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Abs t rac t .  Many algorithms in machine learning, knowledge discovery, 
pattern recognition and classification are based on the estimation of the 
similarity or the distance between the analysed objects. Objects with 
higher structural complexity often cannot be described by feature vectors 
without losing important structural information. These objects can ade- 
quately be represented in the language of logic or by labeled graphs. The 
similarity of such descriptions is difficult to define and to compute. In this 
paper, a cormectionist approach for the determination of the similarity of 
arbitrary labeled graphs is introduced. Using an example from organic 
chemistry, the application of the approach within one distance based 
and one generMisation based classfication algorithm is demonstrated. 
The generalisation based algorithm forms clusters or subclasses of simi- 
lar examples of the same class and extracts the parts of the objects which 
determine the class of the object. The algorithms perform very satisfac- 
torily in comparison with recent logical and feature vector approaches. 
Moreover, being able to handle structural data directly, the algorithms 
need only a subset of the given features of the objects for classification. 

1 I n t r o d u c t i o n  

Many tasks in intelligent data  analysis require the estimation of the similarity 
between the entities of the data  base and the query objects. In some methods of 
clustering, the data  set is divided into clusters with high intra-class and low inter- 
class similarity. In classification, distance based algorithms use the similarity 
between classified objects and the query object for determining the class of the 
query object. In machine learning and knowledge discovery [30, 31], objects are 
compared with the aim to find common characteristic features of objects having 
similar properties or belonging to the same class. If the objects are represented 
by feature vectors, often some kind of Euclidian or generalised Minkowski metric 
is employed. 

Objects having a complex structure often cannot be described as fixed length 
feature vectors without losing important  structural information (see [15, 16, 17]). 
In machine learning, these objects often are represented in a logical framework 
(see [1, 26] for an overview). Inductive Logic Programming is used to tackle the 
problems of learning and classification. In many real world applications, it is 
more natural  to describe complex objects or other structures by labeled graphs, 
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for instance chemical structures by structural formulas or computer programs 
by trees or flow charts, respectively. In this paper, the estimation of the simi- 
larity between graphs is discussed and a connectionist approach for computing 
the similarity of two graphs is introduced. It is a neural net approach to the 
graph theoretic problem of subgraph isomorphism. It is able to find an approxi- 
mate solution of the NP-complete graph matching problem efficiently including 
domain knowledge about the similarity of objects. For more details about the 
algorithm and its application to case-based reasoning, See [33, 32]. The approach 
decribed in this paper has been employed in two classification algorithms. The 
first one is a new similarity-based inductive graphtheoretic learning Mgorithm 
called SIG-Learning which reduces the set of given instances to a smaller set 
of prototypes used for classification. The second algorithm performs a weighted 
nearest neighbor classification. The results of the two algorithms are compared 
with those produced by some recent logic, graphtheoretic and feature vector 
based algorithms, applied to the discovery of cause-effect relationships of some 
organic compounds (mutagenesis data), a typical data mining problem. 

2 The Concept of Structural Similarity 

In contrast to objects represented by feature vectors, no appropriate mapping 
of graph representations into the Euclidian vector space of real numbers exists. 
Thus the similarity of graphs cannot be determined using the Euclidian or a gen- 
eral Minkowski metric. Caused by the growing interest in relational descriptions, 
different measures of similarity of relational descriptions have been proposed in 
the last years. Only a few of them have metric properties. In general the com- 
putation of the similarity of relational objects requires a lot of effort because 
every measure is based on the (NP-complete) search of some best mapping be- 
tween the objects (see [4, 3, 5, 25, 27]). Subgraphs are used in the similarity 
detection of cases, for instance in [37, 6, 36], where the notion of strucutral 
similarity is defined as the largest isomorphic subgraph of two graphs. Shapiro 
and Haralick defined in [8, 35] a structural difference of relational descriptions 
with metric properties for graphs of the same size. The well-known Dice and the 
Tanimoto-Coefficient for feature vector representations can also be adapted for 
graph representations. In [10], Erode and Wettschereck propose a distance-based 
learning algorithm using a recursive similarity measure for relational structures 
described by predicate logic. 

