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Abstract 
Most knowledge discovery methods assume that the original representation space is adequate, 
that is, the initial attributes are sufficiently relevant to the problem at hand. In real-world 
applications discovery of new attributes and selection of relevant attributes are applied 
frequently in data pre-processing. In the paper we discuss rough set based approach to 
attribute discovery. We consider discovery of adequate attributes tbr structural objects. We 
present two algorithms for extracting new attributes. 

1 I N T R O D U C T I O N  

Knowledge discovery, data mining and machine learning are some of the Artificial 
Intelligence tools that help human to process data, and make use of data. Researchers 
and practitioners realize that in order to use these tools effectively, an important part 
is prc-processing in which data is processed before it is presented to any learning, 
discovering, or visualizing algorithm. Attribute transformation and attribute 
selection are applied frequently in data pre-processing for real-world applications. 
Attribute transformation is a process through which a new set of attributes is created. 
Assuming the original set A of attributes consists of at, a2, .... a~  some variants of 
attribute transformation can be defined below. 
Attribute transformation process can augment the space of attributes by inferring or 
creating additional attributes. After attribute construction, we may have additional m 
attributes a,+l, a,+2 ..... a,+m. For example, a new attribute ak (n < k _~ n + m) could 
be constructed by performing a logical operation of ai and ay from the original set of 
attributes. 
Attribute transformation process can also extract a set of new attributes from the 
original attributes through some functional mapping. After attribute extraction, we 
have b~, b2, .... bm (m < n), bi  = f ( a l ,  a2 ..... a~), and f is a mapping function. For 
instance for real valued attributes al and a2, for every object x we can define b~(x) = 

c l*a~(x )  + c2*a2(x) where cl and c2 are constants. 
Attribute selection is different from attribute transformation in that no new attributes 
will be generated, but only a subset of original attributes is selected and the attribute 
space is reduced. 
In machine learning, the idea of constructive induction has been proposed 
(Michalski 1983), (Michalski and Wnek 1993), (Matheus and Randell 1989), 
(Muggleton 1987), (Zhang and Lu 1994). A constructive induction system performs 



146 

a double, mutually intertwined search, one for the most suitable representation space, 
and second for the best concept description in this space. 
A structured object consists of a finite set of elementary objects and a finite set of 
relations between them. The elementary objects as well as the relations can be of 
different types. In this paper we assume that structured objects are comprised of 
elementary objects all being of the same type, which are treated as the elements of a 
universe of relational structure. In order to express discernibility between structured 
objects (relational structures), we use formulas of first order logic. Constructed 
formulas are treated as new binary attributes. 
In the paper we discuss rough set based approach (see for example (Pawlak 1991), 
(Slowinski 1992), (Ziarko 1994)) to attribute discovery problem. The relevance 
function (quality of a set of attributes) is based on cardinality of positive region, 
which is defined as union of lower approximations of all decision classes 
(Pawlak 1991). We also use some randomization test (Dtintsch and Gediga 1996) for 
evaluation of the final set of attributes. 
We present two examples of our approach. 
In the first example we discuss problem of employing rough sets and formulas of 
first order logic (Monk 1976) in automatic attribute discovery (Bazan et al. 1995), 
(Skowron and Stepaniuk 1991), (Skowron and Stepaniuk 1991a). We prove that 
discovery of attributes based on first-order logic is in some sense equivalent to graph 
isomorphism problem. We also present extraction of binary attribute, which is 
defined by formula of first order logic. We discuss an example application related to 
handwritten digits recognition. 
Second example is based on joining of some set of attributes, with finite (small) 
number of values into new attribute. 

2 B A S I C  C O N C E P T S  

Information systems (Pawlak 1991) (sometimes called data tables, attribute-value 
systems, condition-action tables, knowledge representation systems) are used for 
representing knowledge. Rough sets have been introduced as a tool to deal with 
inexact, uncertain or vague knowledge in artificial intelligence applications. In this 
section we recall some basic notions related to information systems and rough sets. 
An information system is a pair A = (U, A), where U is a non-empty, finite set called 
the universe and A - a non-empty, finite set of attributes, i.e. a: U ~ Va for acA,  
where Va is called the value set of a. Elements of U are called objects and 
interpreted as, for example, cases, states, processes, patients, observations. Attributes 
are interpreted as features, variables, characteristic conditions, etc. 
Every information system A = (U, A) and non-empty set B_cA determine a B- 

