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A b s t r a c t .  The special challenge in analysing geographical data comes 
from the spatial distribution of the objects. We are interested here in 
finding out whether a given property is randomly distributed or con- 
centrated somewhere. More exactly: consider a two-dimensional region 
subdivided into non-overlapping fields, e.g. a state divided into coun- 
ties, and assume that some fields are marked for having a distinguishing 
property. Do the marked fields exhibit some spatial clustering? 
Two tests feasible in data mining situations are proposed here, based on 
the number fields in clusters (defined by means of triplets, i. e. essentially 
three marked fields with a common boundary point) and on the number 
of edges of marked fields shared by another marked field. For regular set- 
tings such as honeycombs (sets of hexagons) some theoretical results are 
reported. In addition, simulations have been performed on honeycombs 
as well as on real subdivisions of a region and the tests have been applied 
to real data. 

1 The problem 

Geographical da ta  can be t reated with the usual procedures for da ta  mining, 
too. However, they offer additional features in form of their (two-dimensional) 
geographical locations or derived ,properties such as neighbourhoods. Only rarely 
can the location be adequately handled by using the coordinates as an a t t r ibute  
- perhaps sometimes in a long-stretched country such as Norway. 

There  exist some (mostly elaborate) procedures for modelling the statistical 
dependence of neighbouring da ta  items. Spatial autocorrelation models assume 
a more or less homogeneous correlation between neighbouring points or areas, 
perhaps with a directional component.  Moran 's  I [Bailey and Gatrell,  1995, 
section 7.4.5] and other measures t ry  to capture the overall spatial dependency. 

Our goal here is to find spatial concentrations or clusters. We restrict our- 
selves to area data  as opposed to point data. Point da ta  could also be treated, 
if desired, by building an area around each point, e.g. by Dirichlet tesselation 
(Voronoi polygons), or equivalently by determining the neighbours by Delaunay 
triangulation. 

Our problem now is the following. Given a twodimensional region divided 
into many  non-overlapping fields with some of the fields being marked, is there a 
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significant clustering of the marked fields or are they randomly distributed over 
the whole area? 

Some examples for marked fields are: election districts where a candidate 
of a certain party has been elected; plots in a region where a certain plant (or 
animal) has been spotted; counties with an unemployment rate above a limit. 
In practice the fields should be roughly comparable; thus a clustering of states 
on Earth,  ranging in size from Russia to Vatican City, may be less meaningful. 

The problem is of course not restricted to geography. Other potential exam- 
ples include infected cells under a microscope, environmental damages in plots 
of a forest, crystals of various types on the polished surface of a mineral and con- 
ceivingly pat tern recognition to distinguish real features from random deviation 
in colour or intensity. 

One might just look at the corresponding map. However, this procedure has 
some severe deficiencies: 

- Large fields catch the eye much more than tiny ones. 
- One is easily inclined to detect expected (or easily explainable) structures 

and to ignore others. 
- There is no hint to the statistical significance. 
- Random distributions of marked fields exhibit generally some clustering; a 

seemingly random distribution may even be the result of an anti-clustering 
mechanism. 

- Visual inspection cannot be automated for data  mining. 

Sometimes potential clusters are predefined such as industrial areas, and 
the question is whether the property under consideration is significantly related 
to these clusters, for instance whether the marked fields concentrate in these 
predefined clusters. This situation is not considered here; the problem can be 
handled with linear models treating the affiliation with the predefined area as 
an independent variable. 

It seems that the questions of finding spatial clusters and statistics for de- 
ciding on random clustering have not been cor~sidered before in the literature. 

Warning. In geographical data, a spatial autocorrelation is ubiquitous, see 
e.g. [Anselin, 1988, chapter 5] and [Bailey, 1995]. The underlying phenomenon 
just does not keep to the mostly artificial boundaries of the fields. 

2 C o n n e c t i v i t y  r e g i o n s  

A possibility to define clusters of marked fields is to look for connectivity regions: 
maximal connected sets of marked fields. 

In a honeycomb of 169 hexagons, the fields have been marked with a given 
probability. A typical result is shown in figure 1. At the lower left, there is a 
connected set of 11 marked fields; two other continuity regions consist of eight 
and six fields. If such an aggregation would occur in reality, one would be inclined 
to "interpret" the underlying data  somehow, but it is pure chance. 
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Fig. 1. A hexagon of 169 fields. Each field has been marked with probability 0.3 by a 
chance algorithm. 

