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A b s t r a c t .  We consider several basic classes of tolerance relations among 
objects. These (global) relations are defined from some predefined sim- 
ilarity measures on values of attributes. A tolerance relation in a given 
class of tolerance relations is optimal with respect to a given decision 
table A if it contains only pairs of objects with the same decision and 
the number of such pairs contained in the relation is maximal among all 
relations from the class. We present a method for (sub-)optimal toler- 
ance relation learning from data (decision table). The presented method 
is based on rough set approach. We show that for some basic families of 
tolerance relations this problem can be transformed to a relative geomet- 
rical problem in a real affine space. Hence geometrical computations are 
becoming useful tools for solving the problem of global tolermlce relation 
construction. The complexity of considered problems can be evaluated by 
the complexity of the corresponding geometrical problems. We propose 
some efficient heuristics searching for an approximation of optimal tol- 
erance relations in considered families of tolerance relations. The global 
tolerance relations can be treated as patterns in the cartesian product 
of the object set.We show how to apply the relational patterns (global 
tolerance relations) in clustering and classification of objects. 

1 I n t r o d u c t i o n  

In rough set theory [10] the notion of set approximation has been introduced by 
using equivalence relation defined on the set of objects. In some cases, it is nec- 
essary to generalize this notion by using tolerance relation (similarity relation) 
[4, 15] .The tolerance relation can be defined in many  different ways. Often toler- 
ance relations are given by introducing some local similarity measures on values 
of at tr ibutes together with some rules of composing those local similarities into 
global ones. 

One of the main problem of methodology for da ta  mining is to develop meth-  
ods for au tomat ic  pat tern  extraction from data.  In our previous papers [7, 8] we 
have suggested to search for such pat terns  in the form of templates.  Using them 
it was possible to decompose a given table into a family of subtables correspond- 
ing to these pat terns and to create subdomains  of a given space of objects. The 
objects from any subdolnain have many  common features what suggests that  
they can create a "regular" subdomain for which strong decision rules can be 
generated. 
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In this paper we consider patterns defined by tolerance relations. These pat- 
terns correspond to some (sub-)optimal tolerance relations extracted from data. 
In this way we propose rather to search for (sub-)optimal tolerance relations 
from data  in predefined classes of tolerance relations than by assuming apriori 
their form (as it is often done when clustering methods are used). 

In searching for tolerance relations from data  we follow a method proposed 
in [14] based on rough sets. We propose a method of searching for (sub-)optimal 
tolerance relation (with respect to the number of the pairs of objects with the 
same decision from this relation) by transforming the considered problem to the 
problem of approximate description of some regions in affine space R k, where k 
is equal to the number of (conditional) attributes. 

We consider several classes of tolerance relation. Any class is characterized by 
a first order formula and some parameters which are tuned in the optimization 
process. For any of these classes we propose strategies searching for (sub-)optimal 
tolerance rela.tion in it i.e. described by a maximal set of object pairs having the 
same decision. We illustrate how the extracted patterns can be used for cluster 
construction and classification of new objects. 

2 B a s i c  n o t i o n s  

2.1 R o u g h  set  p r e l i m i n a r i e s  

An information system is defined by a pair A = (U, A), where U is a non-empty, 
finite set of objects called universe, A = { a l , . . . ,  ak} is a non-empty, finite set 
of attributes, i.e. ai : U --+ V~ for i E {1, ..., k}, where V~ i is called the domain 
of the attribute ai. 

The information space of A is defined by INFA = I'IaEA Va. We define the 
information function InfA : U -+ INFA by 

InfA (X) = (al ( x ) , . . . , a k  (.v)), for any x E U. 

Ally object x E U is represented by its information vector [nfA (x). 
A decision table A = (U, A U {d}), where d ~ A is a distinguished attribute 

called decision is a special case of information systems. 
For any information system A = (U,A) and a subset B C A the B-indis- 

cernibility relation INDB can be defined by 

x]NDBV r Vo~B[a(x) = a(y)] 

Obviously, [NDB is an equivalence relation. We denote by [ X ] I N D  B = {y : 
(X, y) E INDB } the equivalence class defined by the object x E U. 

For any X C U one can define the lower approximation and the upper ap- 
proximation of X by 

X = {x E U: [X]*NDB C X);  X = {x E U :  [X]rNDB N X  r 0), respectively. 

m 

Tile pair (X__, X) is referred to as the rough sets of X. 
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2.2 T o l e r a n c e  r e l a t i o n  

Indiscernibility relation is a useful tool of rough set theory, but in many cases it 
is not sufficient, in particular, when we deal with real value attributes. In this 
case almost every object differs from another. The equivalence classes divide uni- 
verse into tiny classes. Therefore the description of a subset of U is complicated 
(with respect to the number of equivalence classes) and not enough general. The 
standard rougb set model can be generalized by assmning any type of binary 
relation (on at tr ibute values) instead of the equivalence relation. 

