
Knowledge Discovery from Software Engineering
Data: Rough Set Analysis and Its Interaction

with Goal-Oriented Measurement

Giinther Ruhe

Fraunhofer Gesellschaft
Institute for Experimental Software Engineering

D-67661 Kaiserslautern

A b s t r a c t . Knowledge discovery from software engineering measurement
data is an essential prerequisite for software quality improvement. Soft-
ware measurement is increasingly recognized as a device to better under-
stand, monitor, predict, and improve software development and mainte-
nance projects. The paper describes the interaction between goal-oriented
measurement and rough set based analysis in the context of experimental
software engineering. The gained experiences are based on the applica-
tion of rough set analysis in practical problems of software engineering.

1 I n t r o d u c t i o n

Discovery, representation and reuse of software engineering know-how are of in-
creasing importance for improvement in software development. The Quality Im-
provement Paradigm QIP [1] offers a general framework for performing system-
atic quality improvement. Software measurement and analysis of measurement
data from carefully designed experiments is an essential part therein. Measure-
ment is introduced in software organizations to gain qualitative and quantitative
insight into the development processes for producing better products. Software
measurement is increasingly recognized as an essential prerequisite to better
understand, monitor, predict, and improve software development and mainte-
nance projects. The Goal/Question/Metric (GQM) approach [2],[3] represents a
systematic approach for tailoring and integrating the objectives of an organiza-
tion into a practical mechanism to attain measurable goals in combination with
models of software processes, products and quality perspectives.

Rough set theory [13] is a promising analysis approach which has been suc-
cessfully applied in many real-life problems of various areas, e.g. medicine, phar-
macology, business, and banking [16]. So far, not so much is known about appli-
cations in software engineering. The objectives of the paper are (i) to overview
experiences gained from application of rough set analysis in practical software
measurement, (ii) to describe the interaction between goal-oriented measurement
and rough set based analysis in the context of experimental software engineering,
(iii) to give a formal description of the different kinds of application of rough
sets for the analysis problem within goal-oriented measurement, and (iv) to eval-

168

uate rough set based analysis from the point of view of knowledge discovery in
experimental software engineering.

The remainder of this paper is organized as follows. Chapter two describes
the experimental approach of software engineering and the crucial role of goal-
oriented measurement therein. In chapter three, some background of rough sets
is summarized. Subsequently, different forms of interaction between rough set
based analysis and goal-oriented measurement are investigated. In chapter four
we summarize some experiences gained from the application of rough set based
analysis in the context of software measurement. The final chapter five is devoted
to summary and conclusions.

2 E x p e r i m e n t a l S o f t w a r e E n g i n e e r i n g a n d G o a l - O r i e n t e d

M e a s u r e m e n t

2.1 The Qual i ty I m p r o v e m e n t Pa rad igm

The Quality Improvement Paradigm (QIP) is a basic strategy for systematic
improvement of well defined aspects of software quality. QIP is based on (i) an
appropriate characterization of the environment which provides a context for
goal definition and (ii) systematic reuse of obtained experiences by packaging
them in structured knowledge. The improvement process due to QIP is defined
as an iterative process that repeatedly performs the following six steps [1]:

1. Character ize : Understand the environment based upon available models,
data, intuition, etc. Establish baselines for the existing business processes in the
organization and characterize their criticality. This characterization is based on
implicit knowledge or on already available data.

2. Set goals: On the basis of the initial characterization of the capabilities
that have the strategic relevance to the organization, set quantifiable goals for
successful project and organization performance and improvement. Reasonable
expectations are defined based upon the baseline provided by the characteriza-
tion step.

3. Choose process: On the basis of the characterization of the environ-
ment and of the goals that have been set, choose the appropriate processes for
achieving that goal. This includes selection of supporting methods and tools and
making sure that they are consistent with the formulated goals.

4. Execute: Perform the processes constructing the products. Provide feed-
back based upon the data that are being collected.

5. Analyze: At the end of each specific project, analyze the data and the in-
formation gathered to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

6. Package: Consolidate the experience gained in the form of new, or up-
dated and refined models and other forms of structured knowledge gained from
this and prior projects, and store it in an experience base so it is available for
future projects.

