman, H.J. Hamilton, and S.D. Goodwin. Data mining with
concept generalization graphs. In Proceedings of the Ninth Annual Florida A I
Research Symposium, pages 390-394, Key West, Florida, May 1996.

