
Using Signature Files for Querying Time-Series
Data

Henrik Andr6-JSnsson 1 and Dushan Z. Badal 2

1 Computer and Information Science, LinkSping University,
S-581 83 LINKOPING, SWEDEN

Email: henan@ida.liu.se
2 Computer Science Department, University of Colorado, Colorado Springs,

CO 80919, USA
Email: badal@sunshine.uccs.edu or dusba@ida.liu.se

Abst rac t . This paper describes our work on a new automatic index-
ing technique for large one-dimensional (1D) or time-series data. The
principal idea of the proposed time-series data indexing method is to
encode the shape of time-series into an alphabet of characters and then
to treat them as text. As far as we know this is a novel approach to 1D
data indexing. In this paper we report our results in using the proposed
indexing method for retrieval of real-life time-series data by its content.

1 I n t r o d u c t i o n

Digitized 1D data, commonly referred to in the literature as time-series data is
a sequence of real values and it can represent voice, sensor reading, history of
stock prices, etc. Although we propose to investigate indexing of any sequence
of real numbers we use time-series to be consistent with the literature. Time-
series data are generated and stored in many applications. Examples include
voice, histories of stock prices, histories of product sales, histories of engine
testing, seismic data, aircraft flight recordings, weather data, enviroment data
(pollution levels for various chemicals), satellite sensor data, astrophysics data,
etc. Currently there is no database technology which can retrieve 1D data by
their content.

2 R e l a t e d Work

There has been very little work done so far in the area covered by the proposed
project. We found just few recent papers dealing with time-series data indexing
[FALO94, FALO95, AGRA95, AGRA95a]. Time-series data indexing described
in [FALO94] is based on using first few DFT (Discrete Fourier Transform) coef-
ficients to represent part of time-series within a window moving along the signal
one step at a t':me. At each step the DFT is applied and this generates one point
representation in 2D space consisting of the first two DFT coefficients. In this
way time-series data is represented by a trail in 2D space. Such trail is then
divided into sub-trails which are subsequently represented by their Minimum

212

Bounding Rectangles in an R*-tree which is used as an index. As pointed out in
[AGRA95] the work reported in [FALO94] is not readily applicable as it ignores
several problems like amplitude scaling, offset translation, etc. The indexing de-
scribed in [AGRA95] is based on the shape similarity of atomic subsequencies
(windows) of two signals, on stitching similar windows to form pairs of large simi-
lar subsequencies (long subsequence matching) and on finding a non-overlapping
ordering of subsequence matches having the longest match (sequence matching).
Both papers [FALO94, AGRA95] are deficient as they tested their proposed in-
dexing methods on very small collection of stock market histories. Thus, it is not
clear whether the indexing they propose will work on large real-life time-series
database. Second, neither indexing method is data amplitude, offset or transla-
tion, and rotation invariant. This means that in order to use their indexing one
has to do amplitude scaling, offset translation, etc. This makes both methods
unsuitable for real-life applications.

Related paper dealing with multimedia data indexing [FALO95] avoids the
hard problem of feature extraction by assuming that "domain expert" will some-
how provide feature vectors or at least the easier to provide dis-similarity/distance
of two objects. Given that assumption the paper then describes an algorithm
which maps objects into k dimensional space so that distances (dis-similarities)
are preserved as well as possible. Another paper reporting related work [AGRA95]
presents a shape definition language, called SDL, for retrieving objects based on
shapes contained in the histories associated with these objects. A novel feature
of the language is its ability to perform blurry matching when the user cares
about the overall shape but does not care about specific details.

3 Proposed Approach

Signature files have been shown to work as an index for text files, but no one, to
our knowledge, has used them to index a signal. To encode the signal as a text we
use the method similar to one in [AGRA95]. We construct the time derivative of
the signal by calculating the amplitude difference between two adjacent samples.
Depending on the difference that corresponds to the signals time derivative we
map the difference to a token. By choosing a suitable alphabet for this mapping
we will not only be able to use signature files as an index, but we will also get the
ability to perform blurry matching as described in [AGRA95]. Our approach to
1D data indexing was motivated by our recent work on full text indexing where
we introduced context signature files [BADA95].

Our approach is as follows. First, we translate the signal into a text-string.
Then, we run the string through a signature file generator. The signature file
generator creates a signature file from the text by sliding a window along the
string and for each window it maps the string into a number of signature bits.
We have made experiments letting each window set one, two, four and eight
bits. The results presented in this paper are using four bits per window. The
signature is stored in the signature file along with a pointer to the text block
(representing 1D signal) that has been used to create the signature.

213

When we wish to query the system we simply calculate the signature of the 1D
query and do a linear search of the signature file. In this first implementation we
have decided to use a simple signature file. An important part of our preliminary
work was to show that by selecting a suitable window size together with a suitable
signature size the false drop rate will be minimized.

