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A b s t r a c t .  Current algorithms for finding associations among the at- 
tributes describing data in a database have a number of shortcomings: 

1. Applications that require associations with very small support have 
prohibitively large running times. 

2. They assume a static database. Some applications require generating 
associations in real-time from a dynamic database, where transac- 
tions are constantly being added and deleted. There are no existing 
algorithms to accomodate such applications. 

3. They can only find associations of the type where a conjunction 
of attributes implies a conjunction of different attributes. It turns 
out that there al"e many cases where a conjunction of attributes 
implies another conjunction only provided the exclusion of certain 
attributes. To our knowledge, there is no current algorithm that can 
generate such excluding associations. 

We present a novel method for association generation, that answers all 
three above desiderata. Our method is inherently different from all exist- 
ing algorithms, and especially suitable to textual databases with binary 
attributes. At the heart of our algorithm lies the use of subword trees 
for quick indexing into the required database statistics. We tested our 
algorithm on the Reuters-22173 database with satisfactory results. 
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l I n t r o d u c t i o n  

Algorithms for finding association rules appear in [2, 1, 11, 8, 9, 13]. These al- 
gorithms find covers, i.e. sets with large enough support. They then check the 
confidence on suitable partitions of the covers. In the worst case these algorithms 
have exponential time complexity. In reality, though, their running time on the 
tested databases is manageable. The reasons for this are the heuristics they im- 
plement. The heuristics are all based on the support. The speed of the algorithm 
is proportional to the size of the support. The higher the support - the faster 
the algorithm. For very small supports these algorithms break down. 

Consider the following two application domains that  require mining for associa- 
tions. The first is a scenario that  involves finding associations between labels of 
articles in textual collections [5, 6, 7]. Another important  example is in a med- 
ical database where transactions are medical records, the type of associations 
needed are those between treatment and outcome, symptoms and procedures, 
demographic attributes and medical outcome, initial symptoms and length of 
hospital stay. 

Both of these important  applications have needs that are not answered by the 
existing algorithms. 

1. Sma l l  S u p p o r t :  Medicine is replete with rare but lethal cases. Under these 
circumstances it is better to err on the side of safety and consider associations 
with small support. What  is needed, then, is a completely new method of 
generating associations in a support independent manner. 
There is no current association generation algorithm that  can handle tiny 
supports. 

2. D y n a m i c  D a t a b a s e s :  In a fast-changing database (growing or shrinking), 
the user may need results in real t ime as new records accumulate or change 
and the association needs to reflect all known data. 
In [4] two methods for real time generation of associations in incremental 
databases were developed. They were tested and compared on the Reuters- 
22173 database using the KDT data mining system. While the methods 
of [4] performed quite well on the Reuter-22173 test database, they suffer 
from two main drawbacks. (1) They are both support dependent, and (2) 
They assume only an increasing database, but. can not handle a decreasing 

database. 
3. G e n e r a l  Assoc i a t i ons :  In our definition of association we followed Agrawal, 

Imielinski and Swami [1]. Their definition of an association rule means that 
a conjunction of attributes implies a conjunction of other attributes, A1 A 
A2 A . . .  A Ai ~ B1 A . . .  A B i .  Recently, Mannila and Toivonen [10] discuss 
the theoretical option of having a general boolean formula implying another 
general boolean formula. Many such formulae are meaningless from a data 
mining perspective. For example, A1 A A2 A �9 �9 - A Ai ~ ~ B I  A �9 �9 A - ,Bj  for 
all subsets { B I , .  �9 Bj  } where it is not the case that  A1 A A 2  A �9 �9 �9 A Ai ::~ 
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B,, ~ = 1 , . . . ,  j .  It is clearly not worthwhile to seek such meaningless asso- 
ciations, especially considering the fact that  their number is exponential in 
the number of attributes (587 in the Reuters-22173, for example). 

