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A b s t r a c t .  Knowledge discovery from software engineering measurement 
data is an essential prerequisite for software quality improvement. Soft- 
ware measurement is increasingly recognized as a device to better under- 
stand, monitor, predict, and improve software development and mainte- 
nance projects. The paper describes the interaction between goal-oriented 
measurement and rough set based analysis in the context of experimental 
software engineering. The gained experiences are based on the applica- 
tion of rough set analysis in practical problems of software engineering. 

1 I n t r o d u c t i o n  

Discovery, representation and reuse of software engineering know-how are of in- 
creasing importance for improvement in software development. The Quality Im- 
provement Paradigm QIP [1] offers a general framework for performing system- 
atic quality improvement. Software measurement and analysis of measurement 
data from carefully designed experiments is an essential part therein. Measure- 
ment is introduced in software organizations to gain qualitative and quantitative 
insight into the development processes for producing better products. Software 
measurement is increasingly recognized as an essential prerequisite to better 
understand, monitor, predict, and improve software development and mainte- 
nance projects. The Goal/Question/Metric (GQM) approach [2],[3] represents a 
systematic approach for tailoring and integrating the objectives of an organiza- 
tion into a practical mechanism to attain measurable goals in combination with 
models of software processes, products and quality perspectives. 

Rough set theory [13] is a promising analysis approach which has been suc- 
cessfully applied in many real-life problems of various areas, e.g. medicine, phar- 
macology, business, and banking [16]. So far, not so much is known about appli- 
cations in software engineering. The objectives of the paper are (i) to overview 
experiences gained from application of rough set analysis in practical software 
measurement, (ii) to describe the interaction between goal-oriented measurement 
and rough set based analysis in the context of experimental software engineering, 
(iii) to give a formal description of the different kinds of application of rough 
sets for the analysis problem within goal-oriented measurement, and (iv) to eval- 
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uate rough set based analysis from the point of view of knowledge discovery in 
experimental software engineering. 

The remainder of this paper is organized as follows. Chapter two describes 
the experimental approach of software engineering and the crucial role of goal- 
oriented measurement therein. In chapter three, some background of rough sets 
is summarized. Subsequently, different forms of interaction between rough set 
based analysis and goal-oriented measurement are investigated. In chapter four 
we summarize some experiences gained from the application of rough set based 
analysis in the context of software measurement. The final chapter five is devoted 
to summary and conclusions. 

2 E x p e r i m e n t a l  S o f t w a r e  E n g i n e e r i n g  a n d  G o a l - O r i e n t e d  

M e a s u r e m e n t  

2.1 The  Qual i ty  I m p r o v e m e n t  Pa rad igm 

The Quality Improvement Paradigm (QIP) is a basic strategy for systematic 
improvement of well defined aspects of software quality. QIP is based on (i) an 
appropriate characterization of the environment which provides a context for 
goal definition and (ii) systematic reuse of obtained experiences by packaging 
them in structured knowledge. The improvement process due to QIP is defined 
as an iterative process that repeatedly performs the following six steps [1]: 

1. Character ize :  Understand the environment based upon available models, 
data, intuition, etc. Establish baselines for the existing business processes in the 
organization and characterize their criticality. This characterization is based on 
implicit knowledge or on already available data. 

2. Set goals: On the basis of the initial characterization of the capabilities 
that have the strategic relevance to the organization, set quantifiable goals for 
successful project and organization performance and improvement. Reasonable 
expectations are defined based upon the baseline provided by the characteriza- 
tion step. 

3. Choose  process:  On the basis of the characterization of the environ- 
ment and of the goals that have been set, choose the appropriate processes for 
achieving that goal. This includes selection of supporting methods and tools and 
making sure that they are consistent with the formulated goals. 

4. Execute: Perform the processes constructing the products. Provide feed- 
back based upon the data that are being collected. 

5. Analyze: At the end of each specific project, analyze the data and the in- 
formation gathered to evaluate the current practices, determine problems, record 
findings, and make recommendations for future project improvements. 