information function InfB ." U---~P(B• a ) defined by InfB(x) = {(a,a(x)) : a eB}. 
a e B  
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We define B - indiscernibility relation as follows: xlND(B)y ifflnfB(x)=InfB(y). 
For every subset X c U  we define the lower approximation LB(X) and the upper 
approximation UB~) as follows: 
LB~) = {x~U: [x]B c X}, 
uB(x) = {x eu:  [x]B,"cr r ~]. 
Some illustration of the approximations is presented on Figure 1 (a set U of all 
objects is represented as the global rectangle and B -  indiscernibility classes are 

represented as small rectangles). 
We consider a special case of information systems called decision tables. A decision 
table (Pawlak 1991) is any information system of the form A = (U, A ~ {d}), where 
d~_A is a distinguished attribute called decision. The elements of A are called 
conditions. One can interpret a decision attribute as a kind of classification of the 
universe of objects given by an expert, decision-maker, operator, physician, etc. The 
cardinality of the image d(U) = {k: d(x)=k for some x~U} is called the rank of d and 
is denoted by r(d). We assume that the set Va of values of the decision d is equal to 

{1 ..... r(d)}. Let us observe that the decision d determines the partition CLASSA(d)= 

{)[1 ... . .  Xr(d)} of the universe U, whereXk = {x ~U: d(x)=k} for INk _qr(d). CLASSA(d ) 
will be called the classification of  objects in A determined by the decision d. The set 
Xk is called the k-th decision class ofA.  The set POS(B, {d}) is called the positive 

region of classification CLASSA(d ) and is equal to the union of all lower 
approximations of decision classes. Some example of positive region is presented on 
Figure 2 (a set U of all objects is represented as the global rectangle, indiscernibility 
classes are represented as small rectangles, and there are three decision classes). 
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For evaluation of the new set of attributes we use randomization test (DSntsch and 

Gediga 1996). Here we only briefly describe some concepts of this approach. 
Let A = (U, A u {d}) be a decision table and let cr be a permutation of the set of 
objects U. We define new decision table A ~  (U, A ~ w {d}) such that A ~ = {a"." a �9 
A} and aa(x) = a(a(x)) for every object x~U. 
Let us consider coefficient 

p ( P O S  R > P O S ) -  { c r : c a r d ( P O S ( A ~  

- c a r d ( U ) !  
For example, if the cardinality of every indiscernibility class is equal to one (IND(A) 
= {(x,x): x~U}), then for every permutation we obtain positive region equal to 
POS(A,{d}) = U, hence p(POSR>_POS) = 1. In general, if the coefficient 
p(POSR>_POS) is low (conventionally less than 0.05) the assumption of randomness 
(random dependency between condition attributes A and decision attribute d) can be 
rejected. 
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3 S T R U C T U R A L  O B J E C T S  

In this section we formulate discernibility formula problem and prove that this 
problem is equivalent in polynomial time to graph isomorphism problem. We discuss 
some incremental algorithm for construction of suitable formulas. Next we discuss 
application of presented algorithm in searching for suitable attributes for 
handwritten digits recognition problem. 

3.1 DISCERNIBILITY FORMULA PROBLEM 
Relational structures provide the possibility to describe structural data in an 
appropriate way. In order to express discernibility between structured objects 
represented by relational structures we use formulas of first order logic. We prove 
that the discernibility formula problem is equivalent in polynomial time to graph 
isomorphism problem. 
Let us consider signature at = (=,P~ ..... Pt), where P~ ..... Pz are predicate symbols and 
1>0 is a given natural number. Let FOL(ot) be a set of all formulas of first order logic 
(Monk 1976) constructed over signature at. 

Discernibility Formula Problem 
Instance: Two f in i te  relational structures G = (V,,R~ ..... Rt) and H = (V'S1 ..... S~, 
where Vand V' are non-empty, finite sets and R~ . . . . .  R l and $1 ..... St are relations on V 
and V', respectively. 
Answer:  ,,Structures are indiscernible". Otherwise, formula a~FOL(a~) such that a 
is valid in G and is not valid in H. 
The graph isomorphism problem is formulated as follows (Leeuven 1990): 
Graph Isomorphism Problem 
Instance: Two graphs G'  and H" 
Answer:  ,,Yes" if there is an isomorphism. Otherwise ,,no". 