The similarity measure used in this paper is based on these concepts and 
the ZELINKA-Metric [42] and its derivates [22], where the common parts of the 
structures are related to the number of nodes and edges of the smaller of the two 
graphs. Colored graphs are described in this paper by G(N, V,l, e, L, E), where 
N and V -- N x N 1 are the nodes and edges of the graph, respectively, L and 
E some arbitrary sets of colors or labels and I : N --~ L and e : V --4 E the 
coloring functions for the nodes and edges of the graph. Depending on the task, 

1 That means all graphs are considered complete graphs. 
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a similarity measure based on the following definition is chosen: 

simo(=, y) = 1(-.-5) e v~: e~(.~,.j) = ~(~(.~), ~("i))l 
IN~I * (IN=I- 1) (1) 

where ~ is the chosen mapping between nodes of the graphs 
= = G(N~,V~,I=,e=,L=,E~),N~ = {nl,n~,...,nlN=l } and 
y = G(Nu,Vy,ly,ey,Ly = L~,Ey = E~). It is assumed that ~ is a graph mor- 
phism that maps a node only onto a node with the same label and provides a 
bijective partial mapping between the nodes of the graphs. So the measure relates 
the number of corresponding relations (matching edges) between corresponding 
nodes of the two graphs to the number of these relations when graph z is mapped 
onto itself, or in short: The value of Sima (z, y) measures the fraction of edges of 
z contained in y. In general, ~ is chosen in such a manner that it gives the best 
mapping between y and x with respect to the similarity in Eq.(1). As it can be 
seen, the measure is an asymmetrical one. sim(z, y) can be defined as sim~ (z, y) 
or sima (y, x) depending on the task and the properties of the graphs involved. In 
nearest neighbor classification as described in Section 5 the symmetric definition 

f sim,,(z,y) if max([N~l, [Y~[) = [N~l~ 
sire(x, y) = [ sima (y, z) otherwise ) turned out to be the best 

choice. The similarity measure used in the prototype classification in Section 4 
reflects the asymmetry of the generalisation/specialisation relation between the 
generalised description P of a set of examples and the single example z. It is 
given by the formula 

~im~(P, =) - I("~, nj) ~ V.:  ~.( .~,  ni) = ~ v ( ~ ( ~ ) ,  ~(n~))l 
IN~I * (IN~I - 1) e [0,1] (2) 

during learning where the instance covered best by the current prototype has to 
be determined and 

s im, (P ,  ~) = I(~, ~ )  e y~: e~(.~, ~j) = e~(~(.~), ~(~))1 
IgPI * (INp[- 1) e [0, 1] (3) 

in overgeneralisation testing and classification where the question is asked whether 
the instance z belongs to the set of instances containing P as a subgraph or not. 
The similarity measure (3) is used here - similar to testin 0-subsumption re- 
stricted to injective mappings - as a asymmetric measure of the quality of the 
covering of m by P, i.e. in terms of graph matching, the containment of P as a 
subgraph that generalises the set of all graphs containing P. In generalising two 
examples xl and x2 or an example x and a generalised description P, a new graph 
Q is constructed that contains the nodes and edges of the common subgraph of ml 
and m2 or of z and P, respectively, defined by the mapping ~o.The nodes which 
are not mapped onto nodes of the other graph are omitted. The edges where 
e=~(nl, nj) r e=~(~(nl), ~(nj)) or e=(ni,nj) r ev(~(nl), ~(nj)) are generalised 
by edges with the color "don't know" (or, in more sophisticated versions of the 
algorithm, some generalisation of the colors e~ (ni, nj) and ez~ (~(ni), ~(nj)) or 
e=(ni, nj) and ep(~(ni), ~(nj ) ) ,  respectively) in Q. 