6. Package: Consolidate the experience gained in the form of new, or up- 
dated and refined models and other forms of structured knowledge gained from 
this and prior projects, and store it in an experience base so it is available for 
future projects. 
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2.2 Goal-Oriented Software Measurement 

The current state-of-the practice in software measurement is characterized in 
[14]. While measurement is considered more and more to be an essential back- 
ground for decision making [17], efficiency of measurement (defined by the num- 
ber of insights gained from analyzed data related to measurement effort) needs 
to be improved. Goal-oriented measurement based on the GQM approach was 
successfully applied in numerous organizations (compare [5], [9], [11]). GQM 
supports the operational definition of all kinds of measurement goals due to the 
top-down refinement of goals into metrics via questions. It emphasizes the neces- 
sity of collecting context data thereby integrating all essential influence factors. 
The result of the application of the GQM approach is the specification and im- 
plementation of a measurement program for a particular set of issues and a set 
of guidelines how to interpret the measurement data in the context of the goal. 
For both objectives, the inclusion of the project team members is a basic prin- 
ciple. Their knowledge and their view of the underlying software processes and 
products are captured by performing structured interviews and by interpreting 
measurement results during feedback sessions. 

There are different analysis approaches which are applied in the different 
areas and disciplines of science. Analysis of software engineering data has some 
additional difficulties resulting from the combination of the following character- 
istics of software development: 

�9 Software development is a human based technology, 
�9 it has a large number of influence factors (human, process, problem, product, 

and resource related), 
�9 the development process is very dynamic, 
�9 the requirements of the final product are often changing, 
�9 available data sets are often of small size, and 
�9 available data are often incomplete and uncertain. 

In what follows, we will investigate how rough set based analysis can con- 
tribute to knowledge discovery from experimental software engineering data. 

3 R o u g h  S e t  B a s e d  A n a l y s i s  i n  t h e  C o n t e x t  o f  

G o a l - O r i e n t e d  S o f t w a r e  M e a s u r e m e n t  

3.1 Br ie f  Overview on R o u g h  Sets 

We use basic concepts and notation of rough sets as introduced in [13]. We 
assume a data representation called decision table. Rows of this table correspond 
to (software) objects and columns correspond to attributes. For each pair (object, 
attribute) there is a known value called a descriptor. We summarize all these 
data in the notation of an in]ormation system which is formally defined as a 
4-tnple S =<  U, Q, V, f > where 

�9 U is a finite set of objects, 
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�9 Q is a finite set of attributes resp. metrics, 
�9 Vq is a domain of the attribute q, 
�9 V = UqeQ Vq, and 
�9 f : U x Q - ~ V w i t h  f ( x ,q ) �9  V q � 9  Vx�9 

function. 

Let S = <  U, Q, V, f > be an information system and let P C__ Q and x,y �9 U 
be two objects of U. x and y are called indiscernible by the set of attributes P 
iff f(x, q) = f(y, q) Vq �9 P. Every P C_ Q generates a binary relation on U 
called indiscernibility relation denoted by IND(P). IND(P) is an equivalence 
relation for any P and the family of all equivalence classes of this relation is 
denoted by U [ [ND(P) or U I P.  Equivalence classes of relation IND(P) are 
called P-elementary sets in S. 

Desp(X) denotes a description of P-elementary set X �9 U [ IND(P) in 
terms of values of attributes from P, i.e., 

Desp(X) = {(q,v):  f(x,q) = v Yx �9 X Vq �9 P}. (1) 

Indiscernibility of objects by means of attributes prevents their precise as- 
signment to a set. A rough set is a set of objects which, in general, cannot be 
precisely characterized in terms of the values of the set of attributes, while a 
pair of a lower and an upper approximation of the collection can do. Assume 
an information system S, a subset Y C_ U of objects and an equivalence relation 
IND(P) for a subset of attributes P C_ Q. Then 

P---Y = U {X e U [ IND(P) : X C_ Y} (2) 

is called P-lower approximation of Y. Correspondingly, 

- P Y = U  {X � 9  X n Y ~ : 0 }  (3) 

is called P-upper approximation of Y. An information system may be seen as 
a decision table D T  assuming that  Q = C u D  with CN:D = 0, where C is a set of 
condition attributes (related to independent variables), and :D, a set of decision 
attributes (related to independent variables). Let U [ IND(C) be a family of all 
C-elementary sets called condition classes in DT, denoted by X~ (i = 1 , . . . ,  k). 
Let, moreover, U ] IND(D) be a family of all D-elementary sets called decision 
classes in :DT, denoted by Yj (j = 1 , . . . , n ) .  

{Desc(Xi) ~ Des~(Yj) : Xi N Yj # @} (4) 

is called (C,D)-decision rule {rij) Vi,j. Rule rij is deterministic in DT iff 
Xi C_ Yj, and non-deterministic otherwise. The (absolute) strength of a rule rij 
related to a given set of objects is defined as the number of objects matching 
that  rule and is denoted by Strength(rij). The relative strength of a rule rij is 
defined as the ratio between (absolute) strength and the cardinality of decision 
class Yj. 