However, there are several interesting general cases. One such example is 
associations of the following form: A1 A A~ A . . .  A Ai ~ B1 A . . .  A Bj 
where some of the A~'s are negations. This means that there is sufficient 
support and confidence for a rule, only provided that  certain attributes are 
not present. 

E x a m p l e :  A A B A --,C ::~ D means that  there is sufficient support for set 
{A, B, D} but not enough confidence for A A B ==~ D. On the other hand, 
if we exclude C, then there is both sufficient support and confidence for the 
rule. We can conclude that  "A and B imply D when C does not occur". 

Such excluding associations are meaningful and important,  yet the current 
algorithms are incapable of producing them. 

In this paper we present a novel idea for generating associations. Our method 
uses subword tree techniques to mine for associations and is fundamentally differ- 
ent from all previously known algorithms. Our algorithm can handle very small 
supports, handles dynamic databases, and finds associations with negations. 

Our algorithm's worst case time is exponential in the maximum cover size. In 
practice the size of the maximal cover is rather small (7 in the Reuters-22173 
database with support 10, which is equal to 0.045%), while the number of at- 
tributes or the record size may be much larger (587 and 26, resp. in the Reuters- 
22173 database). 

In addition, our algorithm reads the database only once. Since the database 
is normally on external memory, the main time devoted to the algorithm is 
the I /O  time. Consequently, the fact that  our algorithm reads the data  only 
once significantly reduces the running time. As a result, the small exponential 
multiple on the number of machine instructions is not critical. Like all association 
generation algorithms, our algorithm is very efficient when the data  structures it 
uses reside in memory. The compact representation we use helps keep the extra 
data  structure small relative to the amount  of information it provides. 

Our method is especially suitable for textual databases, where there is a very 
large number of attributes, but the length of an individual transaction is small. 
Under such circumstances it scales reasonably well. For example, if the maximum 
cover size is 5, then the generated auxilliary databases will be roughly 30 times 
larger than the initiall database. In addition, we only handle binary attributes, 
where for every transaction either an at tr ibute exists or it does not. 
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The following is a formal statement of the problem based on the description of 
the problem in [2, 3, 11]. Let I = {i~, i2, ..., ira} be a set of attributes, also called 
items. Let D be a set of variable length transactions over I. Each transaction 
contains a set of items {ii,ij ,  ...,ik} C I. A set of items is called an itemset. 
The number of items in an itemset is the length (or the size) of an itemset. An 
itemset of length k is referred to as a k - itemset. 

An association rule is an implication of the form S1 =~ $2, where S1, $2 C I, 
and $1 f3 $2 = 0. $1 is called the antecedent of the rule, and $2 is called the 
consequent of the rule. We follow the literature [2, 3, 11] in denoting associations 
as an implication of sets of attributes. A generalization, explored by Maunila and 
Toivouen [10], is denoting associations as an implication of boolean formulae. 
Thus, a rule of the form {A1, A2 , . . .  ,A,,} =~ {B1, B 2 , . . . ,  Bin} will be denoted 
in [10] as A1 A A2 A . . .  A A~ ::~ B1 A B2 A . . .  A Bm. The formal definition of an 
association rule appears below. 

Each rule has an associated measure of statistical significance called support. 
For an itemset S C I, the support of S is the number of transactions in D 
that  contain the itemset S. (Note that in the literature the support is usually 
measured as a given fraction of the database. However, we deal with extremely 
small supports and thus choose to define the support  absolutely). We denote 
by supp(S) the support of S. The support of the rule $1 =~ $2 is defined as 
supp(S1 U $2). An itemset that has support greater than or equal to a specified 
minimum support threshold is called a covering itemset or shortly cover. 

A rule $1 ~ $2 has a measure of its strength called confidence defined as the 
ratio of number of transactions in D that  contain itemset $1 U $2 over number 
of transactions that  contain itemset $1. 

The problem of mining association rules is to generate all rules $1 =~ $2 that 
have both support and confidence greater than or equal to some user specified 
minimum support (minsupp) and minimum confidence (minconf) thresholds 
respectively, i.e. for regular associations: 

supp(S1 U 5"2) _> miusupp 

and 
supp(S~ u $2) 

supp( S1) >_ mincon f . 

