
A N e w and Versat i le M e t h o d for Assoc ia t i on
G e n e r a t i o n

Arnihood Amir* Ronen Feldman** Reuven Kashi***
Georgia Tech Bar-llan University Bar-llan University

and
Bar-Ilan University

A b s t r a c t . Current algorithms for finding associations among the at-
tributes describing data in a database have a number of shortcomings:

1. Applications that require associations with very small support have
prohibitively large running times.

2. They assume a static database. Some applications require generating
associations in real-time from a dynamic database, where transac-
tions are constantly being added and deleted. There are no existing
algorithms to accomodate such applications.

3. They can only find associations of the type where a conjunction
of attributes implies a conjunction of different attributes. It turns
out that there al"e many cases where a conjunction of attributes
implies another conjunction only provided the exclusion of certain
attributes. To our knowledge, there is no current algorithm that can
generate such excluding associations.

We present a novel method for association generation, that answers all
three above desiderata. Our method is inherently different from all exist-
ing algorithms, and especially suitable to textual databases with binary
attributes. At the heart of our algorithm lies the use of subword trees
for quick indexing into the required database statistics. We tested our
algorithm on the Reuters-22173 database with satisfactory results.

* Department of Mathematics and Computer Science, Bar-Ilan University, 52900
Ramat-Gan, Israel, (972-3)531-8770; amir@cs.biu.ac.fl; Partially supported by NSF
grant CCR-92-23699 and the Israel Ministry of Science and the Arts grant 6297.

** Department of Mathematics and Computer Science, Bar-Ilan University, 52900
Ramat-Gan, Israel, (972-3)531-8629; feldman@cs.biu.ac.fl; Partially supported by
the Israel Ministry of Science and the Arts grant 8615.

*** Department of Mathematics and Computer Science, Bar-Ilan University, 52900
Ramat-Gan, Israel, (972-3)531-7529; kashi@cs.biu.ae.il.

222

l I n t r o d u c t i o n

Algorithms for finding association rules appear in [2, 1, 11, 8, 9, 13]. These al-
gorithms find covers, i.e. sets with large enough support. They then check the
confidence on suitable partitions of the covers. In the worst case these algorithms
have exponential time complexity. In reality, though, their running time on the
tested databases is manageable. The reasons for this are the heuristics they im-
plement. The heuristics are all based on the support. The speed of the algorithm
is proportional to the size of the support. The higher the support - the faster
the algorithm. For very small supports these algorithms break down.

Consider the following two application domains that require mining for associa-
tions. The first is a scenario that involves finding associations between labels of
articles in textual collections [5, 6, 7]. Another important example is in a med-
ical database where transactions are medical records, the type of associations
needed are those between treatment and outcome, symptoms and procedures,
demographic attributes and medical outcome, initial symptoms and length of
hospital stay.

Both of these important applications have needs that are not answered by the
existing algorithms.

1. Sma l l S u p p o r t : Medicine is replete with rare but lethal cases. Under these
circumstances it is better to err on the side of safety and consider associations
with small support. What is needed, then, is a completely new method of
generating associations in a support independent manner.
There is no current association generation algorithm that can handle tiny
supports.

2. D y n a m i c D a t a b a s e s : In a fast-changing database (growing or shrinking),
the user may need results in real t ime as new records accumulate or change
and the association needs to reflect all known data.
In [4] two methods for real time generation of associations in incremental
databases were developed. They were tested and compared on the Reuters-
22173 database using the KDT data mining system. While the methods
of [4] performed quite well on the Reuter-22173 test database, they suffer
from two main drawbacks. (1) They are both support dependent, and (2)
They assume only an increasing database, but. can not handle a decreasing

database.
3. G e n e r a l Assoc i a t i ons : In our definition of association we followed Agrawal,

Imielinski and Swami [1]. Their definition of an association rule means that
a conjunction of attributes implies a conjunction of other attributes, A1 A
A2 A . . . A Ai ~ B1 A . . . A B i . Recently, Mannila and Toivonen [10] discuss
the theoretical option of having a general boolean formula implying another
general boolean formula. Many such formulae are meaningless from a data
mining perspective. For example, A1 A A2 A �9 �9 - A Ai ~ ~ B I A �9 �9 A - ,Bj for
all subsets { B I , . �9 Bj } where it is not the case that A1 A A 2 A �9 �9 �9 A Ai ::~

223

B,, ~ = 1 , . . . , j . It is clearly not worthwhile to seek such meaningless asso-
ciations, especially considering the fact that their number is exponential in
the number of attributes (587 in the Reuters-22173, for example).