RelStrength(rij) = Strength(r~j)/card(Yj) Vi,j. (5) 
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3.2 Analysis  Problems  related to Goal-Oriented Measurement  

We consider four analysis problems which are related to GQM-based measure- 
ment: 

1. Attr ibute  evaluation is devoted to evaluate the importance of particular 
attr ibutes and to determine minimal subsets of attributes which are able to 
classify all the objects with the same quality as in the case of using all attributes. 
Evaluation of attributes includes elimination of redundant attributes from the 
decision tables. 

2. Rule generation aims in describing knowledge discovered in performed 
experiments. The rules involve the relevant attributes only and explain the taken 
classification with respect to quality aspects. There can be used different options 
for computing the rules. 

3. C las s i f i ca t ion  assumes that  there is a set of rules which is based on 
performed experiments. The question is to apply the existing rules for classifica- 
tion of new software objects which are measured in the same way as the former 
objects. Accuracy of prediction clearly depends on size and quality of the data. 

4. E x p e r i e n c e  base update  considers the update of the set of generated 
rules in the case that  new objects have been measured or integration of rule sets 
form different (comparable) experiments is intended. 

3.3 Contributions to Goal-Oriented Measurement  

Feedback sessions are organized meetings integrating members of the project  
and the measurement team [9]. The main objective of feedback sessions is to 
discuss the results of the measurement program and to derive interpretations 
by the project team from the data  collected so far. Rough set based analysis 
results are used as an essential input for performing interactive interpretation 
of measurement programs. The idea here is to support human decision making 
and to facilitate integration of human expert knowledge with knowledge derived 
by formal method based on experimental data. In accordance to the introduced 
analysis problems, the following contributions are of importance: 

1. Attr ibute  evaluation 

�9 Core attributes give an indication on the most important  influence factors 
in a measurement program. 

�9 Redundant  attributes are serious candidates to be eliminated in subsequent 
measurements. 

2. Rule  generation 

�9 Deterministic and non-deterministic rules derived from formal rough set 
analysis are an essential input for feedback sessions. There are four prin- 
cipal cases which my occur with respect to their relationship to established 
hypotheses: 

- Confirmation of hypotheses, 
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- refinement of hypotheses, 
- rejection of hypotheses, 
- formulation of new hypotheses. 

�9 The validity of underlying models and even of collected data has to be in- 
vestigated again in the case on inconsistencies and in case of experiences 
completely contradicting the hypotheses. From performed rough set analysis 
can be derived suggestions for updates of the underlying measurement pro- 
gram. This concerns elimination of attributes on the one side and addition 
of new attributes on the other side. 

�9 Rough set based rules have been used as foundation for integration of human 
based expert knowledge with the rules formally derived from experimental 
analysis. Final rules gained from this integration can be used as decision 
support in subsequent projects when having similar characteristics. 

3. Classification 

�9 Rules offer explanation why certain concepts, decisions or phenomena oc- 
curred. This guides subsequent improvement actions. 

�9 Forecast of product and process characteristics such as cost, effort, duration, 
or quality can be performed. 

4. Exper ience  base upda te  

�9 Rough set analysis is applied from scratch for the new (enlarged) set of 
objects. However, there is a strong sensitivity between data and resulting 
rules. 

�9 Integration of different rule sets related to similar objects [12]. 

4 E v a l u a t i o n  o f  t h e  R o u g h  S e t  A p p r o a c h  f r o m  a n  

A p p l i c a t i o n s  P o i n t  o f  V i e w  

4.1 Evaluat ion  Background 

We summarize some experiences gained from the application of rough set based 
analysis in the context of goal oriented software measurement. We performed a 
series of computations [6], [8], [10], and [15]. In all of them we used the system 
ProFIT [18] developed at Poznan University of Technology. We studied different 
practical problems from an experimental software engineering point of view: 

1. Determination of essential cost drivers in software projects [15] based on the 
COCOMO model introduced originally in [4]. 

2. Module criticality in the context of software maintenance [10]. 
3. Product and process related flexibility in software development [8]. 
4. Goal-oriented measurement based evaluation of configuration management 

[6]. 