The behaviour of connectivity regions can be studied to some extent in the 
special situation of an infinite honeycomb. We assume that  each hexagon has the 
same probability p of being marked and that  all markings are independent. Then 
for instance the probability that  all six neighbours of a given (marked) hexagon 
are unmarked is q6 with q = 1 - p .  With increasing effort, the probability of 
belonging to a connectivity set of 2, 3, 4 hexagons can be computed; the results 
are given in [Gebhardt, 1996] together with a graph showing these probabilities 
as functions of p. It  turns out that  for instance for p = 0.2 about  28% of all 
marked fields belong to a connectivity region of at least 5 fields. 

Thus declaring all connectivity regions of size at least 3 (or 4, or even 5) to 
be regional clusters makes sense for rather small p only, perhaps for p < 0.05. 



3 T r i p l e t - c l u s t e r s  

We need a more restrictive definition of clusters. We define a f i e l d - t r i p l e t  or 
t r i p l e t  for short  as a set of three marked fields such tha t  they have a corner 
(node) in common and one of them shares with each one of the other two a 
boundary  (edge) having tha t  corner as an endpoint. If  only three fields meet 
at a corner and they all are marked, they consti tute a triplet. The somewhat  
more complicated definition is necessary for four or more fields having a corner 
in common. 

A t r i p l e t - c l u s t e r  or c l u s t e r  for short is the union of overlapping triplets, i.e. 
s tart ing with a triplet, all those are added iteratively that  have at least one field 
in common with at least one of the triplets already in the cluster. 

In the infinite honeycomb setting, again some probabilities for clusters can 
be computed.  A marked fields does not belong to a cluster, if it has either 
no marked neighbours or exactly one marked neighbour or exactly two marked 
neighbours separated by either one or two unmarked neighbours or if it has three 
marked neighbours separated by unmarked neighbours. The combined probabil- 
ity is q3(1 + 3p - 2p 2) where again p is the  probabil i ty for a field to be marked 
and q = 1 - p .  

By enumerat ing all possible constellations, one finds analogously the prob- 
abilities for a marked field to belong to a cluster of size n as follows; we set 
r = l + p .  

n = 3 : 6p2q6r3  

n = 4 : 12p3q6r  2 

n = 5 : 15p4qTr2(2  + qr  2) 

n = 6 : 12p5qTr2(3  + 9q -- q2 _ q3) 

The probabilities of not belonging to a cluster are considerably higher than  
those for not belonging to a connectivity region. For p = 0.20, the probabil i ty 
of a marked field to belong to a cluster of at least five fields now is 4.4%. This 
holds for infinite honeycombs; for finite ones, the clusters are somewhat smaller 
due to boundary  effects. For more details including simulation results with fi- 
nite honeycombs and similar theoretical evaluations as well as simulations for a 
chessboard see again [Gebhardt,  1996]. In figure 1 there are just three tripletts,  
one at the lower left and two near the top. The  lat ter  two form t w o  clusters 
because they  do not overlap. 

Let us compare connectivity regions and clusters. For the former ones in 
an infinite cluster, it is more tedious than  for clusters to compute formulae 
corresponding to those given above; it has been done for regions of size one to 
four only. Therefore we plot in figure 2 the probabil i ty for a marked field to 
belong to a connectivity region or a cluster of size _> 5, given probabili ty p for a 
field being marked. 
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Fig. 2. Comparison between connectivity regions and clusters: probability of a marked 
field (probability p for being marked) to belong to a connectivity region or a cluster of 
size at least 5. 

4 Testing for clusters 

4.1 N u m b e r  o f  fields in c lu s t e r s  

We will present two tests on clustering. The first one is based on the number of 
marked fields in clusters. 

The test procedure is as follosw. A spatial distribution is regarded as non- 
random if the number of (marked) fields in clusters, Mc, differs from the ex- 
pected value me by more than k standard deviations sr where k may be set 
to 2 or 2.5 in single tests and should be set to 3 or larger in extended series of 
tests such as in data mining. Written as formula: Mc is considered significant if 
IMc -mcI  > ksc. This is a standard procedure in statistics; the problem lies in 
determining the proper expectations and standard deviations (or their squares, 
the variances). 
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m c  and sc  depend on p, the probability of a field being marked, and of 
course on the size and structure of the arrangement of fields. It seems hopeless 
to compute expectation and standard deviation of this statistic; so the method 
of choice is simulation. This may not make sense for single tests, but for a series 
of tests on the same region (with different sets of marked fields) this procedure 
is feasible. In particular, it is useful in a data-mining context. 

Simulations with different regions have shown that  expectation and standard 
deviation can be approximated with sufficient precision by polynomials in p of 
fourth order with missing low-order terms, i.e. 

m e  ~ c3p 3 + c4p 4, 

sc  ~ d2p 2 + dap 3 + d4p 4, 

where the coefficients depend on the topology of the region and p < 0.5. 
Thus, given a new region with F fields, one has to choose four or five values 

for the number M of marked fields (the largest one near F /2) ,  generate perhaps 
1000 random arrangements of M fields, compute M e  for each arrangement and 
the mean and sample standard deviation for each M and finally the parameters 
ci and di by linear regression. For finding the triplets one has to know not only 
which fields axe neighbours but also which neighbours of a field are adjacent. 