However, there are several interesting general cases. One such example is
associations of the following form: A1 A A~ A . . . A Ai ~ B1 A . . . A Bj
where some of the A~'s are negations. This means that there is sufficient
support and confidence for a rule, only provided that certain attributes are
not present.

E x a m p l e : A A B A --,C ::~ D means that there is sufficient support for set
{A, B, D} but not enough confidence for A A B ==~ D. On the other hand,
if we exclude C, then there is both sufficient support and confidence for the
rule. We can conclude that "A and B imply D when C does not occur".

Such excluding associations are meaningful and important, yet the current
algorithms are incapable of producing them.

In this paper we present a novel idea for generating associations. Our method
uses subword tree techniques to mine for associations and is fundamentally differ-
ent from all previously known algorithms. Our algorithm can handle very small
supports, handles dynamic databases, and finds associations with negations.

Our algorithm's worst case time is exponential in the maximum cover size. In
practice the size of the maximal cover is rather small (7 in the Reuters-22173
database with support 10, which is equal to 0.045%), while the number of at-
tributes or the record size may be much larger (587 and 26, resp. in the Reuters-
22173 database).

In addition, our algorithm reads the database only once. Since the database
is normally on external memory, the main time devoted to the algorithm is
the I /O time. Consequently, the fact that our algorithm reads the data only
once significantly reduces the running time. As a result, the small exponential
multiple on the number of machine instructions is not critical. Like all association
generation algorithms, our algorithm is very efficient when the data structures it
uses reside in memory. The compact representation we use helps keep the extra
data structure small relative to the amount of information it provides.

Our method is especially suitable for textual databases, where there is a very
large number of attributes, but the length of an individual transaction is small.
Under such circumstances it scales reasonably well. For example, if the maximum
cover size is 5, then the generated auxilliary databases will be roughly 30 times
larger than the initiall database. In addition, we only handle binary attributes,
where for every transaction either an at tr ibute exists or it does not.

2 P r o b l e m D e f i n i t i o n

224

The following is a formal statement of the problem based on the description of
the problem in [2, 3, 11]. Let I = {i~, i2, ..., ira} be a set of attributes, also called
items. Let D be a set of variable length transactions over I. Each transaction
contains a set of items {ii,ij , ...,ik} C I. A set of items is called an itemset.
The number of items in an itemset is the length (or the size) of an itemset. An
itemset of length k is referred to as a k - itemset.

An association rule is an implication of the form S1 =~ $2, where S1, $2 C I,
and $1 f3 $2 = 0. $1 is called the antecedent of the rule, and $2 is called the
consequent of the rule. We follow the literature [2, 3, 11] in denoting associations
as an implication of sets of attributes. A generalization, explored by Maunila and
Toivouen [10], is denoting associations as an implication of boolean formulae.
Thus, a rule of the form {A1, A2 , . . . ,A,,} =~ {B1, B 2 , . . . , Bin} will be denoted
in [10] as A1 A A2 A . . . A A~ ::~ B1 A B2 A . . . A Bm. The formal definition of an
association rule appears below.

Each rule has an associated measure of statistical significance called support.
For an itemset S C I, the support of S is the number of transactions in D
that contain the itemset S. (Note that in the literature the support is usually
measured as a given fraction of the database. However, we deal with extremely
small supports and thus choose to define the support absolutely). We denote
by supp(S) the support of S. The support of the rule $1 =~ $2 is defined as
supp(S1 U $2). An itemset that has support greater than or equal to a specified
minimum support threshold is called a covering itemset or shortly cover.

A rule $1 ~ $2 has a measure of its strength called confidence defined as the
ratio of number of transactions in D that contain itemset $1 U $2 over number
of transactions that contain itemset $1.

The problem of mining association rules is to generate all rules $1 =~ $2 that
have both support and confidence greater than or equal to some user specified
minimum support (minsupp) and minimum confidence (minconf) thresholds
respectively, i.e. for regular associations:

supp(S1 U 5"2) _> miusupp

and
supp(S~ u $2)

supp(S1) >_ mincon f .

This problem can be decomposed into the following two subproblems:

1. All covers, i.e. itemsets that have the minimum support, are generated.

225

2. All the rules that have minimum confidence are generated in the following
naive way: For every covering itemset S and any $2 C S, let 5:1 = S - S~. If
the rule $1 =V $2 has the minimum confidence, then it is a valid rule.