In this paper we consider a family of relations r C U • U which are reflexive 
(i.e. V~eu (x,x) G r) andsymmetric (i.e. V~,yeU((x,y) ~ ~- ~ (y,x) e ~-)). Such 
relations are called the tolerance relations. 

For any x G U the tolerance class [x]~ can be defined by 

We say, that  the tolerance relation r identifies objects x and y if (x, y) ~ r; 
otherwise we say that  it discerns them. 

One can define the lower approximation and the upper approximation of any 
subset X _ U by 

r ( X )  = { x E U : [ x ] ~ C X } ;  r ( X ) = { x e U : [ x ] ~ N X r  

Let A = (A, U U {d]). be a decision table. A similarity measure for an at- 
tr ibute a G A is a positive function 6~ : U • U -4 ~+ U {0} satisfing the following 
conditions: 

1. 6 a ( ~ , ~ )  ---- 0; 

2. ~ (~, ~) = 5o (~, ~); 

Having a family of similarity measures {6~}a,~ A the tolerance relation 7- 
_C U • U can be defined by 

(x, y) ~ ~ r  ~R (6ol (x, ~), 6~ (~, y ) , . . . ,  6o~ (x, y)) = true  (1) 

where ~ (~t, ~2, ..., ~k) is a first order logic propositional formula and ~/~ is its 
realization in a relational structure of real numbers such that  ~R (0, ..., 0) -- t r u e .  

By Ck we denote the set { ( r l , r2 , . . . , rk )  E R k : 0 ~ r~, for i =  1,. . . ,k}. For 
any relation r defined by (1), the interpretation of r is defined by 

:---- {(rl,  r2, ..., rk) E Ck" ~n (rl ,  r2, ..., rk) ---- t r u e}  C Ca. (2) 

One can define different tolerance relations using different formulas ~" (~1, ---, ~k) �9 
We list some basic families of parameterized tolerance relations used in the paper: 

1. (~, y) c ~ (s~, ..., Ek) r V~,cA [5~, (x, ~) < ~] 
~" (~,Y) ~ ~ ( ~ ,  "", ~ ,  ~)  r E~,~A ~ .6~, (~,~) + ~ < 0 
3. (~,~) ~ ~ ( ~ ,  ..., ~ ,  ~)  r  Eo,~A ~ .6~, (~,~) + ~ < 0 
4. (x, y) e ~ ( ~ ,  ..., c~) ~ 3~,eA [6o. (~, ~) < s~] 
5. (~,~)  ~ ~(w)  r I I o . ~ ,  (~,~) < ~  
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where ~ is a predefined similarity measure for i = 1, ..., k and ei,r wi, w are 
real numbers, called parameters. 

A tolerance relation 7- C U x U is consistent with a decision table A = 
(A, U U {d}) if 

(x,y) G r ~ (d(x) = d(y)) V ((x,y) G INDA)  

for any objects x, y E U. 

The relation r is optimal in the family T for a given A if r contains the 
maximal number of pairs of objects among tolerance relations from T consistent 
with A. 

3 E x t r a c t i o n  o f  g l o b a l  t o l e r a n c e  r e l a t i o n  f r o m  d a t a  

Let A = (A, U U {d}) be a decision table and let 5a be a similarity measure for 
any attribute a C A. The problem of extracting a tolerance relation in a given 
class T is a searching problem for parameters such that  the tolerance relation 
with the parameters found in searching process is optimal. The searching problem 
for the optimal tolerance relation is of high complexity. 

Our goal is to search for a sub-optimal tolerance relation that  discerns be- 
tween all pairs of objects with different decisions and identifies maximal number 
of pairs of objects with the same decision. 

In the first stage of tolerance relation construction, we define a new decision 
table B called the similarity table. The table B = (U', A' U {D}) is defined 
assuming given A and the set of similarity measures {~a}~eA by 

U' = U • U;A' = {~a}~A ; and D(x,y) = ~'0 if d(x) = d(y) 
L 1 otherwise 

The set of objects of the similarity table B (for a table A) is equal to the 
set of all pairs of objects from table A and the at tr ibute values are the values of 
the similarity measure functions for pairs of objects. The new table has a binary 
decision. The decision value for any pair of objects is equal to 0 if the objects 
have the same decision in the original table A, and 1 otherwise. 