Theorem 3,1 The problem of searching for first order formulas distinguishing two 
finite relational structures is in polynomial time equivalent to the graph isomorphism 
problem. 
Sketch of the proof. The proof is divided into two steps. 
STEP 1. For two finite structures the following equivalence is valid: structures are 
isomorphic if and only if structures are elementary equivalent (Monk 1976). Ele- 
mentary equivalence means that every first order formula is true in first structure iff 
that formula is true in second one. Thus if two structures are isomorphic, then there 
is not first order formula which can distinguish one structure from another. On the 
other hand if two structures are not isomorphic, then one can construct in polynomial 
time first order formula which describes one structure and is not true in the second 
one. For example for structure presented on Figure 3 one can construct the following 
describing formula: -qxj3x23x3_3x4(Vx(x=xl v x=x2 v x=xs v x=x4) A (--~cl=x2 A 

" ' X  1 = X  3 A "'Of 1 : X  4 A "'OC2=X3 A ""d f2:X  4 A " 'X~=X4) A ( X ~ X  1 A x 4 N x  2 A X l S x  3 A x 2 a x  4 .,6 

xeWxt A x4Wx~ A xzExe A xsEx4 A P>es~(x4) ). 
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STEP 2. Problem of relational structures isomorphism is polynomial time reducible 
to graph isomorphism problem. For suitable construction of a graph from relational 
structure see (Miller 1979). 

3.2 ALGORITHM FOR CONSTRUCTION OF NEW ATTRIBUTES BASED 
ON FORMULAS OF FIRST-ORDER LOGIC 

In this section we sketch an algorithm of construction of formulas. 
ALGORITHM 
Input: a set Uof relational structures, decision d, parameter theta from the interval 
[o,u 
Output: a decision table (U, A..~ u {d}), such that card(POS(An,~,[d})) >_ 
theta*card(U). 

A,~w: = ~ / *  Initialize the set Anew of attributes as the empty set of attributes */ 
while card(POS(A,~w, {d})) < theta*card(U) do 
begin 
select two objects x,y e U such that d(x)c-d(y) and for all a 64,~w a(x)=a(y) 
construct attribute a,~w such that a,~(x)c-a,~(y) using formula of first order logic 
A.~w: = A,,~ ~{a,,w} 
end. 

For construction of formula we propose an algorithm based on an incremental 
approach. 
Suppose the elements of relational structure G are numbered from 1 to n (based on 
any reasonable scheme). At the kth level of the algorithm we always consider the 
substructure G(k) of G induced by the elements 1 through k and a substructure H' of 
H isomorphic to G(k). Essentially the algorithm now proceeds as follows, exploiting 
a call of the recursive procedure TEST which we describe informally. 

Procedure TEST(k,H'); 
begin 

if k=n then return true 
else 
begin 
b:=false; 
{consider all possible extensions of H' .., } 
while ~b and there is an unexplored element v~H' left do 
begin 

extend H' by v to obtain an induced structure H"; 
if the isomorphism between G(k) and H' can be extended to an isomorphism 

between G(k+l) and IT' 
then assign to b the value returned by TEST(k+I,IT') 

end 
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return b 
end 

end. 
The suitable formula is constructed if two structures are not isomorphic. 

m 

V1 E v2 

 Tls w N S 

E 

v3 W P>25o,~ v4 

Figure 3 

Experimental results based on randomization test show that obtained representation 
space is acceptable. 
Real world application of presented approach is discussed in the next section. 
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3.3 RELATIONAL STRUCTURES AND HANDWRITTEN DIGITS 
We present example of construction of relational structure from image of digit. 
Let us consider construction of relational structure presented on Figure 3. Let V = 
{vlv2,v~,v4} be the set of elementary objects. Relations are defined as follows: 
N = {(vs, vz),(v4,v2)}, S = {(vl, va),(ve, v4)}, W = {(v2,vz),(v,,v~)}, E = {(vl, vz),(v3,v4)}, 
P>es~ = {v4} where N is shortcut for north, S is shortcut for south, W is shortcut for 
west, etc. and P>es~ means that more than 25% of pixels is black (for example, in the 
part of the image corresponding to v4 there are six black pixels and 6/16 > 0.25). 
The constructed relational structure is some representation of digit's image. The 
problem of automatic construction of suitable relational structure from given image 
is very interesting. 
In paper (Bazan et al. 1995) was presented method of construction of attributes 
based on multi modal logic which corresponds to some fragment of first order logic. 
In our example each recognition system is based on a decision table that has the digit 
image database as its object space. The decision attribute contains information about 
the recognition results (expert decision) of the digits. At the beginning, all the digits 
in the table are totally indiscernible because the attribute set is empty. During the 
learning process the user will create new attributes for the object set and add them to 
the decision table. Each new attribute brings into the table new information that 
may divide existing boundary sets (Pawlak 1991) into smaller ones, which means the 
positive region is improved. Therefore, with the attributes being added to the 
decision table, the recognition of objects can become more accurate. The user will 
continue the process until the positive region is large enough. 
One of the most important stages in searching for the appropriate set of attributes 
contains the strategy for selecting the best attributes from those constructed in the 
previous steps. Rough set methods provide several approaches to this problem. One 
of them is based on the idea of reducts (Pawlak 1991) calculated from set of 
extracted attributes. 