When using the test one should apply a continuity correction since the num- 
ber of fields in clusters is of course always an integer. 

4.2 N e i g h b o u r i n g  m a r k e d  f ields 

An alternative test is based on the number of pairs of marked fields that  have an 
edge in common. We leave out the details here, see [Gebhaxdt, 1996], and just 
give the results. We need the quantity 

M - 1  
T . -  F----L-- ~ (2G - M / 3 )  

where F is the number of fields, M is the number of marked fields, G is the 
total  number of neighbours of the marked fields and/~  is the average number of 
neighbours of a field in the whole region. Let 

0umber of marked neighbours if field i is marked 
be := else 

b : = Z b i .  
i 

Since the neighbourhood of marked fields is a reflexive property, b is always 
even. It turns out that  given the number of marked fields and the total  number 
of neighbours of the marked fields, b/2 is approximately Poisson distributed with 
parameter T/2  and thus, in a further approximation if T is not too small, b is 
normally distributed with expectation T and standard deviation v/2--T. Again a 



283 

continuity correction should be applied to b, but here using 1.0 rather than 0.5 
because b is always even (i.e., the regular continuity correction to b/2). 

T and b can be computed if all the neighbourhoods are known; one does not 
need any simulations as in section 4.1. 

Several simulations have been performed. The resulting standard deviations 
for b were not larger than given above, but often smaller; in many cases they 
were close to v ~ ,  i. e. without the factor v~. However, it was not obvious under 
which circumstances our formula overestimates the standard deviations. 

While this second test is simpler to compute, it does not directly use our 
restricted notion of clusters. However, there is an affinity because three fields in 
a triplet contribute more to b than three connected marked fields not forming a 
triplet. 

Both tests, in this as well as in the preceding section, decide only whether 
there is a non-random clustering but they do not identify the clusters. For this 
purpose the largest clusters based on triplets should be used. 

If p is not too small, any real (non-random) cluster will have attached by 
chance some marked fields or strings of marked fields. Therefore one should 
be restrictive in the extension of clusters considered non-random; i.e. marked 
fields neighbouring a cluster should be assigned in retrospect, for purposes of 
interpretation, to that  cluster only very cautiously. 

5 A geographical arrangement: 
six Bundesl~inder 

Real arrangements of fields show some peculiarities that  need special treat- 
ment. To find out what might happen and to compare honeycombs (169 
fields) as used in simulations with a real situation, six Bundesl&nder with 171 
counties (Kreise and kreisfreie St&dte) have been selected: Bremen, Nieder- 
sachsen (Lower Saxony), Hessen (Hesse), Nordrhein-Westfalen (North Rhine- 
Westphalia), Rheinland-Pfalz (Rhineland-Palatinate) and Saarland. 

In the stylized map, the counties are named by their motor vehicle codes. 
Sometimes a city (kreisfreie Stadt) and the adjacent county (Landkreis) have 
the same code; then an asterisk has been appended for the Landkreis (e. g. HH 
for Stadt Hannover, HH* for Landkreis Hannover). Occasionally, a county has a 
small exclave. This has been neglected. 

Some counties (always Stadtkreise) have only one neighbour; examples are 
Hannover and Aachen (AC). According to our definition, they could never belong 
to a cluster. Other counties have exactly two neighbours; they could only belong 
to a cluster, if both neighbours are also marked. Examples are Bonn (BN) al- 
most entirely surrounded by Siegburg (SU), Dannenberg (DAN) and Wolfsburg 
(WOB). Therefore we extend the definition of a cluster slightly: a field with only 
one neighbour is added to a cluster if the neighbour belongs to the cluster and 
the field itself is marked. For each field with two neighbours only, one of them 
is predefined as major neighbour. Such a field is added to a cluster if the major 
neighbour belongs to the cluster and the field itself is marked. 



284 

Fig. 3. Portion of agriculture (including forestry and fishery) among the workers > 2%. 



There are four counties with only one neighbour, 11 counties with two neigh- 
bours, and the maximum is 11 neighbours for Mettmann (ME). The number of 
edges (counted twice) is 876; thus each county has an average of/~ = 5.12 neigh- 
bouts. This is less than for the 169 hexagons (5.47): the region is less compact. 

According to simulations, the average number of counties in clusters is about 
10% lower than in the case of 169 hexagons, the average number of clusters 
even about 15%. A reason for this is supposedly the smaller average number of 
neighbours; perhaps the uneven distribution of neighbours (1 to 11 rather than  
3 to 6) plays also a role. Similarly the number of small clusters is markedly lower 
while there is no deviation for large clusters. 