169

2.2 Goal-Oriented Software Measurement

The current state-of-the practice in software measurement is characterized in
[14]. While measurement is considered more and more to be an essential back-
ground for decision making [17], efficiency of measurement (defined by the num-
ber of insights gained from analyzed data related to measurement effort) needs
to be improved. Goal-oriented measurement based on the GQM approach was
successfully applied in numerous organizations (compare [5], [9], [11]). GQM
supports the operational definition of all kinds of measurement goals due to the
top-down refinement of goals into metrics via questions. It emphasizes the neces-
sity of collecting context data thereby integrating all essential influence factors.
The result of the application of the GQM approach is the specification and im-
plementation of a measurement program for a particular set of issues and a set
of guidelines how to interpret the measurement data in the context of the goal.
For both objectives, the inclusion of the project team members is a basic prin-
ciple. Their knowledge and their view of the underlying software processes and
products are captured by performing structured interviews and by interpreting
measurement results during feedback sessions.

There are different analysis approaches which are applied in the different
areas and disciplines of science. Analysis of software engineering data has some
additional difficulties resulting from the combination of the following character-
istics of software development:

�9 Software development is a human based technology,
�9 it has a large number of influence factors (human, process, problem, product,

and resource related),
�9 the development process is very dynamic,
�9 the requirements of the final product are often changing,
�9 available data sets are often of small size, and
�9 available data are often incomplete and uncertain.

In what follows, we will investigate how rough set based analysis can con-
tribute to knowledge discovery from experimental software engineering data.

3 R o u g h S e t B a s e d A n a l y s i s i n t h e C o n t e x t o f

G o a l - O r i e n t e d S o f t w a r e M e a s u r e m e n t

3.1 Br ie f Overview on R o u g h Sets

We use basic concepts and notation of rough sets as introduced in [13]. We
assume a data representation called decision table. Rows of this table correspond
to (software) objects and columns correspond to attributes. For each pair (object,
attribute) there is a known value called a descriptor. We summarize all these
data in the notation of an in]ormation system which is formally defined as a
4-tnple S =< U, Q, V, f > where

�9 U is a finite set of objects,

170

�9 Q is a finite set of attributes resp. metrics,
�9 Vq is a domain of the attribute q,
�9 V = UqeQ Vq, and
�9 f : U x Q - ~ V w i t h f (x ,q) �9 V q � 9 Vx�9

function.

Let S = < U, Q, V, f > be an information system and let P C__ Q and x,y �9 U
be two objects of U. x and y are called indiscernible by the set of attributes P
iff f(x, q) = f(y, q) Vq �9 P. Every P C_ Q generates a binary relation on U
called indiscernibility relation denoted by IND(P). IND(P) is an equivalence
relation for any P and the family of all equivalence classes of this relation is
denoted by U [[ND(P) or U I P. Equivalence classes of relation IND(P) are
called P-elementary sets in S.

Desp(X) denotes a description of P-elementary set X �9 U [IND(P) in
terms of values of attributes from P, i.e.,

Desp(X) = {(q,v): f(x,q) = v Yx �9 X Vq �9 P}. (1)

Indiscernibility of objects by means of attributes prevents their precise as-
signment to a set. A rough set is a set of objects which, in general, cannot be
precisely characterized in terms of the values of the set of attributes, while a
pair of a lower and an upper approximation of the collection can do. Assume
an information system S, a subset Y C_ U of objects and an equivalence relation
IND(P) for a subset of attributes P C_ Q. Then

P---Y = U {X e U [IND(P) : X C_ Y} (2)

is called P-lower approximation of Y. Correspondingly,

- P Y = U {X � 9 X n Y ~ : 0 } (3)

is called P-upper approximation of Y. An information system may be seen as
a decision table D T assuming that Q = C u D with CN:D = 0, where C is a set of
condition attributes (related to independent variables), and :D, a set of decision
attributes (related to independent variables). Let U [IND(C) be a family of all
C-elementary sets called condition classes in DT, denoted by X~ (i = 1 , . . . , k).
Let, moreover, U] IND(D) be a family of all D-elementary sets called decision
classes in :DT, denoted by Yj (j = 1 , . . . , n) .