These generalised edges are treated in two different ways during the compu- 
tation of the similarity between Q and another example y. If the best mapping 
of Q into the example y is computed, for instance in the classification of y or 
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in overgeneralisation testing, the "don't know"-color is considered equal to all 
other colors in Ey. If a new generalisation of Q and y is to be constructed, the 
"dont-know"-edges are considered not equal to edges of y with another color or 
at least less similar than edges of Q with the same color like the edge in y under 
consideration. 

3 The  C o m p u t a t i o n  of Graph Similarity 
If the similarity of graphs with respect to Eq. (1) is to be determined, a mapping 

must be found that maximizes this similarity between the graphs. Replacing 
by a corresponding relation p C Nx x Ny between nodes of the graphs with the 
same or similar labels and allowing ambiguous mappings between the graphs, 
the graph matching problem can be transformed into an optimization task where 
matches between pairs of nodes (n~, n~) E p with c~(n~,n~)  - %(n~ ,  n~) for 
related nodes ~ u ~ u (n i , nk) E p, (nj, nt) E p are rewarded by a positive weight w 
in order to maximize the numerator in Eq. (1) where the denominator remains 
constant. On the other hand a penalty - w i  is introduced to mappings of the 
same node of one graph to more than one node of the other graph. The graph 
matching problem can then be reformulated as follows: 

p* (x, y) = m a x , c  N=xNy {w * clp -- w i  * c2,} (4) 
clp ~ Y = n ; ' )  = 

C2p = [{(p(n~, n~,), p(n~, n~))lW = ^ # hi') v # ^ - -  -i')}[6) 
The mapping p can be represented by a twodimensional array O[N=jV,] where 
oih : 1 iff p(n~,nUh) and o~k = 0 otherwise. So, the objective function of the 
optimization tasks is 

N= Nv 

i,j----.l k,l--.1 

where wij,kl = --wl according to Eq.(4). It has been shown ([20, 19, 2, 21, 28, 
0 

7, 14, 39]), that such quadratic optimization tasks can be solved by Hopfield-like 
Artificial Neural Nets, i.e. bi-directional associative memories. In contrast to the 
most other implementations which use Hopfield Nets with binary or continuous 
sigmoidal output function, in this work an approach described in [11, 12, 41] 
is used where the output of the neurons is restricted by the non-differentiable 

{ 0 i f  x < 0  } 
ramp function r ( z )  = z if 0 < x > 1 . In addition the units of the net receive 

1 i f  z >  1 
a part of their own output as an input, setting the diagonal of the connection 
matrix to a weight 1 > Wd > 0. As usually in the domain of artificial neural nets, 
the net's results depend strongly on the chosen parameters. In [34], for the first 
time an extensive analysis of the approach of Feldman [11, 12] and Wysotzki [41] 
is given that describes the algorithm and provides its theoretical foundations, 
delivering the parameter settings which guarantee that the net reaches a stable 
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state that represents a good solution of the problem. Experiments have shown 
that the algorithm approximates the optimum solution within O((IN, I, INy 1) 2) 
time which can be accelerated considerably using parallel hardware. Based on 
these results, the approach has been incorporated into two different classification 
algorithms. 

4 T h e  S I G - L e a r n e r  a n d  t h e  P r o t o t y p e  C l a s s i f i e r  

4.1 Relational Learning Algorithms 
Learning tasks for structured objects often aim at the discovery of certain sub- 
structures of a set of objects, for instance the part of the structure that causes 
a specific common property of the objects. The main approach to relational 
learning models objects and relations in a logical framework, for instance in the 
field of Inductive Logic Programming (ILP). In this paper, elementary objects 
that constitute a structured object and the (binary) relations between them are 
described by the nodes and edges of graphs representing the structured objects, 
respectively. Colors (labels) of nodes denote one-place relations, i.e. properties 
of elementary objects, and colors of edges represent the names of the binary 
relations between objects. A graph is a more general description than another 
graph if it has less nodes or relations, i.e. it is a part of the latter. A data mining 
or classification learning task is to find a general description of objects showing 
or not showing a common property or behavior. Using a graph representation 
of structured objects, this generalisation is a set of common subgraphs that are 
believed to cause or to prevent the property or behavior in question. An example 
is a certain substructure in a chemical structural formula the presence or absence 
of which causes some biological activity. 