We discuss here some results and experiences gained from application of 
rough set analysis within these measurement programs. 
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4.2 D e t e r m i n a t i o n  of  Essent ia l  Cost  Dr ivers  in Sof tware  P r o j e c t s  

The COnstructive COst MOdel to predict effort or cost of software projects 
was introduced in [4]. We enhance the original approach by performing rough 
set analysis. The objective is to determine the most essential cost drivers, their 
preference relation and an explanation how they interact. For that reason, we 
exploit the original COCOMO data base as used by Boehm. It contains data 
from 63 completed projects with 23 condition and two decision attributes. Some 
data were already based on nominal or ordinal scale. All remaining ones were 
discretized. Among condition attributes we considered: 

- Primary programming language used (LANG), 
- COCOMO adaption adjustment factor (AAF), 
- type of computer used (TYPE), 
- application experience (AEXP), 
- analyst capability (ACAP), 
- programmer capability (PCAP), 
- virtual machine experience (VEXP), and 
- use of modern programming practices (MODP). 

The two decision attributes were 

- Kilo delivered source instructions (KDSI), and 
- actual man-month required for the project (MM). 

We have made a ranking of cost drivers according to their number of occur- 
rences related to all rules obtained from the chosen reduct. Using ~ ~-~ for order 
relation between cost drivers with ~A ~- B ~ for 'A is a stronger cost driver than 
B' yields in 

T Y P E  >- AAF ~ ACAP ~ V E X P  ~- {MODP, PCAP} ~- {AEXP, LANG}. 

4.3 M o d u l e  C r i t i c a l i t y  i n  the  Con t ex t  of  Sof tware  M a i n t e n a n c e  

In [10], rough set based analysis was compared with logistic regression to inves- 
tigate faultiness of more than hundred modules in the context of software main- 
tenance. The following two activities have been carried out during the transition 
from two versions of a software product: 

�9 Corrective maintenance: failures reported from customers were being fixed. 
�9 Adaptive maintenance: The product was being transferred from platform 

OpenVMS/VAX (version 6.0) to platform OpenVMS/Alpha (version 6.1). 

Among others, accuracy of prediction was compared with respect to three 
criteria: 

1. Overall correctness: Proportion of modules that have been classified cor- 
rectly. 

2. Faulty module completeness: Proportion of faulty modules that have been 
classified as faulty. 
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3. Faulty module correctness: Proportion of modules that have been classified 
as faulty and were faulty indeed. 

For all classes of examples, rough set based analysis performed better with 
respect to overall correctness and faulty module correctness. On the other side, 
logistic regression based analysis produced better results with respect to faulty 
module completeness. Overall, the two techniques look supplementary, in that 
logistic regression performs better with respect to faulty module completeness, 
while rough set analysis is better with respect to overall completeness and faulty 
module correctness. 

In [10] a hybrid approach was proposed for integrating the strengths of rough 
set and logistic regression based analysis. Let 14 be the set of all modules. We de- 
note by LR[14] (RS[14]) the application of logistic regression (respectively rough 
set analysis) on set 14. This results in classification of modules into faulty and 
non-faulty ones respectively in classification rules T/ns (A4). This is described in 
steps (i) and (ii), respectively. The application of (rough set) classification rules 
7%ns(14) on a new set T is denoted by 7Zns(14) o [7-] as performed in step 
(iii). Finally, the set of faulty 142-" and the set of non-faulty modules A/INS" is 
obtained in step (iv). 

Hybrid approach H 

(i) L/~[./~] :::} .A45['1 (~ ./~J~.jc2 
(ii) RS[J~4] ~ 74ns(~r 

(iii) 74Rs(A/[) O [.A/liE1] ::~ .A/~,~F3 O .A~./~f.~4 
(iV) j~JY :---- MJY3, .A/[j~f.~ :: .A/ij~f~Y 2 O .A/[j~fj~4 

For validation purposes, we suggested two heuristics to classify those modules 
that do not match a deterministic rule in the rough set approach: 

H1 Modules matching a non-deterministic rule are classified in accordance to 
that conclusion which is supported by the maximum number of modules 
related to J~4 (and thus is more likely to occur). The related approach is 
denoted by LR*RS. 

H2 Modules matching a non-deterministic rule are classified as faulty. The re- 
lated approach is denoted by LR&RS. 

We compare quality of classification from logistic regression, rough sets, and 
the two hybrid approaches with respect to the three parameters described above. 
The results obtained from performing leaving-one-test are given in Table 1. We 
observe that the hybrid approach performs better than both LR and RS. There 
are small differences between the application of the two heuristics, where the 
first is more general. 