{Desc(Xi) ~ Des~(Yj) : Xi N Yj # @} (4)

is called (C,D)-decision rule {rij) Vi,j. Rule rij is deterministic in DT iff
Xi C_ Yj, and non-deterministic otherwise. The (absolute) strength of a rule rij
related to a given set of objects is defined as the number of objects matching
that rule and is denoted by Strength(rij). The relative strength of a rule rij is
defined as the ratio between (absolute) strength and the cardinality of decision
class Yj.

RelStrength(rij) = Strength(r~j)/card(Yj) Vi,j. (5)

171

3.2 Analysis Problems related to Goal-Oriented Measurement

We consider four analysis problems which are related to GQM-based measure-
ment:

1. Attr ibute evaluation is devoted to evaluate the importance of particular
attr ibutes and to determine minimal subsets of attributes which are able to
classify all the objects with the same quality as in the case of using all attributes.
Evaluation of attributes includes elimination of redundant attributes from the
decision tables.

2. Rule generation aims in describing knowledge discovered in performed
experiments. The rules involve the relevant attributes only and explain the taken
classification with respect to quality aspects. There can be used different options
for computing the rules.

3. C las s i f i ca t ion assumes that there is a set of rules which is based on
performed experiments. The question is to apply the existing rules for classifica-
tion of new software objects which are measured in the same way as the former
objects. Accuracy of prediction clearly depends on size and quality of the data.

4. E x p e r i e n c e base update considers the update of the set of generated
rules in the case that new objects have been measured or integration of rule sets
form different (comparable) experiments is intended.

3.3 Contributions to Goal-Oriented Measurement

Feedback sessions are organized meetings integrating members of the project
and the measurement team [9]. The main objective of feedback sessions is to
discuss the results of the measurement program and to derive interpretations
by the project team from the data collected so far. Rough set based analysis
results are used as an essential input for performing interactive interpretation
of measurement programs. The idea here is to support human decision making
and to facilitate integration of human expert knowledge with knowledge derived
by formal method based on experimental data. In accordance to the introduced
analysis problems, the following contributions are of importance:

1. Attr ibute evaluation

�9 Core attributes give an indication on the most important influence factors
in a measurement program.

�9 Redundant attributes are serious candidates to be eliminated in subsequent
measurements.

2. Rule generation

�9 Deterministic and non-deterministic rules derived from formal rough set
analysis are an essential input for feedback sessions. There are four prin-
cipal cases which my occur with respect to their relationship to established
hypotheses:

- Confirmation of hypotheses,

172

- refinement of hypotheses,
- rejection of hypotheses,
- formulation of new hypotheses.

�9 The validity of underlying models and even of collected data has to be in-
vestigated again in the case on inconsistencies and in case of experiences
completely contradicting the hypotheses. From performed rough set analysis
can be derived suggestions for updates of the underlying measurement pro-
gram. This concerns elimination of attributes on the one side and addition
of new attributes on the other side.

�9 Rough set based rules have been used as foundation for integration of human
based expert knowledge with the rules formally derived from experimental
analysis. Final rules gained from this integration can be used as decision
support in subsequent projects when having similar characteristics.

3. Classification

�9 Rules offer explanation why certain concepts, decisions or phenomena oc-
curred. This guides subsequent improvement actions.

�9 Forecast of product and process characteristics such as cost, effort, duration,
or quality can be performed.

4. Exper ience base upda te

�9 Rough set analysis is applied from scratch for the new (enlarged) set of
objects. However, there is a strong sensitivity between data and resulting
rules.

�9 Integration of different rule sets related to similar objects [12].

4 E v a l u a t i o n o f t h e R o u g h S e t A p p r o a c h f r o m a n

A p p l i c a t i o n s P o i n t o f V i e w

4.1 Evaluat ion Background

We summarize some experiences gained from the application of rough set based
analysis in the context of goal oriented software measurement. We performed a
series of computations [6], [8], [10], and [15]. In all of them we used the system
ProFIT [18] developed at Poznan University of Technology. We studied different
practical problems from an experimental software engineering point of view:

1. Determination of essential cost drivers in software projects [15] based on the
COCOMO model introduced originally in [4].