4 D I S C O V E R Y  O F  N E W  A T T R I B U T E S  B A S E D  ON P O S I T I V E  

R E G I O N  

In this section we present method of attribute construction based on positive region 
concept. 
We present construction of one new attribute from some subset of old attributes. New 
attribute can have the same number of values as number of decision values. 
We use a parameter theta ~ [0,1], which is . maximal acceptable reduction of 
positive region. 

ALGORITHM 
Input: a decision table (U, A ~ {d}), a parameter  theta e [0,1], 
Output: a new decision table (U, Anew u {d}), such that card(A.cw) <_ card(A) and 
c a r d ( P O S ( A . ~  {d})) >_ theta*card(POS(A,  {d}). 
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Anew:=A/* Initialize the set Ane,~ of attributes as a set of primitive attributes */ 
while card(POS(A.~w, {d})) >_ theta*card(POS(A, {d}) and (there is ,,good" set C _c 
A.~) do 
begin 

for all equivalence classes E of indiscernibility relation IND(C) do 
begin 

for  i: =1 to r(d) do I~: =card(EfxY~)/card(x) 
for  all y ~E do 

an~(y) is equal toj  with the highest I~ i f  a tie occurs, then selectj such that 
card(X) is maximal; i f  another tie occurs, select the minimal j 

end 
A.~: = (A.~ -C)~{a.,~J 
end. 

Important part of this algorithm is selection of ,,good" subset C of attributes. Taking 
computational complexity in mind we decided to consider two element subsets of 
attributes. 

After some experiments, we decided to consider the following criteria based on 
positive region for choosing two attributes: 
1. The pair {al, a2}c_ A .~  of attributes such that card(POS(A.~-{az, ae},d)) is 

maximal. 
2. The attribute at e.,4.,~ such that card(POS(A.~w-{a~},d)) is maximal and attribute 

ae ~4.,~ such that card(POS((A.~-{al})-{a2},d)) is maximal 
3. The pair {a~, a2}_c A . .  of attributes such that card(POS(A.ew-{a~,a2},d)) is 

minimal. 
4. The attribute a~ e_A.,~ such that card(POS(A.~-{a~},d)) is minimal and attribute 

a2 ~__A.~ such that card(POS((A.~-{aJ)-{a2},d)) is minimal 

We use the following two criteria in evaluation of new decision table: 
�9 number of discovered attributes 
�9 result of randomization test. 
We observe that the best results are obtained when choosing at every set of the 
algorithm the pair {al, az] of attributes such that card(POS(A.ew-{al,az],d)) is 
minimal. In this case final set of attributes is relatively small and coefficient 
p(POSR>-POS) is low. 

For new objects, values of attributes from A.,~ are computed as follows: let Xne w be a 
new object, values of new attributes are the same as values for object x e U most 
similar to Xnow. 
Similarity between objects can be defined in many ways (Stepaniuk 1996). We 
consider the following operators: 
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�9 sim(x,y)=ris (a(x),a(y)) 
aEA 

�9 sim(x, Yl=mins~(a(x) ,a(y))  

�9 s im(x,y)= Ew~ where 0 _<'wo _ < l i s a  weight assigned to 
a EA 

attribute a, for example we use as Wa significance of attribute a (Pawlak 1991) i.e. 

card( POS( A,,+, {d} ) ) -  card( POS( A,,e, +, - {a }, {d})) 

w a : card(U) 
where sa is a similarity measure for values of attribute a e A. In the simplest case we 

( ) {10 i f  v~=vJ .Formoreadvancedsimilaritymeasures consider s~ vi,vj = otherwise 

see (Stepaniuk 1996). 
Thus for all a.~ e A ~  a.~(X.~w) = a(x), where sim(x~,x) = max{sim(x~.,y) : y 
u}. 

Conclusions 

This paper addressed issues of discovery of new attributes. Discovery is necessary 
when the original representation space (set of primitive attributes) is not adequate for 
a problem at hand. We use cardinality of positive region as measure of quality in 
attribute discovery process. We also consider some randomization test for evaluation 
of the final set of attributes. 
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