This method has several advantages over previously suggested methods for
doing shape querying. The signature file is relatively small compared to other
indexing methods, and as a combination of the size of the signature file and the
simplicity in testing for a hit, a search through the signature file is very fast.
The signature file search is a linear search in O(n) time and each check is very
simple and fast, just a logical AND followed by an equality check.

4 Implementation

We wanted our system to be able to do blurry search and we wanted to see if it
was possible to use signature files as an indexing method. All previous work with
signature files to our knowledge, has been done on text files. So the first thing we
wanted to do was to transform our signal into some sort of text. We chose to use
the alphabet suggested in [AGRA95] (a part of SDL). Even though this alphabet
has a great disadvantage by defining absolute values for vague descriptions we
decided the advantages with blurry matching, and the fact that it is a very simple
alphabet, were greater than the disadvantages. The alphabet was rewritten so
that we could easily map the signal to a stream of tokens instead. We call the
new alphabet "Shape Description Alphabet", SDA. SDA is only a subset of the
alphabet used in SDL but should be sufficient for describing any signal.

S y m b o l
a

u

s

d
e

D e s c r i p t i o n lva lue h v a l u e
Highly increasing transition 5 -
Slightly increasing transition 2 4.99
Stable t rans i t ion -1.99 1.99
iSlightly decreasing transition -4.99 -2
iHighly decreasing transition -5

T a b l e 1. SDA

Table i shows the different symbols of SDA and how they map to the symbol.
The value difference between two adjacent points is calculated and the difference
is mapped to T, he symbol where the difference fits between the symbols lvalue
and hvalue. These values are domain dependent and it is necessary to conduct
further examination of them in order to find optimal lvalues and hvalues.

The ability to blurry match is an important feature we would like the system
to have. Blurry matching allows us to ask the system not only to retrieve all sig-
nals that look exactly like the query signal, but also all signals that are similar
to the query signal. We get this ability because of the 'fu2ziness' in the mapping
from ~he signal time derivative to the SDA alphabet. Assume we have the fol-

214

Fig. 1. A Sample Signal.

lowing sampled signal (see Fig. 1): "0 2 6 14 19 20 21 18 17 25 20 15 10 0". This
sequence will t ranslate into "uuaussdsaeeee". But there are many similar signals
that vJould translate into the same SDA string. If we make a reverse translation
of the SDA string "uuaussdsaeeee", we see that we can get the following signals
(see Fig. 2) " 4 8 2 5 2 8 2 7 2 6 2 2 2 1 3 0 2 0 1 0 0 " o r " 1 2 1 4 1 9 2 2 2 3 2 4 2 2 2 2 2 8
22 17 12".

Pig. 2. Two other signals that can be derived from the same SDL string.

SDA is a nonexact approximation of the signal t ime derivative. This makes
the SDA representation of the signal invariant to amplitude. SDA is very easy
to use as a query language just because it uses so few symbols. If we want to
query the system for a signal, we do not have to remember exactly how the
symbol looked like but we can describe the signal very easily like "The signal

215

was pret ty stable for a while then it increased very rapidly before being stable
again". We do not have to use any absolute values. The results reported in this
paper we were using an SDA alphabet which has seven characters instead of five
characters shown in this section.

4.1 Finding Data Across Signature Block Boundaries

One problem we needed to address was the problem of sequences that lie between
two signature blocks, ie one part of the query signature can be found in one
signature and the other part in the following. The design of signatures files
make it easy to find a segment tha t is a part of one signature, but we must to
be able to find sequences that lies between signature blocks.

We have looked at two methods for solving this. The first way is to let the
signature blocks overlap each other. The second approach is to define a new 'hit '
mechanism when we are searching the signature blocks for a hit.

The first solution we tried was to make the signatures overlap. Whenever we
have filled a signature block, we go back in the signal so that the next signature
block will start at the middle of the previous signature block. By doing this the
new signature block will overlap the previous signature block. There are two
major drawbacks with this method. The first is simply that it takes more space
to store the extra signatures needed to index the file. The second is a bit more
serious as it puts a restriction on how large a query can be. The query length
can never exceed the length of a half signature block (the overlap).

The second approach is complex. The basic assumption is that a query will
span several signatures, i.e., the query is not a single signature but a signature
file. The idea is to introduce a concept of similarity between signature files instead
of between sigr, atures. We start by making the observation that a query segment
(a string of tokens) can either be found in a signature block or between two
signature blocks.

The first thing we do is to check if the query segment is present in the stored
signature block Si. If it is not present we continue by checking if it is present
in Si+l. If it can't be found there we logically OR the two stored signatures
together, S = Si OR S~+1 and then we check the combined signature for a hit.