In relational learning, bottom-up and top-down approaches can be distin- 
guished. Bottom-up approaches try to find general descriptions of a set of ob- 
jects starting with the most specific description, i.e. the description of a given 
example. This description is generalised passing through several stages until a 
description is found that covers a subset of examples belonging to a class or 
subclass, respectively. The problem in this approach consists in choosing the 
"right" generalisation in every step of the algorithm, i.e. a generalisation that 
covers the parts of the objects' description which are relevant for the property to 
explain. Usually, algorithms of inductive logic choose the least general generalisa- 
tion (Igg) trying to preserve as much information as possible. Unfortunately, this 
may result - for instance in the case of the Plotkin-lgg (see [26] for an overview) 
- in a growing complexity of the description in every step, because no unique 
(injective) mapping from one structure into the other is used. 

Using a graph representation, the search for a general description of a set of 
objects corresponds to a search for a subgraph or subgraphs which are relevant 
for the property to explain 2. Common subgraphs provide an injective mapping 
between the nodes and relations of two structures to be generalised, i.e. one node 
of one graph is mapped exactly onto one node of the other (see Section 3, Eq. (4)). 
As well as in ILP, the selection of the appropriate subgraph is the key problem 

2 For a comparison of graph theoretic methods with ILP see [23], Chapter 6. 
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in every step of generalisation. With the aim to reduce rather than expand the 
description length in every step, usually a largest common subgraph between the 
current hypothesis and the new example is selected as a new hypothesis. Another 
approach is to choose a subgraph which is the best with respect to the aim of 
the learning, for instance the Minimum Description Length criterium used in [9] 
which results in very large search spaces. 

In generalisation based learning the aim is to produce some general descrip- 
tions of objects of the same class. A new object is believed to belong to class 
K if a generalisatiou of objects of class K exists which covers the new object. 
In similarity based learning, an object is assigned class K if it is more similar 
to some stored instances of class K than to instances of another class. Gener- 
alised Prototype algorithms [40] can be considered as a kind of mixture between 
generalisation and similarity based classification. Prototypes are descriptions of 
generalised objects which can be interpreted as abstract, typical objects of some 
class. Prototypes are constructed by using some similarity-based notion of gener- 
alisation whereas the classification procedure can use similarity or generalisation 
alone or a combination of both. The algorithm presented in this paper on the one 
hand produces general descriptions of objects in the form of common subgraphs 
which can be interpreted as typical partial structures of objects of a class. On 
the other hand the size of the common subgraph of two descriptions gives simul- 
taneously a similarity measure (see section 3). During the construction process, 
the prototypes are built by generalising similar objects of the same class. Thus, 
the classes are divided into partly overlapping subclasses with high intra-class 
similarity represented by prototypes. The class of a new object is the class of 
the prototype which covers the object better than all other prototypes, i.e. the 
class of the most similar prototype. This will be described in the following. 

4.2 T h e  S i m i l a r i t y - B a s e d  L e a r n i n g  A l g o r i t h m  

Although the fast approximate neural net algorithm decribed in section 3 is used, 
the computat ion of the appropriate best mapping between two graphs is still of 
high complexity. Thus the learning algorithm is combined with some similarity 
based method of subclass or cluster formation during the generalisation. 