If all covers and their supports are given, one can generate rules in a brute-force
manner, by considering all partitions of the powerset of every cover. Thus, the
existing literature concerned itself mainly with generating all covering itemsets
and their supports. In section 3 we present an efficient algorithm for generating
all covers. In addition, we show an efficient and fast method for generating all
associations.

3 A N e w A p p r o a c h

A trie is a data structure that allows a set of strings to be stored and updated,
and allows membership queries. For a formal definition of a trie, see e.g. [14]. We
use the lrie data structure to generate covers. Using the trie enables generating
covers independently of support. In addition, the information stored in the trie
can be used later for exceedingly fast queries for new types of associations.

3.1 U s i n g t h e T r i e

Our idea is to preprocess the database and construct a data structure that en-
codes necessary information for association generation. Once that data structure
is constructed there is really no further need to access the original database. The
new data structure can then be used to generate various different types of asso-
ciations. We also show that updating the new data structure when the database
is changed is a fast and simple process.

In the preprocessing phase we construct a trie of the database. Since the database
entries are sets of attributes and a t r i e is defined on strings some conversion is
necessary. The first step is numbering the different attributes. We then consider
every set as a string sorted by order of the at tr ibute number.

We would like every node on the trie to be a potential cover. Unfortunately,
every subset of a record is a potential cover. It would seem that an exponential
space is required, which would make the idea prohibitively expensive for any
but a database with very small records. However, the situation turns out to be
a lot better than that. Because covers are usually not large (at most 7, in the
Reuters-22173 even for the very small support of 10) we can set a relatively small
value k as the maximum cover size and only consider subsets of size up to k for
inclusion in the trie. Thus, for a record of m attributes, where k is the value

k

taken as the bound of the largest cover, we consider only the E (' 7) different
i = 1

/-element subsets of the m attributes, for i = 1 , k.

226

At the colclusion of the preprocessing phase we have a data. structure encod-
ing all potential covers and the number of transactions that include those sets
among their attributes, with an extremely fast and efficient access method to
every cover. The data structure is dynamically updated. Its size is quite man-
ageable (see experimental results) and it encodes data that allows instantaneous
recognition of covers, efficient support-independent generation of associations,
as well as generation of excluding associations.

4 Association Generation

Many current algorithms generate association rules by the exponential-time
naive method of testing the confidence of all subsets of the cover. The following
lemma provides an idea for more efficient generation of rules from covers.

L e m m a : Let S, 51, $2 be mulually disjoint sets of attributes.
I f S ~ $1 U $2 is an association rule, then also S U $1 ~ 5'2 and S U $2 =r $1
are association rules.
P r o o f : Easy by Venn Diagrams.

The meaning of the lemma is that once all associations of the form S ::v {a}
have been generated, where a is a single attribute, we can narrow down the
space of potential attributes of the form S ::~ {a, b}. In particular, only if both
associations S U {a} ::r {b} and S U {b} ~ {a} exist, is there any chance for
S =r {a, b} to exist. A similar argument holds for larger sets in the right hand
side of the association.

5 Excluding Associations

We previously defined the meaning of supp(S) where S is a set of attributes and
supp(S1 ~ $2) where $1 =:> $2 is a regular association.

Let S be a set of attributes {A1 , A,~}. Denote the set {-~A1,.. . , ~An} by

Excluding associations are of the form $1 U ~$2 => $3, where $1, $2, $3 are
mutually disjoint. Recall that the intuitive meaning of S1 U --$2 ~ $3 is that
the attributes in S1 imply the attributes in $3 p r o v i d e d that the attributes in
$2 do n o t appear in the transaction.

In the boolean formula notation such a rule will be written as A1 A A2 A -. . A
An A -~B1 A -,B2 A �9 .. A - B , , ::> C1 A C2 A �9 .. A C~, where $1 = {A1 , A,~},
-~$2 = {-~BI , . . . , -~B~} and 5?3 = {C1, . . . ,C~}.

227

D ef in i t i on : We say that $1 U -~$2 ~ Sa is an excluding association if S1, $2, $3
are mutually disjoint sets of attributes and the following conditions hold:

 upp(& u &)
supp(S1) < mincon f

(E2) 8upp(S 1 I J $3) - 8app(S1 [3 ~2 LJ $3) > ,7~inSUpp, and

(E3) supp(S1 U $3) - supp(S1 U S2 USa) >_ rnineonf.
supp(Sx) -- supp(S1 U $2)

In the rest of this paper we will only consider excluding associations where
$2 and Sa have a. single attribute. It should be noted that our algorithm can
be generalized to larger sets by considering all subsets of a cover. We did not
implement this direction because of time complexity considerations.