This problem can be decomposed into the following two subproblems: 

1. All covers, i.e. itemsets that  have the minimum support, are generated. 
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2. All the rules that  have minimum confidence are generated in the following 
naive way: For every covering itemset S and any $2 C S, let 5:1 = S - S~. If 
the rule $1 =V $2 has the minimum confidence, then it is a valid rule. 

If all covers and their supports are given, one can generate rules in a brute-force 
manner, by considering all partitions of the powerset of every cover. Thus, the 
existing literature concerned itself mainly with generating all covering itemsets 
and their supports. In section 3 we present an efficient algorithm for generating 
all covers. In addition, we show an efficient and fast method for generating all 
associations. 

3 A N e w  A p p r o a c h  

A trie is a data structure that  allows a set of strings to be stored and updated, 
and allows membership queries. For a formal definition of a trie, see e.g. [14]. We 
use the lrie data  structure to generate covers. Using the trie enables generating 
covers independently of support. In addition, the information stored in the trie 
can be used later for exceedingly fast queries for new types of associations. 

3.1 U s i n g  t h e  T r i e  

Our idea is to preprocess the database and construct a data  structure that  en- 
codes necessary information for association generation. Once that  data  structure 
is constructed there is really no further need to access the original database. The 
new data  structure can then be used to generate various different types of asso- 
ciations. We also show that  updating the new data structure when the database 
is changed is a fast and simple process. 

In the preprocessing phase we construct a trie of the database. Since the database 
entries are sets of attributes and a t r i e  is defined on strings some conversion is 
necessary. The first step is numbering the different attributes. We then consider 
every set as a string sorted by order of the at tr ibute number. 

We would like every node on the trie to be a potential cover. Unfortunately, 
every subset of a record is a potential cover. It would seem that  an exponential 
space is required, which would make the idea prohibitively expensive for any 
but a database with very small records. However, the situation turns out to be 
a lot better than that.  Because covers are usually not large (at most 7, in the 
Reuters-22173 even for the very small support of 10) we can set a relatively small 
value k as the maximum cover size and only consider subsets of size up to k for 
inclusion in the trie. Thus, for a record of m attributes, where k is the value 

k 

taken as the bound of the largest cover, we consider only the E ( ' 7 )  different 
i = 1  

/-element subsets of the m attributes, for i = 1 . . . .  , k. 
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At the colclusion of the preprocessing phase we have a data. structure encod- 
ing all potential covers and the number of transactions that  include those sets 
among their attributes, with an extremely fast and efficient access method to 
every cover. The data structure is dynamically updated. Its size is quite man- 
ageable (see experimental results) and it encodes data that allows instantaneous 
recognition of covers, efficient support-independent generation of associations, 
as well as generation of excluding associations. 

4 Association Generation 

Many current algorithms generate association rules by the exponential-time 
naive method of testing the confidence of all subsets of the cover. The following 
lemma provides an idea for more efficient generation of rules from covers. 

L e m m a :  Let S, 51, $2 be mulually disjoint sets of attributes. 
I f  S ~ $1 U $2 is an association rule, then also S U $1 ~ 5'2 and S U $2 =r $1 
are association rules. 
P r o o f :  Easy by Venn Diagrams. 

The meaning of the lemma is that  once all associations of the form S ::v {a} 
have been generated, where a is a single attribute, we can narrow down the 
space of potential attributes of the form S ::~ {a, b}. In particular, only if both 
associations S U {a} ::r {b} and S U {b} ~ {a} exist, is there any chance for 
S =r {a, b} to exist. A similar argument holds for larger sets in the right hand 
side of the association. 

5 Excluding Associations 

We previously defined the meaning of supp(S) where S is a set of attributes and 
supp(S1 ~ $2) where $1 =:> $2 is a regular association. 