4.4 P r o d u c t  and Process  Related Flexibility in Software 
Deve lopmen t  

There is an increasing interest in understanding and subsequently improving 
flexibility in software development [7]. Flexibility can be roughly understood as 
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Par eter I LRI RS ILR*RSlL  RSl 
Overall completeness 70.8% 93.85% 96.9% 96.1% 
Faulty module completeness 94.1% 45.4% 81.2% 90.9% 
Faulty module correctness 21.3% 71.4% 81.2% 71.4% 

Table 1. Comparison of classification results 

the relationship between generated functionality of products and the required 
effort for achieving this. The motivation for studying flexibility is the strong 
request to reduce time to market while fulfilling given resource constraints. The 
following main attributes were studied in [8] to describe influence factors on 
flexibility: 

�9 Number of involved technical units, 
�9 number of involved IT units, 
�9 degree of usage of external product data base, 
�9 degree of usage of external table, 
�9 number of modified modules in the subsystem, 
�9 degree of reuse of existing components, 
�9 degree of openess for extension, 
�9 usage of standard test cases, 
�9 degree of redesign, 
�9 amount of modifications due to technical requirements, and 
�9 completeness of technical requirements before project start. 

There were performed different computations based on (i) different discretiza- 
tions, (ii) different algorithms (LEM2 and an all rules procedure), (iii) differ- 
ent da ta  sets, and (iv) usage of priorities. We describe here classification re- 
sults for the leaving-one-out test based on real-world data  related to 34 ob- 
jects/subsystems. The decision attribute (flexibility) had four (ordinal-scaled) 
values. Most of the attributes were given related to nominal or ordinal scale. 
For the remaining ones, discretization was done by domain experts. With re- 
spect to the 'All rules' option offered by ProFIT we introduced the additional 
constraint that  only rules fulfilling a predefined level a of relative strength are 
considered. In our case we have chosen a = 1/3, i.e., only rules with relative 
strength at least 1/3 were taken into account. In Table 2 we report  classifica- 
tion results based on leaving-one-out test obtained from the application of three 
approaches to the same data  set. Non-deterministic correct (incorrect) classifi- 
cation means the percentage of objects for which more classes were found and 
the correct class is among (not among) them. The 'Modified all rules' approach 
generated 22 rules of relative strength greater than or equal to a. Among the 
three approaches, 'Modified all rules' performed best with respect to correctness 
of classification. 
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Algorithm 
Correct classification 
Non-deterministic correct 
Not classified 
Non-deterministic incorrect 
Wrong classification 

Modified all rules I LEM2 ILEM2 with priorities 
50% 35.3 % 50% 

14.7 % 2.9 % 5.9 % 
11.8 % 29.4 % 2.9 % 
5.9 % 0 % 5.9 % 
17.6 % 32.4 % 35.3 % 

Table 2. Classification results based on leaving-one-out test. 

5 S u m m a r y  a n d  C o n c l u s i o n s  

We have shown that rough set based analysis offers a set of important insights for 
improvement in software engineering development. Typically, the concluded rules 
can be used for making predictions on future behavior in software development. 
Thus, they are a crucial contribution for learning in an experience factory envi- 
ronment [1]. Moreover, the operational rules can be used as decision support for 
monitoring and controlling ongoing development activities. Finally, from careful 
analysis of measurement data, inconsistencies in modeling and in the collected 
data can be detected. This leads to better and more accurate models underly- 
ing future investigations. On the other side, goal-oriented measurement delivers 
considerable support in finding out those attributes which are offering the best 
chance for knowledge discovery. 

There is a number of open research problems which should be studied to en- 
large the scope of applications. Among them is the question how to apply rough 
set analysis in the case of varying sets of attributes within one set of objects. 
Another questions is related to how to derive the rules. Rough set based analysis 
exclusively takes into account the values of the investigated attributes. At least 
three extensions are motivated by practical applications: (i) To define some for- 
malism for interaction with expert knowledge, (ii) to allow also formulation of 
rules which are true with a predetermined level of confidence, and (iii) to develop 
rule sets which are stable in case of additional data and experiments. 

From the software engineering application point of view, different approaches 
should be taken into account for analyzing measurement related data. This has 
the obvious advantage of producing broader and/or more confident conclusions 
from experimental data. For the application of these different approaches, the 
underlying assumptions and their evaluated strengths and weaknesses are of 
great importance. Rough set based analysis with its weak assumptions plays a 
prominent role therein. 
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