The searching problem for a sub-optimal tolerance relation for table A among 
relations from a given class T of tolerance relations can be considered as the 
problem of decision rule extraction from the decision table B. We are looking for 
decision rules describing the decision class corresponding to D = 0, i.e. the class 
associated with pairs of objects of the table A with the same decision. Our goal (, , is to search for the rule of the form k~ al(u),a 2 ( u ) , . . . , %  (u ~ (D(u) = O) 

satisfied by as many as possible objects u E U'. 
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Vit.A Vit.C Fruit Vit.A Vit.C F~i t  
1.0 0.6 Apple 2.0 0.7 Pear 
1.75 0.4 Apple 2.0 1.1 Pear 
1.3 0.1 Apple 1.9 0.95 Pear 
0.8 0.2 Apple 2.0 D.95 Pear i 
1.1 0.7 Apple 2.3 1.2 P e a r  
1.3 0.6 Apple 2.5 1.15 Pear 
0.9 0.5 Apple 2.7 1.0 Pear 
1.6 0.6 Apple 2.9 1.1 Pear 
1.4 0.15 Apple 2.8 0.9 Pearl 
1.0 0.1 Apple 3.0 1.05 Pear 

Table  1. Apples and pears 

4 G e o m e t r i c a l  i n t e r p r e t a t i o n  

In this section we show that  some families of tolerance relations have clear geo- 
metrical  interpretations, i.e. they can be described in a straightforward way as 
subsets of real affine space R k. Therefore the searching problem for a sub-opt imal  
tolerance relation can be reduced to searching for an approximate  description of 
the corresponding subset of real affine space R k. 

For a decision table h = (U,A U {d}) with k conditional at tr ibutes and 
a set {~a}a~A of predefined similarity measures we build the similarity table 

B = (U' ,  A' U {D}). Every object u E U' can be represented by a point p(u) = [' ' ) ]  a 1 (u) ,..., a k (u E R k of one of two categories "white" or "black".  A point 

p(u) E R k is "white" iff {u '  U' } E : p(u') = p(u) is non-empty and it consists 

of objects with the decision D = 0 only; otherwise p(u) is "black".  Below we 
present a geometrical interpretations of some standard tolerance relations. As 
a similarity measures we take the functions: 5~ (x,y) = l a ( x ) -  a(y)[ for any 
at t r ibute  a C A. We take as an example a table with two at tr ibutes representing 
the quanti ty of v i tamin A and C in apples and pears. 

We want to extract  the similarities of fruits of one category. The da ta  about  
apples and pears are shown in Figure 1. 

Below we present a geometrical interpretations of some standard tolerance 
relations in the space of pairs of objects from the fruit table. 

1. The relation, called the descriptor conjunction, is defined by 

<x,y> e, . . . . .  A [({a, (x,y) S 6i] 
a~EA 

(s) 

where el , . . . ,  ck E R +. The interpretation of 7-1 (el ..... ek) (see (2)) is given by 

rl (~1 ..... ~k) : {(,'1, ..., rk) ~ Ck : 0 < r~ _< e~ for i = 1, ..., k}  
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. 

7.1 (~1,  .--, gk) is an i n t e r v a l  in R k with boundaries el ,  e2, ..., ek ; it is attached 
to the origin O of axes (Figure 2b). When el . . . . .  ek = e instead of general 
interval in R k we have hypercubes (Figure 2a). By T1 we denote the family 
of all hypereubes and by T2 we denote the family of all relations defined by 
(3). 
The l inear combinat ion relation is defined by 

(*, y) e ~2 ( ~  ..... ~k, w) ~ E ~ A  ~ '  5o, (*, Y) + w _< o 

where wl, ..., wk, w E R. The interpretation of r2 (wl, ..., wk, w) is given by 

{ k } 

. 

k Hence r2 (wl  ..... wk,  w) is a region below the hyperplane E i = l  Wi �9 Xi -]- W : 0 
in Ca (Figm'e 3a). By T3 we denote the family of all tolerance relations of 
the form 7.2 (wl ..... wk, w). 
A linear combination can be extended to the higher order combination. We 
consider the relation defined by square combinat ion o f  s imi lar i ty  m.easures 

a,EA 
(4) 

where Wl, . . . ,  Wk, W C R.  The interpretation of ra (wl, ..., wk, w) is given by 

Hence Ta (Wl,... ,  Wk, w) is a region in Ca bounded by e l l ipso id  (Figure 3b). 
By 7] we denote the family of all tolerance relations of the form (4) 

4. The next relation called "min" is defined by the formula 

where e is a non-negative real. Hence r4 (e) = U/k=t {(rl, ..., rk) E Ck:  r/ _< ~} 
is a s u m  of  b a n d s  with boundaries xi = 0and xi = e for i = 1, ..., k. By T5 
we denote the family of all tolerance relations of the form ~'4 (e).  