Let S be a set of attributes {A1 . . . .  , A,~}. Denote the set {-~A1,.. . ,  ~An} by 

Excluding associations are of the form $1 U ~$2 => $3, where $1, $2, $3 are 
mutually disjoint. Recall that  the intuitive meaning of S1 U --$2 ~ $3 is that  
the attributes in S1 imply the attributes in $3 p r o v i d e d  that the attributes in 
$2 do  n o t  appear in the transaction. 

In the boolean formula notation such a rule will be written as A1 A A2 A -. .  A 
An A -~B1 A -,B2 A �9 .. A - B , ,  ::> C1 A C2 A �9 .. A C~, where $1 = {A1 . . . .  , A,~}, 
-~$2 = {-~BI , . . . , -~B~} and 5?3 = {C1, . . . ,C~}.  
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D ef in i t i on :  We say that  $1 U -~$2 ~ Sa is an excluding association if S1, $2, $3 
are mutually disjoint sets of attributes and the following conditions hold: 

 upp(& u &) 
supp( S1 ) < mincon f 

(E2) 8upp(S 1 I J $3) - 8app(S1 [3 ~2 LJ $3) > ,7~inSUpp, and 

(E3) supp(S1 U $3) - supp(S1 U S2 USa) >_ rnineonf. 
supp(Sx) -- supp(S1 U $2) 

In the rest of this paper we will only consider excluding associations where 
$2 and Sa have a. single attribute. It should be noted that  our algorithm can 
be generalized to larger sets by considering all subsets of a cover. We did not 
implement this direction because of time complexity considerations. 

An excluding association can be located by a depth first search (DFS) on the 
trie, in a similar manner to the DFS performed for finding associations. The only 
difference is that  for every path we need to pick out the pairs {a} and {b} as Su 
and Sa for which conditions (El )  , (E2) and (Ea) hold. 

6 E x p e r i m e n t a l  R e s u l t s  

We ran our tests on the Reuters-22173 database. The Reuters-22173 text cat- 
egorization test collection is a set of documents that  appeared on the Reuters 
newswire in 1987. The 22173 documents were assembled and indexed with cate- 
gories by personnel from Reuters Ltd. and Carnegie Group, Inc. in 1987. Further 
formatt ing and data  file production was done in 1991 and 1992 by David D. 
Lewis and Peter Shoemaker. The documents were tagged with 587 attributes. 
We treat  each docmnent as a single transaction, where the attributes are the 
keywords with which tile document is tagged. The size of the Reuters-22173 
textual database is 25rob. The size of the Reuters-22173 ASCII at tr ibute set is 
lmb. 

The platform we used was an UltraSPARC 1000 with 64rob main memory. 

6.1 Tr i e  C o n s t r u c t i o n  

We constructed three tries. One was a full trie with all subsets of every trans- 
action. The other tries had maximum cover sizes 10 and 7. The following table 
summarizes the time and space it took to construct each of the tries. In the table 
below, the first row is the size of the trie, the second row is the time it took to 
construct the trie, and the third row is the construction time and saving the trie 
on the disk for future use. 
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All Subsets Max Cover Size 10 Max Cover Size 7: 

Space: 4.61 mb 3.57 mb 1.45 mb 
Time, construction only: 33.5 sec. 21.8 sec. 10.9 sec. 

Time, including save: 35.5 sec. 23.1 sec. 11.6 sec. 

In all the following subsections, we start  out with an existing trie on disk. The 
times quoted include disk access. 

6.2 G e n e r a t i n g  All  Cove r s  

Generating all covers simply implies DFS of the tree, independently of the sup- 
port. In the graph below one can see the running times when using the tree with 
maximum cover size 7, the tree for maximum cover size 10, and the full tree. As 
can be seen, there is practically no difference in the running time for different 
supports. The only slight rise is where the support is 3. Note that we are talk- 
ing about absolute 3, every cover that  appears even three times was generated! 
Even the running tinae for support 3 (0.01%) was very small, 3.93 seconds on 
the full trie. The reason there is some increment for such a minute support  is 
that now indeed a full DFS took place. The way we constructed the trie allows 
the scanning to take some advantage of support. The scanning stage does not 
really scan the entire trie. It only visits the nodes with large enough support. 