2. Module criticality in the context of software maintenance [10].
3. Product and process related flexibility in software development [8].
4. Goal-oriented measurement based evaluation of configuration management

[6].

We discuss here some results and experiences gained from application of
rough set analysis within these measurement programs.

173

4.2 D e t e r m i n a t i o n of Essent ia l Cost Dr ivers in Sof tware P r o j e c t s

The COnstructive COst MOdel to predict effort or cost of software projects
was introduced in [4]. We enhance the original approach by performing rough
set analysis. The objective is to determine the most essential cost drivers, their
preference relation and an explanation how they interact. For that reason, we
exploit the original COCOMO data base as used by Boehm. It contains data
from 63 completed projects with 23 condition and two decision attributes. Some
data were already based on nominal or ordinal scale. All remaining ones were
discretized. Among condition attributes we considered:

- Primary programming language used (LANG),
- COCOMO adaption adjustment factor (AAF),
- type of computer used (TYPE),
- application experience (AEXP),
- analyst capability (ACAP),
- programmer capability (PCAP),
- virtual machine experience (VEXP), and
- use of modern programming practices (MODP).

The two decision attributes were

- Kilo delivered source instructions (KDSI), and
- actual man-month required for the project (MM).

We have made a ranking of cost drivers according to their number of occur-
rences related to all rules obtained from the chosen reduct. Using ~ ~-~ for order
relation between cost drivers with ~A ~- B ~ for 'A is a stronger cost driver than
B' yields in

T Y P E >- AAF ~ ACAP ~ V E X P ~- {MODP, PCAP} ~- {AEXP, LANG}.

4.3 M o d u l e C r i t i c a l i t y i n the Con t ex t of Sof tware M a i n t e n a n c e

In [10], rough set based analysis was compared with logistic regression to inves-
tigate faultiness of more than hundred modules in the context of software main-
tenance. The following two activities have been carried out during the transition
from two versions of a software product:

�9 Corrective maintenance: failures reported from customers were being fixed.
�9 Adaptive maintenance: The product was being transferred from platform

OpenVMS/VAX (version 6.0) to platform OpenVMS/Alpha (version 6.1).

Among others, accuracy of prediction was compared with respect to three
criteria:

1. Overall correctness: Proportion of modules that have been classified cor-
rectly.

2. Faulty module completeness: Proportion of faulty modules that have been
classified as faulty.

174

3. Faulty module correctness: Proportion of modules that have been classified
as faulty and were faulty indeed.

For all classes of examples, rough set based analysis performed better with
respect to overall correctness and faulty module correctness. On the other side,
logistic regression based analysis produced better results with respect to faulty
module completeness. Overall, the two techniques look supplementary, in that
logistic regression performs better with respect to faulty module completeness,
while rough set analysis is better with respect to overall completeness and faulty
module correctness.

In [10] a hybrid approach was proposed for integrating the strengths of rough
set and logistic regression based analysis. Let 14 be the set of all modules. We de-
note by LR[14] (RS[14]) the application of logistic regression (respectively rough
set analysis) on set 14. This results in classification of modules into faulty and
non-faulty ones respectively in classification rules T/ns (A4). This is described in
steps (i) and (ii), respectively. The application of (rough set) classification rules
7%ns(14) on a new set T is denoted by 7Zns(14) o [7-] as performed in step
(iii). Finally, the set of faulty 142-" and the set of non-faulty modules A/INS" is
obtained in step (iv).

Hybrid approach H

(i) L/~[./~] :::} .A45['1 (~ ./~J~.jc2
(ii) RS[J~4] ~ 74ns(~r

(iii) 74Rs(A/[) O [.A/liE1] ::~ .A/~,~F3 O .A~./~f.~4
(iV) j~JY :---- MJY3, .A/[j~f.~ :: .A/ij~f~Y 2 O .A/[j~fj~4

For validation purposes, we suggested two heuristics to classify those modules
that do not match a deterministic rule in the rough set approach:

H1 Modules matching a non-deterministic rule are classified in accordance to
that conclusion which is supported by the maximum number of modules
related to J~4 (and thus is more likely to occur). The related approach is
denoted by LR*RS.