5. The tolerance relation r5 is defined by a disjunction of atomic formulas 

(X, y) e 7-5 (C1,--., ~k) ~2~ Va,EA [~al (X, y) ~ gi], 

where el,...,ek are non-negative real numbers. This relation is a generalization 
of the relation "nmf '  (Figure 4a). 

6. Our last example is a tolerance relation defined by 

(x, ~) ~ 7.6 (w) r  I]o,cA 5~, (x, Y) _< w, 

where w C R +. The set v6(w) is equal to {(r l , . . . ,  rk) E Ck : rl  ' . . .  "rk _< w}. 
Hence it is a region in Ck bounded by h y p e r b o l o i d  (Figure 4b). 
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5 H e u r i s t i c s  

The time complexity of the searching problem for optimal tolerance relation 
parametrized by k parameters for a set of n objects is O(na), because we have to 
test all possible values of parameter  vector, where the number of possible values 
for one parameter  is usually O (n). This time is not feasible, when the dimension 
of the problem is large (the number of points n and the dimension k of the space 
are large ). We show, that the approximations of some tolerance relations can be 
constructed if its geometrical description is known. Below we present heuristics 
for two important  tolerance relation classes. 

5.1 S e a r c h i n g  fo r  d e s c r i p t i o n  c o n j u n c t i o n  

The first example of tolerance relation classes is the descriptor conjunction 
r (el , . . . ,  ca) (see (3)) having the following interpretation 

v(el,.. .fia) = {( r l , . . . , ra )  e C a : 0 < rl < ei for i = 1, . . . ,k} (5) 

One can see that  for given r ..... ek, the set (5) is included in the interval 
1(r ..... ek) from R k. Our goal is to search for parameters el ..... ek such that  the 
interval I (el ..... ca) consists of "white" points only and, at the same time, as 
many as possible of them. 

We start  from the empty interval /0(with one null boundary, let el = 0). 
The idea of the algorithm is based on construction of a sequence of intervals 
by transforming any successive interval Ii to a new interval Ii+l. Among gener- 
ated intervals, we choose the best one. Transformation is performed by gradual 
augmenting the parameter el,  and by decreasing some of the remaining pa.ram- 
eters so, that  the interval L' (el, ..., ea) is still consisting of while points only and 
including as many as possible points. The algorithm can be presented as follows: 

I n p u t :  The set of labeled points from the space /~k. 

O u t p u t :  Parameters {r .... , r of the sub-optimal interval. 

1. Set el = 0 and ei = oo for i = 2, . . . ,k .  
2. Gradually augment the value of e l to  obtain a new interval I (el, ..., ek) 
3. If the interval I (ei , . . . ,ek) contains black points then decrease some 

of the remaining parameters to eliminate "black" points from inter- 
val I (el, . . . ,ek). We choose such parameters to optimize the number 
of "white" points belonging to the modified interval. 

4. Repeat Step 2 until all possible values of el are checked. Return param- 
eters el,  ..., ek of the optimal interval among considered in Step 3. 

The algorithm can be implemented in O(n 2 �9 k) t ime by using sorted lists of 
possible values of considered parameters.  
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5.2 S e a r c h i n g  fo r  l i n e a r  c o m b i n a t i o n  ( h y p e r p l a n e )  

Let us consider a l inear combinat ion tolerance relation r (Wl, ..., wk, w) ant its 
interpretation 

(Wl,... wk, w) = (,'i ,  ..., rk) e �9 r, + < 0 (6) 

For given parameters wl ,  ..., wk, w the formula (6) describes the set of points 
k with positive coordinates lying below the hyperplane H : }-'~i=lwi �9 z i  + w = O. 