It is important  to note that previous algorithms in the literature did not plot 
such small supports because of their exponential time growth. Another important  
note is that the running time includes disk access to the trie. If the entire trie 
resides in memory, the running time is several hundred miliseconds. 
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6.3 G e n e r a t i n g  all  Assoc ia t ions  

The following graph represents the time it took to generate all associations with 
various different supports. The confidence ratio taken in all cases was 75%. As 
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can be seen, the graph shows that the support plays no role in the association 
generation, except for a slight time increase for ridiculously small supports. 

8 . . . . . . .  
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The following graph is similar to the one above but the confidence is taken at 
50%. Note that for all reasonable supports (even support 10, which is 0.045%) the 
results seem to be not only support-independent, but also confidence-independent. 
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6.4 Generating Excluding Associations 

To our knowledge, our a.lgorithm is the only one that can generate excluding 
associations. The graph below indicates the time it took to generate excluding 
associations with the different supports. The trie used was the one for maximum 
cover size 7. The different plots represent the three different confidence ratios 
used, 90%, 75%, and 50%.. 

The table below shows the number of associations and the number of excluding 
associations with a single exclusion and one consequent. The confidence ratio 
appears as a percentage in parentheses. It should be noted that all excluding 
associations we count are new. They are not derived from regular associations. 
In other words, i fS  =~ {a} then we do not count St3{~b} ~ {a} for any b not in 
S. This table shows that computing the excluding associations is quite important 
since there are a significant number of such associations. In addition, the table 
also shows the running time of our algorithm to produce all regular associations, 
and all excluding associations with one exclusion and a sinzle conseauent. 
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Support: 5 10 20 30 40 50 100 200 400 
Regular Associations(90%): 7321 733 241 72 34 24 6 3 0 

Excluding Associations (90%): 1047 293 72 26 16 10 0 0 0 
Time (seconds, cons 90%): 269.2 220.8 199.1 196.6 187.1 183.81176.9 173.8i163.8 

Regular Associations (75%): 9899 1070 366 144 62 45 13 6 2 
Excluding Associations (75%): 833 288 80 37 17 4 0 0 0 

Time (seconds, conf'. 75%): 279.7 226.6 210.1 201.6 195.0 191.5 182.6 180.7 173.8 

Regular Associations(50~): i3217 1681 617 279 139 91 29 9 3 
Excluding Associations (50%): 525 173 81 40 31 24 5 3 0 

Time (seconds, conf'. 50%): 295.7 242.0 219.3 207.7 206.6 198.1 189.0 182.7 175.8 

The running times are plotted on the following graph. 
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While the time to generate excluding associations is not nearly as good as the 
time to generate associations, it is still manageable. To our knowledge, this 
is the first program that can generate excluding associations. Unfortunately, 
we can not claim that we generate the excluding associations with a support- 
independent time complexity. However, the situation is not awful. Examining 
the data, one can see that the ratio of the time it takes for support 100 over the 
time for support 10, is merely 80%, even though there is an order of magnitude 
difference between the supports. 

7 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

We have shown a new method for generating associations. Our method enables 
finding associations with extremely small supports, naturally allows finding cov- 
ers in growing and shrinking databases and is the first known algorithm to 
generate excluding associations. At the heart of our method was using subword 
trees for succinct encoding and efficient retrieval of information. Our algorithm 
performed satisfactorily on the Reuters-22173 database. 
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From a theoretical point of view, all existing algorithms, including the ones we 
presented here, have an exponential bottleneck at some stage. Our algori thm 
reaches this bottleneck rather fast. It would be an extremely impor tant  con- 
tr ibution to develop a method that  would only have a polynomial  worst-case 
complexity. We feel that  the literature of subword trees may provide answers in 
this direction. We also feel that  further study will allow achieving faster gener- 
ation of excluding associations. 
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