H2 Modules matching a non-deterministic rule are classified as faulty. The re-
lated approach is denoted by LR&RS.

We compare quality of classification from logistic regression, rough sets, and
the two hybrid approaches with respect to the three parameters described above.
The results obtained from performing leaving-one-test are given in Table 1. We
observe that the hybrid approach performs better than both LR and RS. There
are small differences between the application of the two heuristics, where the
first is more general.

4.4 P r o d u c t and Process Related Flexibility in Software
Deve lopmen t

There is an increasing interest in understanding and subsequently improving
flexibility in software development [7]. Flexibility can be roughly understood as

175

Par eter I LRI RS ILR*RSlL RSl
Overall completeness 70.8% 93.85% 96.9% 96.1%
Faulty module completeness 94.1% 45.4% 81.2% 90.9%
Faulty module correctness 21.3% 71.4% 81.2% 71.4%

Table 1. Comparison of classification results

the relationship between generated functionality of products and the required
effort for achieving this. The motivation for studying flexibility is the strong
request to reduce time to market while fulfilling given resource constraints. The
following main attributes were studied in [8] to describe influence factors on
flexibility:

�9 Number of involved technical units,
�9 number of involved IT units,
�9 degree of usage of external product data base,
�9 degree of usage of external table,
�9 number of modified modules in the subsystem,
�9 degree of reuse of existing components,
�9 degree of openess for extension,
�9 usage of standard test cases,
�9 degree of redesign,
�9 amount of modifications due to technical requirements, and
�9 completeness of technical requirements before project start.

There were performed different computations based on (i) different discretiza-
tions, (ii) different algorithms (LEM2 and an all rules procedure), (iii) differ-
ent da ta sets, and (iv) usage of priorities. We describe here classification re-
sults for the leaving-one-out test based on real-world data related to 34 ob-
jects/subsystems. The decision attribute (flexibility) had four (ordinal-scaled)
values. Most of the attributes were given related to nominal or ordinal scale.
For the remaining ones, discretization was done by domain experts. With re-
spect to the 'All rules' option offered by ProFIT we introduced the additional
constraint that only rules fulfilling a predefined level a of relative strength are
considered. In our case we have chosen a = 1/3, i.e., only rules with relative
strength at least 1/3 were taken into account. In Table 2 we report classifica-
tion results based on leaving-one-out test obtained from the application of three
approaches to the same data set. Non-deterministic correct (incorrect) classifi-
cation means the percentage of objects for which more classes were found and
the correct class is among (not among) them. The 'Modified all rules' approach
generated 22 rules of relative strength greater than or equal to a. Among the
three approaches, 'Modified all rules' performed best with respect to correctness
of classification.

176

Algorithm
Correct classification
Non-deterministic correct
Not classified
Non-deterministic incorrect
Wrong classification

Modified all rules I LEM2 ILEM2 with priorities
50% 35.3 % 50%

14.7 % 2.9 % 5.9 %
11.8 % 29.4 % 2.9 %
5.9 % 0 % 5.9 %
17.6 % 32.4 % 35.3 %

Table 2. Classification results based on leaving-one-out test.

5 S u m m a r y a n d C o n c l u s i o n s

We have shown that rough set based analysis offers a set of important insights for
improvement in software engineering development. Typically, the concluded rules
can be used for making predictions on future behavior in software development.
Thus, they are a crucial contribution for learning in an experience factory envi-
ronment [1]. Moreover, the operational rules can be used as decision support for
monitoring and controlling ongoing development activities. Finally, from careful
analysis of measurement data, inconsistencies in modeling and in the collected
data can be detected. This leads to better and more accurate models underly-
ing future investigations. On the other side, goal-oriented measurement delivers
considerable support in finding out those attributes which are offering the best
chance for knowledge discovery.

There is a number of open research problems which should be studied to en-
large the scope of applications. Among them is the question how to apply rough
set analysis in the case of varying sets of attributes within one set of objects.
Another questions is related to how to derive the rules. Rough set based analysis
exclusively takes into account the values of the investigated attributes. At least
three extensions are motivated by practical applications: (i) To define some for-
malism for interaction with expert knowledge, (ii) to allow also formulation of
rules which are true with a predetermined level of confidence, and (iii) to develop
rule sets which are stable in case of additional data and experiments.