An excluding association can be located by a depth first search (DFS) on the
trie, in a similar manner to the DFS performed for finding associations. The only
difference is that for every path we need to pick out the pairs {a} and {b} as Su
and Sa for which conditions (El) , (E2) and (Ea) hold.

6 E x p e r i m e n t a l R e s u l t s

We ran our tests on the Reuters-22173 database. The Reuters-22173 text cat-
egorization test collection is a set of documents that appeared on the Reuters
newswire in 1987. The 22173 documents were assembled and indexed with cate-
gories by personnel from Reuters Ltd. and Carnegie Group, Inc. in 1987. Further
formatt ing and data file production was done in 1991 and 1992 by David D.
Lewis and Peter Shoemaker. The documents were tagged with 587 attributes.
We treat each docmnent as a single transaction, where the attributes are the
keywords with which tile document is tagged. The size of the Reuters-22173
textual database is 25rob. The size of the Reuters-22173 ASCII at tr ibute set is
lmb.

The platform we used was an UltraSPARC 1000 with 64rob main memory.

6.1 Tr i e C o n s t r u c t i o n

We constructed three tries. One was a full trie with all subsets of every trans-
action. The other tries had maximum cover sizes 10 and 7. The following table
summarizes the time and space it took to construct each of the tries. In the table
below, the first row is the size of the trie, the second row is the time it took to
construct the trie, and the third row is the construction time and saving the trie
on the disk for future use.

228

All Subsets Max Cover Size 10 Max Cover Size 7:

Space: 4.61 mb 3.57 mb 1.45 mb
Time, construction only: 33.5 sec. 21.8 sec. 10.9 sec.

Time, including save: 35.5 sec. 23.1 sec. 11.6 sec.

In all the following subsections, we start out with an existing trie on disk. The
times quoted include disk access.

6.2 G e n e r a t i n g All Cove r s

Generating all covers simply implies DFS of the tree, independently of the sup-
port. In the graph below one can see the running times when using the tree with
maximum cover size 7, the tree for maximum cover size 10, and the full tree. As
can be seen, there is practically no difference in the running time for different
supports. The only slight rise is where the support is 3. Note that we are talk-
ing about absolute 3, every cover that appears even three times was generated!
Even the running tinae for support 3 (0.01%) was very small, 3.93 seconds on
the full trie. The reason there is some increment for such a minute support is
that now indeed a full DFS took place. The way we constructed the trie allows
the scanning to take some advantage of support. The scanning stage does not
really scan the entire trie. It only visits the nodes with large enough support.

It is important to note that previous algorithms in the literature did not plot
such small supports because of their exponential time growth. Another important
note is that the running time includes disk access to the trie. If the entire trie
resides in memory, the running time is several hundred miliseconds.

"~Jze 7 Ire�9 "''.. " ~ e To- t~ �9 - ~ - *
" n a . . "Tult_-lrer - G --

. G s D ~ e e ~

3

2 .5

s u M ~ r l

6.3 G e n e r a t i n g all Assoc ia t ions

The following graph represents the time it took to generate all associations with
various different supports. The confidence ratio taken in all cases was 75%. As

229

can be seen, the graph shows that the support plays no role in the association
generation, except for a slight time increase for ridiculously small supports.

8
' "s i~.7twr

7

6 \ ' \

\ " h 5 : ,,

i \ "-...
= " \ , , .

5 "i ZO 20 3~ 40 ~0 IO0 2OO 4~3
~tq~mfl (~nt]dcnce o 751

The following graph is similar to the one above but the confidence is taken at
50%. Note that for all reasonable supports (even support 10, which is 0.045%) the
results seem to be not only support-independent, but also confidence-independent.

11 , ,

"full-tree"

",A

7 Io .~1 N w ~ Io~ 2OO 4~1

6.4 Generating Excluding Associations

To our knowledge, our a.lgorithm is the only one that can generate excluding
associations. The graph below indicates the time it took to generate excluding
associations with the different supports. The trie used was the one for maximum
cover size 7. The different plots represent the three different confidence ratios
used, 90%, 75%, and 50%..

The table below shows the number of associations and the number of excluding
associations with a single exclusion and one consequent. The confidence ratio
appears as a percentage in parentheses. It should be noted that all excluding
associations we count are new. They are not derived from regular associations.
In other words, i fS =~ {a} then we do not count St3{~b} ~ {a} for any b not in
S. This table shows that computing the excluding associations is quite important
since there are a significant number of such associations. In addition, the table
also shows the running time of our algorithm to produce all regular associations,
and all excluding associations with one exclusion and a sinzle conseauent.