This hyperplane is determined by (k + 1) parameters. Any hyperplane divides 
the space into two half-spaces. We say the hyperplane H is sat is fac tory  if the 
half-space below the hyperplane / /  contains only "white" points. Our goal is 
to search for a satisfactory hyperplane H with the (semi-)maximal number of 
"white" points below it. 

k The algorithm starts with randomly chosen hyperplane H = ~ i = l w i  .zi + w. 
We generate a set of satisfactory hyperplanes starting from H.  Among them we 
choose the best one. The satisfactory hyperplane can be computed on two stages. 
At first we rotate the hyperplane H to obtain a new hyperplane (i.e. determines 
a new partition of point set). Then we translate it until the points below hyper- 
plane are all "white".  The hyperplane H can be rotated by fixing k parameters, 
for example w, wl ,  ..., w j - 1 ,  w j+l ,  ..., wk and modifying only one parameter wj. 
We are interested in a values of wj such that the modified hyperplane determines 
a new partition of set of objects. The idea is based on observation that  a point 

p [xl, z~, ..., xk] E C k is below g iff H (p) < 0 i.e. wj < - ~ e j  ~ ' ~ - ~  = . Let 
- -  - -  x j  

wj(p)  = - E ' ~ " = ' - ' ~  and =j 

S =  w j ( p ) : p =  a l ( u ) , . . . , a  u f o r a n y u e a  (7) 

then any value wj chosen from S determines a new hyperplane defining a new 
partition of the point set. The algorithm can be presented briefly as follows: 

I n p u t :  The set of labeled points of the space R k. 
O u t p u t :  Parameters {w, Wl, . . . ,  wk} of the optimal satisfactory hyperplane. 

1. H (w, w l  ..... wk) := randomly chosen hyperplane; 
2. fo r  (any j -- 1...k) 

b e g i n  

Construct the set S defined in (7) and sort S in increasing order; 
fo r  (any positive v E S ) 
begin 

wj := v; 
Translate H (w, Wl ..... wk) to a good position i.e. with all "white" 

points below it and calculate the number of those white points. 
The f i tness  of the hyperplane is equal to this number. 

e n d  
e n d  
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3. Among good hyperplanes we choose a hyperplane with maximal  fitness. 

The  algori thm repeats the Loop 2 0  (k) times and every loop takes O (k .  n) 
times. Therefore the complexity of proposed algorithm is O (k 2 �9 n),  where n is 
a number  of points and k is the dimension of a space. 

6 Tolerance relation in classification problems 

6.1 C l u s t e r i n g  m e t h o d  

Let A : (U, A) be an information system. Given a consistent tolerance relation 
r defined on the uuiverse U we define its v* by v* -- U,~>0 r~. The cluster C can 
be defined as the object set such, tha t  i f  x, y 6 C t h e f t  x r* y. The clusters of 
the universe U can be constructed in a straightforward way 

r e p e a t  

Choose x G U, C = ix]r. ; 
u : u \ c ;  

u n t i l  U : 0 

One can see that  clusters determined by the algorithm are disjoint and they 
contain the objects with the same decision. We can use those clusters for classi- 
fication of new cases in different ways. One example of classification strategy is 
presented below: 

S t e p  1 : Every cluster Ci is characterized by its center ci and its mass mi 
(Number  of objects belonging to the cluster Ci); 

S t e p  2 : Define the distance function d; 
S t e p  3 : For a new object x, the number  p~ (x) = "~' d(ci,~) is a gravitat ion power 

measure of the cluster Ci influencing the new object x. The new case x is 
classified to the cluster with the maximal  gravitat ion power pi (x). 

6.2 C l a s s i f i c a t i o n :  N e a r e s t  N e i g h b o u r s  M e t h o d  

For a given tolerance r and any object x one can define the set of neighbours of 
x in the tolerance sense. The set of neighbors of x is defined gradually as follows: 

NN,  (x) = {y:  y r x ]  

T z A z 

Having a set of neighbours of the object x, one can classify x using different 
strategies, for example one can take a major i ty  rule as the s tandard criterion. 
Classification process of new objects is presented below 

S t e p  1 : Construct  the set of neighbours NNk (x) of x for some k. We choose 
the value k in such way that  the set NNk (x) contains no less then M objects 
from training set. 
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S t e p  2 : Use M nearest neighbours of x to vote for the decision on x. The 
object x is classified to the decision class supported by the maximal number 
of objects from the N N k  (x) .  

7 Conclusion 

We have presented a new approach for extraction relational patterns in data. 
These patterns are described by tolerance relations extracted from data. The 
searching problem for optimal patterns can be transformed to some geometrical 
problems because ahnost all standard tolerance relations can be described by 
some regions in the space R k. Hence one can extract tolerance relations from 
data by constructing approximation of corresponding regions. We have proposed 
some heuristic for the some important  parametrized relation classes. We are 
working on the implementation of proposed methods. 

A c k n o w l e d g e m e n t :  This paper was supported by the State Committee 
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