From the software engineering application point of view, different approaches
should be taken into account for analyzing measurement related data. This has
the obvious advantage of producing broader and/or more confident conclusions
from experimental data. For the application of these different approaches, the
underlying assumptions and their evaluated strengths and weaknesses are of
great importance. Rough set based analysis with its weak assumptions plays a
prominent role therein.

R e f e r e n c e s

[1] V. R. Basili, G. Caldiera, and H. D. Rombach: Experience Factory. In John J.
Marciniak, editor, Encyclopedia of Software Engineering, volume 1, pages 469-476.
John Wiley & Sons, 1994.

177

[2] V. R. Basili and H. D. Rombach: The TAME project: Towards Improvement-
Oriented Software Environments. IEEE Transactions on Software Engineering, SE-
14(1988), 758-773.

[3] V. R. Basili and D, M. Weiss: A methodology for collecting valid software engineer-
ing data. IEEE Transactions on Software Engineering, SE-10(1984), 728-738.

[4] B. W. Boehm: Software Engineering Economics. Advances in Computing Science
and Technology. Prentice Hall, 1981.

[5] European Systems and Software Initiative: Customized Establishment of Measure-
ment Programs (CEMP), December 1995. ESSI Project # 10358, Final Report.

[6] G. Cugola, P. Fusaro, A. Fugetta, L. Lavazza, S. Manca, M.R. Pagone, G. Ruhe,
and R. Soro: An Experience in Applying GQM to the Evaluation of the Impact of
Configuration Management Technology. submitted to International Software Met-
rics Symposium 1997

[7] H. Giinther, H. D. Rombach, and G. Ruhe: Kontinuierliche Qualit~itsverbesserung
in der Softwareentwicklung- Erfahrungen bei der Allianz Lebensversicherungs-AG
(in German). Wirtsehaftsinformatik 38(1996), 160-171.

[8] S. Hartkopf: Analysis of Software Engineering Data in GQM-Based Measurment:
Feedback Sessions with Rough Sets. Diploma Thesis. University of Kaiserslautern,
Department of Computer Science: 1997.

[9] B. Hoisl, M. Oivo, G. Ruhe, and F. van Latum: No Imrovement without Feedback:
Experiences from Goal-Oriented Measurement at Schlumberger. Proceedings 5th Eu-
ropean Workshop on Software Process Technology, Nancy October 1996, Lecture
Notes in Computer Science Vol. 1149, 167-182.

[10] S. Morasca and G. Rnhe: Knowledge Discovery from Software Engineering Mea-
surment Data: A Comparative Study of two Analysis Techniques. Proceedings of the
l Oth International Conference on Software Engineering and Knowledge Engineering,
Madrid 1997.

[11] National Aeronautics and Space Administration:. Software measurement guide-
book. Technical Report SEL-84-101, NASA Goddard Space Flight Center, Green-
belt MD 20771, July 1994.

[12] O.K. Ngwenyama and N. Bryson: A Formal Method for Analyzing and Integrating
the Rule-Sets of Multiple Experts, Information Systems, Vol. 17, No. 1, 1-16, 1992.

[13] Z. Pawlak: Rough Sets: Theoretical aspects of reasoning about data. Kluwer Aca-
demic Publishers, 1991.

[14] H. D. Rombach, V. R. Basili, and R. W. Selby (editors): Experimental Software
Engineering Issues: A critical assessment and future directions. Lecture Notes in
Computer Science Nr. 706, Springer-Verlag, 1992.

[15] G. Ruhe: Qualitative Analysis of Software Engineering Data Using Rough Sets,
Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and
Machine Discovery, Tokyo, November 1996, 292-299.

[16] R. Slowinski. Intelligent Decision Support: Handbook of applications and advances
of the rough set theory. Kluwer Academic Publishers, 1992.

[17] G. Stark, R. C. Durst, and C. W. Vowelh Using metrics in management decision
making. IEEE Computer, 27(1994), 42-48.

[18] R. Susmaga and R. Slowinski: Rough Processing of Fuzzy Information Tables
(ProFIT). Institute of Computing Science. Poznan University of Technology. Poznan
1996.