A simple algorithm for the generalisation of a set of examples of the same 
class by constructing prototypes P would be: 

1. Take a set of examples S' of class K, 
mark all examples in S' as not_processed 

2. WHILE examples with mark not_processed in S' exist 
(a) S:=S', choose an example y marked not_processed from S, remove y from 

S,P:=y 
(b) WHILE S not empty 

i. choose the x from S most similar to P, remove x from S 
ii. IF the generalisation of P and x does not cover any example from another 

class than K THEN P := the generalisation of P and x ,mark x as processed 
FI 

(c) save the new prototype P 
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So every example is generalised by one of the prototypes, and some examples can 
be generalised by more than one prototype. Thus the algorithms finds prototypes 
which are generalised descriptions of disjunct as well as overlapping subclasses. 

The result of this generalisation process depends on the order of the examples 
chosen in the steps (2a) and (2(b)i). Assume that every prototype describes a 
subclass and that a subclass contains preferably a set of similar examples. Then a 
promising heuristic would be to choose the example most similar to the current 
prototype for the next generalisation step. This results in a heuristic where 
the most specific generalisation is chosen, similar for instance to the minimum 
inductive-leap heuristic in [23] in ILP. So the generalisation is combined with 
the method of agglomerative single linkage clustering of the instances around 
the seed y chosen in step (2a) by subsequently adding the most similar instances 
to a cluster described by the current prototype and containing all structures 
generalised by the prototype including the seed and the instances added in step 
(2(b)ii). This is similar to the method of conceptual clustering (see for example 
[13] and [18]). A similar procedure can be used to find clusters of structured 
objects with some common structural pattern in a database by unsupervised 
learning, i.e. where no classification is given a priori. 

This similarity-based method requires the computation of the similarity of 
all remaining examples to the current prototype which is reduced in the actual 
computation by dividing S into two subsets which are processed in sequence. The 
first subset contains all examples not yet covered by a prototype. The second 
subset of S consists of all other examples, so in the second step the overlapping 
of subclasses is detected. 

The overgeneralisation test in step (2(b)ii) is the most time-consuming part 
of the algorithm. In order to detect overgeneralisation as fast as possible, a 
heuristic is introduced in this step, too. Since the overgeneralisation test provides 
a measure of similarity between the current prototype and the tested counter- 
example, the counter-examples are sorted in every step by their similarity to the 
current prototype. 

Another property of the generalisation by subgraph detection can be utilized 
to reduce the number of matches in the overgeneralisation test. The prototype is 
reduced in size in every generalisation step. So, if we are looking for a counter- 
example that is covered by the current prototype, it is useful to test the counter- 
examples most similar to the old, more specific prototype first and to omit all 
counter-examples where the old match contains less nodes and edges of the old 
prototype than the new prototype consists of. 

Using these heuristics and pruning conditions, the number of graph matches 
in the learning algorithm can be reduced to a manageable extent. 

As a result, the set of examples can be reduced to K sets of class prototypes 
which can be used for the distance-based classification of new examples. 

5 The  Variable Kernel  Nearest  Ne ighbor  Classif ication 
The success of a k-nearest neighbor classifier depends heavily on the choice of 
an appropriate distance measure. In order to check the usefulness of the chosen 
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similarity concept as well as the goodness of the approximation of this simi- 
larity function by the neural net, a weighted nearest neighbor classfication, the 
variable-kernel similarity metric (see [38]) and David G. Lowe's extension de- 
scribed in [29] has been implemented. This algorithm takes into account the 
distribution of the distances d(x, y) -- 1 - sim(x, y) in the set of given instances. 
The influence of any of the k neighbors on the classification is weighted by a 
number proportional to a Gaussian function of its distance to the instance to be 
classified. The parameters of the Gaussian depend on the average distance of the 
M (M<k) nearest neighbors. The evidence of belonging to class c for an instance 

with the set of k nearest neighbors {xl, x2, ..., xk} is given by the formulae: 
k 

~-'~j=l,ziEc ~oj ( l d(z, z j )2 )  
e o ( = )  - , = - ( 8 )  

~ j = l  w~ 2 ~r~ 

If the evidence for a class c exceeds a given threshold, for instance 0.5, x is 
assumed to belong to class c. 