The data  used for some tests include population, area, number of per- 
sons working and counted for social security (sozialversicherungspfiichtig 
Besch~iffigte, henceforth called "workers" for short) and several subgroups of the 
latter one: men, blue-collar workers, aliens and a division into agriculture and 
fishery, production, commerce and traffic, others (in particular services trade). 
The workers are counted at the place of work (not of living). All data refer to 
1993. The variables used are derived from those mentioned, e. g. population den- 
sity or percentage of aliens in all workers. The data  are taken from [Statistisches 
Bundesamt, 1994] and [Statistisches Bundesamt, 1995]. 

An example is shown in figure 3. There are 29 marked counties, among them 
12 in two clusters (expected: 3.2 with standard deviation 2.9). The marked coun- 
ties have 163 neighbours, among them 54 marked ones (expected: 29.2 with stan- 
dard deviation 7.6). So both statistics have a z-value near 3 and are significant. 
There are two clusters in the north (the shaded counties in the south contain no 
triplet). Since up to about nine counties in clusters are insignificant here, only 
the larger cluster (AUR to DH; NI does not belong to it) should be regarded as 
conspicuous. 

Incidentally, counties with low quotients are not clustered according to the 
tests of sections 4.1 and 4.2. In fact, if agriculture is ~ 0.5%, there are 39 marked 
counties but no triplet at all. The test on neighbouring marked fields yields a 
sample statistic below the expected value. 

6 C o n c l u s i o n s  

We wanted to find out whether a set of marked fields within an assembly of fields 
shows a significant clustering. Connectivity regions do not provide a meaningful 
starting point except perhaps for a small share p of marked fields (a few per- 
cent at most), because for larger shares the marked fields will form connectivity 
regions of considerable size even in random assignments. 

We defined clusters by means of triplets, essentially three marked fields with 
a corner in common. The totM number of fields in triplets is a useful test statistic. 
The distribution of this statistic under the null hypothesis (random distribution) 
has to be computed by simulations. 
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The test works for a wide range of p. It will rarely find a clustering for very 
small p, and for p > 0.5 one should inspect the complement (the unmarked 
fields). 

A perhaps less evident test statistic is the number of edges between marked 
fields. Approximations to the expected value and its standard deviation can 
easily be computed from the characteristics of the assembly of fields (the number 
of fields with 1, 2, . . .  neighbours). 

Several simulations with two assemblies, a honeycomb structure of 169 
hexagons and 171 counties of six Bundesl~inder, support and augment the the- 
oretical considerations. In particular they suggest that  the approximations for 
the expected values just mentioned are surprisingly good while the standard de- 
viation is often even smaller than anticipated. The tests have also been used for 
regions not reported here (62 statistical districts of the city of Bonn; 80 election 
districts in the eastern part of Germany; smaller honeycombs). It seems that  for 
the tests to be meaningful there should be no less than about 50 fields. 

The procedures are expected to work also for several hundred or even some 
thousands of fields; however, it is conceivable that  for large regions (or, equiva- 
lently, finer subdivision of a given region) one needs another notion of cluster. It 
should, on the one hand, start with larger assemlies than  triplets, but it should, 
on the other hand, be somewhat tolerant against scattered fields not belonging 
to the cluster. For a proposal see [Gebhardt, 1996, section 3.3]. 

In the majority of tests both test statistics behave similarly, but occasionally 
the results differ. The (perhaps subjective) impression is that  the cluster test is 
somewhat closer to what one would expect. 

The tests seem to be the first ones for binary data  (marked vs. unmarked 
fields). Often, a numerical value is attached to each field such as the proportion 
of workers in agriculture and forestry; then the tests can be used by marking 
all fields whose values exceed a boundary as we have done above. A true cluster 
should show up at different boundary values though with different cluster sizes. 
A small cluster which is significant only for boundary values in a small interval 
should not be taken seriously: when the boundary is moved until the first small 
cluster builds, it is often significant formally, but then one has selected the 
test (i. e. the boundary) according to the data, an example for how to lie with 
statistics. 

But certainly there should be tests using numerical data directly rather than 
only the coarsened property of exceeding a boundary. Several tests exist, mostly 
based on the overall correlation of the fields with the fields in the neighbourhood 
(not necessarily directly adjoining fields). An example is Moran's I [Bailey and 
Gatrell, 1995, section 7.4.5]. The statistics G~ and G* by Getis and Ord [Getis 
and Ord, 1992] are designed to find fields whose neighbours are significantly 
above (or below) average. They are restricted to inherently positive variables 
excluding thus residuals from regression, among others. For a test statistic based 
on the mean values in clusters see [Gebhardt, 1997]. 
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