230

Support: 5 10 20 30 40 50 100 200 400
Regular Associations(90%): 7321 733 241 72 34 24 6 3 0

Excluding Associations (90%): 1047 293 72 26 16 10 0 0 0
Time (seconds, cons 90%): 269.2 220.8 199.1 196.6 187.1 183.81176.9 173.8i163.8

Regular Associations (75%): 9899 1070 366 144 62 45 13 6 2
Excluding Associations (75%): 833 288 80 37 17 4 0 0 0

Time (seconds, conf'. 75%): 279.7 226.6 210.1 201.6 195.0 191.5 182.6 180.7 173.8

Regular Associations(50~): i3217 1681 617 279 139 91 29 9 3
Excluding Associations (50%): 525 173 81 40 31 24 5 3 0

Time (seconds, conf'. 50%): 295.7 242.0 219.3 207.7 206.6 198.1 189.0 182.7 175.8

The running times are plotted on the following graph.

3(~)

240

220

180

l q)

"~.tJa~cr t].5"
"~nndencr ~.75" - ~ -
"confidcnr o.o- .m.-.

. o . _ . _ . : . : ;i.
10 20 30 4o 5o l l ~ 2oo ~

While the time to generate excluding associations is not nearly as good as the
time to generate associations, it is still manageable. To our knowledge, this
is the first program that can generate excluding associations. Unfortunately,
we can not claim that we generate the excluding associations with a support-
independent time complexity. However, the situation is not awful. Examining
the data, one can see that the ratio of the time it takes for support 100 over the
time for support 10, is merely 80%, even though there is an order of magnitude
difference between the supports.

7 C o n c l u s i o n s a n d O p e n P r o b l e m s

We have shown a new method for generating associations. Our method enables
finding associations with extremely small supports, naturally allows finding cov-
ers in growing and shrinking databases and is the first known algorithm to
generate excluding associations. At the heart of our method was using subword
trees for succinct encoding and efficient retrieval of information. Our algorithm
performed satisfactorily on the Reuters-22173 database.

231

From a theoretical point of view, all existing algorithms, including the ones we
presented here, have an exponential bottleneck at some stage. Our algori thm
reaches this bottleneck rather fast. It would be an extremely impor tant con-
tr ibution to develop a method that would only have a polynomial worst-case
complexity. We feel that the literature of subword trees may provide answers in
this direction. We also feel that further study will allow achieving faster gener-
ation of excluding associations.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance per-
spective. IEEE Trans. Knowledge and Data Engineering, 5(6):914-925, 1993.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. A CM SIGMOD, pages 207-216, Washington,
DC, May 1993.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proc. 20th Int'l Conf. on VLDB, Santiago, Chile, Aug 1994.

4. R. Feldman, A. Amir, Y. Aumann, A. Zilberstein, and H. Hirsh. Incremental al-
gorithms for association generation, to appear, First Pacific Conference on Knowl-
edge Discovery, July 1996.

5. R. Feldman and I. Dagan. Knowledge discovery in textual databases. Proc. 1st
Intl. Conf. on Knowledge Discovery and Data Mining, pages 112-117, 1995.

6. R. Feldman, I. Dagan, and H. Hirsh. Keyword-based browsing and analysis of
large document sets. In Proc. 5th Syrup. on Document Analysis and Information
Retrieval, Las Vegas, Nevada, April 1996.

7. R. Feldman, I. Dagan, and W. Kloesgen. Efficient algorithms for mining and ma-
nipulating associations in texts. In Proc. 13th European Meeting on Cybernetics
and Systems Research, Vienna, Austria, April 1996.

8. W. Kloesgen. Problems for knowledge discovery in databases and their treatment
in the statistical interpreter explora. Int'l J. for Intelligent Systems, 7(7):649-673,
1992.

9. W. Kloesgen. Efficient discovery of interesting statements. The Journal of Intelli-
gent Information Systems, 4(1), 1995.

10. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed rep-
resentations. Proc. 2nd Int'l Conference on Knowledge Discovery in Databases,
1996.

11. H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. Proc. A A A I Workshop on Knowledge Discovery in Databases,
pages 181-192, 1994.

12. G. Piatetsky-Shapiro and W.J . Frawley, editors. Knowledge Discovery in
Databases. AAAI Press/MIT Press, 1991.

13. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. Proc. 21st Int'l Conf. on VLDB, 1995.

14. R. Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