If we get a hit in any of the cases above we just continue to check consecutive
blocks and if all signatures in the query match consecutive stored signatures we
have a hit. In the last case, the combined signature, the next stored signature
that is checked with the second query signature is S = Si+l OR S~+~.

We implemented and tested both approaches. The first method limits the
size of query but it is easier to implement. The second method does not limit
the query size but it is more complex to implement and it makes the search
somewhat slower. The results reported in this paper were achieved using the
secomi method.

216

4.2 The Signature File Size

Let's examine the signature files size ratio to the signal size. Assume that we
have an SDA encoded signal consisting of T data points. If we want to calculate
how many signatures will be needed to index this file we can use equation 1.

T * b
S - - - (i)

N,b * F 9

N.b is the number of bits in the signature, Fg is the fillgrade (how many bits
in the signature we use before we consider the signature full), S is the number of
signatures needed to index the file (worst case), T is the number of tokens in the
file to be indexed and b is the number of bits each window sets in the signature.

The formula gives us a very good approximation of how many signatures will
be needed to index the signal, if the window size is small compared to T.

To calculate the size of the signature file we assume that for each signature
block we need to store not only the block signature but also a pointer to the
part of the signal that the signature represents. The size of each signature block
will then be the bit map of the signature plus the pointer to the signal.

By multiplying the result in equation 1 with the size of each signature we
get the total size needed for the index and finally if we divide this value with
the total size of the data file we get the compression rate using equation 2. The
compression is the size of the index compared to the size of the original da ta file.
We then subtract this value from 1 so that a compression of 0% indicates that
the index is of the same size as the data file.

T *b* ([-~] + Psize)
Compression : 1 - (2)

T , Rsize * Nsb * Fg

Psiz~ is the size of a pointer in bytes and Rsize is the size of each element in the
data file in bytes. Equation 2 can then be simplified and we get equation 3.

, + (3)
b P.~)

Compression = 1 Rsiz~ * Fg Nsb Nsb

From this formula we can see that the compression rate consists of two parts.
The first part isn't influenced by the signature size but is determined by the
size ef she elements in the data file, the number of bits each window sets in the
signature and the fill grade (and if the number of used bits in the signature is a
multiple of eight). This can easily be seen if we assume that Nsb is divided by
8. Then we can simplify the expression even further. We can also see that the
window size doesn't influence the index compression rate.

We also need to make an assumption about the size of the original data
file. In this paper we will assume that the data is stored as 32-bit numbers, ie
R ~ = 4. We will also assume a pointer size of 32 bits, P~i~ = 4, that gives us
an adress spac~ of 4 billion points. This can be considered sufficient for many
applications.

We can now plot the different compression rates for different combinations
of signature sizes, different values of b and Fg. Here we just give the values for

217

b -- 1. Table 2 show how the compression varies with the signature size and the
fill factor Fg.

b = 1 N s b = 61 N , 6 = 251].hI'sb -- 509
= 0.3 83.7% 88% 88.9%

F~, - - 0 .4 8 7 . 7 ~ 9 1 ~ 91.7~e
,F$ - - 0 . 5 9 0 . 1 ~ 9 2 . 8 ~ 9 3 . 3 ~

T a b l e 2 . C o m p r e s s i o n f o r b = 1.

One thing to remember is that this is the size of the uncompressed signature
file. There exists several techniques to compress the signature file but so far we
did not invest'~gate this issue.

5 E x p e r i m e n t s

In this section we will describe how the system was tested. We have tested the
system on both real signals and randomly generated signals. We made several
different experiments where we changed three parameters, the size of the signa-
ture window, the size of the signature and the number of bits each window set
in the signature. We have not tested the system time performance. This system
was only implemented to see if it were possible to use signature files to index a
t ime series data.

In the first experiments we used a window that was only three characters
wide. This leads to problems since such a small window doesn't give the hash
function enough information to create a proper signature. There is a threshold at
about five characters with the hash function we use. If the window is smaller than
five characters the hash function does not operate properly and if the window
is more than five characters the hash function generates nice signatures. As the
window size increases we get larger and larger segments of data represented by
each bit in the signature and as a consequence the signature blocks increase in
size as well.

In general, we want the signature blocks to be so large that it is sufficiently
faster to search the signatures instead of the signal but at the same time we
want the sign,~,~ures to be so small that we do not have to employ costly indexes
to search a signature block to find out if we have a true hit or if we had a false
drop.

To test the performance for each window size and signature size we six dif-
ferent queries to the test database. The queries were segments from the t ime

218

series signal used to generate the test database. When the result from the sys-
tem was returned the database was sequentially scanned for the query so we
could determine if the signature method had missed an occurrence of the query
pattel"n. Then the false drop rate was calculated by comparing the sequential
search result with the signature search result. The false drop rate and the result
from the sequential search were used to calculate the precision diagrams in this
section.