As is proposed in [29], the memory requirements and the classification effort 
was reduced by removing instances which are not important for classification. 
This is done by deleting all instances whose k nearest neighbors all belong to 
the same class. In our tests, the algorithm reduces the number of instances in 
the data set to about 60% of the original number of examples which cuts down 
the number of necessary matches for classification considerably. 

The results presented in Section 6 show that the chosen distance measure as 
well as the approximation algorithm perform very well. 

6 Results  and Conclusions 

The algorithms above have been applied to two datasets of chemical compounds 
provided by Dr. 1~. King. The sets contain nitro aromatic compounds and their 
mutagenicity. The aim is to produce a classifier that predicts the mutagenicity of 
such compounds. The first set contains 188 compounds which could be classified 
successfully using regression while the second set of 42 compounds caused some 
more difficulties. The compounds are described by graphs of atoms and bonds, 
providing information about the chemical elements, the kind of bonds between 
them, the information about the mutagenicity ("active" or "not active") and 
some additional data which were not used. The algorithms have been tested using 
tenfold crossvalidation for the first data set and leave-one-out for the smaller 
second one. The other data in Table (1) is taken from [16] and [24] where the 
dataset is described in more detail. 

The SIG-Learning reduced the datasets to sets of ca. 26 prototypes and 
achieved the classification rates shown in the Table (1). It is outperformed by 
the variabel kernel k-nearest neighbor classifier introduced in this paper and 
some of the former classifiers but shows the advantage of producing very few 
prototypes which in addition contain new knowledge about substructures causing 
the mutagenetic activity of the substances. 

In the SIG-NN algorithm as well as in the variable kernel k-NN classifier less 
information than in the former algorithms has been used. The authors assumed 
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Linear Regression 
Neural Net (Backprop) 
CART 
Progol 
Progol-S2 
INDIGO 

1188142 1188142 
0.85 0.67 SIG-NN 0.80 0.81 
0.86 0.64 Variable Kernel k-NN, k=3 C).89 D.83 
0.83 0.83 Variable Kernel k-NN 
0.81 0.86 reduced set of instances 
0.88 0.83 k=6 0.85 [I.86 
0.86 0.89 k=9 0.88 }.86 

Table 1. Results for the mutagenesis data 

that the structure of the compounds alone causes all other chemical and physi- 
cal properties of the compounds except the variances caused by stereo-chemical 
effects. Thus, the classifier should be able to predict the mutagenicity of the 
compounds using only the structural information. So in contrast to other algo- 
rithms the classifiers described in this paper did not use additional data like atom 
charges or chemical or physical properties of the compound as a whole. The as- 
sumption turned out to be true. In PROGOL-S2 [24] and INDIGO [16] structural 
information was added to the features of the atoms by using external information 
(PROGOL-S2) or context information generated by the algorithm (INDIGO). 
In both cases this results in classification errors near the ones obtained by the 
algorithms described in this paper, so the differences are not significant for the 
given dataset where about 32- of the examples belong to one class and the rest to 
the other. 

The results in Table (1) show, that the chosen similarity measure as well as 
the connectionist algorithm for the approximation of the graph similarity are 
feasible for processing data represented by labeled graphs. The intrinsic com- 
plexity of graph algorithms could be reduced far enough to be able to process 
a data base like the mutagenesis data set. The authors are optimistic about its 
use for larger databases because the algorithm bears a lot of possibilities to fur- 
ther reduce the complexity, for instance by using parallel hardware, reducing the 
number of processed instances or some preprocessing of the data, including the 
use of domain similarity knowledge and transforming the instances into smaller 
graphs by producing more abstract descriptions of them. All these improvements 
will be implemented in the future. 
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