We used three sizes of signatures, 61 bits, 251 bits and 509 bits, three window
sizes (7 characters, 9 characters and 20 characters) and four different settings
of b, number of signature bits set per window. In this paper we only report our
results with 251 bits signatures, 509 bits signatures and 1 signature bit and 4
signature bits set per window.

6 T e s t R e s u l t s

All test diagrams have been normalized so that they can be compared with each
other. On the vertical axis we show the precision. The precision is a measurement
of the efficiency of the query search and is calculated as the percent equivalent to
the mlmber of relevant documents returned divided by the number of documents
returned. Another diagram often used together with precision diagrams is a recall
diagram. The recall measures the effectiveness of the query search by reporting
the p,.'rcentage equivalent to the number of relevant documents returned divided
by the number of relevant documents in the collection. In all experiments we
have a recall of I00% so these diagrams are not shown. The horizontal axis
shows how many bits we have in each query. It is difficult to change the number
of bits in the query since it is the hash function that decides what bit each
window is mapped to. Therefore, we show how many windows have been used
in generating the query signature.

We just show two extremes here, a 251 bits signature with a 7 character
window and a 509 bits signature with a 20 character window. For both cases we
show how the precision is influenced by if we let each window set 1 or 4 bits in
the signature.

As we can see in Fig. 3 and Fig. 5 we get very good precision even for small
queries if we let each window set several bits in the signature. As can be seen
in Fig. 4 and Fig. 6 the size of the window and the size of the signature has a
much larger influence if we only set t bit in the signature for each window.

To summarize our tests we can say that if we set few signature bits with each
window we need larger signatures to get better precision for smaller queries. In
this case we need larger window sizes to get more uniform behaviour for different
queries.

If we use more signature bits per window the need for larger signatures and
windows is not that obvious. The big drawback is of course that the compression
decreases.

219

1

o.~ I-

o.s

o7~-

O6L-

o.s I-

0 ,4 F

I1.1

o

I ~ - T - T - T - ~ - T - ~ -
o ~ = y l

c w r] 4

I I I I I I J I
4 S S 10 IZ ;~- 16 l a 20

Nurnbw gl V ~ UNCl tn Q~2e W

Fig. 3. 251-bit signature and 7 character window, 4 bits per window.

oue~ 1
0.9 Ou.~3 ~ - -

0.8

0.7

C.5

O~

Oa

02

0 - - i

Numblr ~f Window= Used m ~e~y

Fig. 4. 251-bit signature and 7 character window, 1 bit per window.

7 Conclusion

We have shown that it is possible to translate a signal to a string in such way that
the string can be used to search the signal for behaviour of the original signal.
We have chosen a very simple alphabet, SDA, for that mapping. By allowing the
mapping to be somewhat blurry we gain the ability to do blurry matching on
any given signal. This makes it possible to retrieve all signals that are similar
to a given query sequence. We have also shown that by using a signature size of
251-bits or more and a window of at least 20 characters or by setting several bits
for each window we can get very good precision performance from the system.
The number of bits per set per window has a strong influence on the precision
but has also a strong influence on the compression. Thus some compromise has
to be found.

2 2 0

o.~ ~ '

o.e

o.7

O.,S

o.2

o.1

o 2 , ' ~ = s , , '~ ~ . d ~ 2 ~ w . o . , h, ,4 ,o ,e ~o

Fig. 5. 509-bit signature and 20 character window, 4 bits per window.

0.9

O.S

O3

0.6

0.5

0,4

0.3

0.2

0.1

0
2 4 6 8 10 12 14 16 la 2(;

NUcnb~ of ~ U~d Irt ~Jery

Fig. 6. 509-bit signature and 20 character window, 1 bit per window.

8 R e f e r e n c e s

[AGRA95] Agrawal, R., et al., "Fast Similarity Search in the Presence of
Noise, Scaling, and Translation in Time-Series Databases", Proceedings of
the 21st VLDB95 Conference, Zurich, 490-501.

[AGRA95a] Agrawal, R., et al., "Querying Shapes of Histories", Proceedings
of the 21st VLDB95 Conference, Zurich, 502-514.

[BADA95] Badal, D.Z. and Davis, M.L., "Investigation of Unstructured Text
Indexing", Proceedings DEXA95 Int Conf on Database and Expert Systems,
London, Sept 4-8, 1995, 387-396.

[FALO94] Faloutsos, C., et al., "Fast Subsequence Matching in Time-Series
Databases"' Proceedings of ACM SIGMOD94 Conference, Minneapolis, 419-
429.

[FALO95] Faloutsos, C., et al., "FastMap: A Fast Algorithm for Indexing,
Data-Mining and Visualization of Traditional and Multimedia Data", Pro-
ceedings of ACM SIGMOD95 Conference, San Jose, 163 174.

