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Abs t r ac t .  When using discovered knowledge for decision making (e.g. 
classification in the case of machine learning), the question of reliability 
becomes very important. Unlike global view on the algorithms (evalu- 
ation of overall accuracy on some testing data) or unlike multistrategy 
learning (voting of more classifiers), we propose "local" evaluation for 
each example using one classifier. The basic idea is to learn to classify 
the correct decisions made by the classifier. This is done by creating new 
class attribute "match" and by running the learning algorithm on the 
same input attributes. We call this (second) step verification. 
Some first preliminary experimental results of this method used with 
C4.5 and CN4 are reported. These results show that: (1) if the classifica- 
tion accuracy is very high, it makes no sence to perform the verification 
step (since the verification step will create only the majority rule), (2) 
in multiple-class and/or noisy domains the verification accuracy can be 
significantly higher then the classification accuracy. 

1 I n t r o d u c t i o n  

The declared goal of automated knowledge acquisition from data  (KDD) is to 
obtain nontrivial of implicit, previously unknown, and potentially useful infor- 
mation from data [9]. But in many situations, our motivat ion is not only to 
possess new knowledge but also to use it for decision making. In this situations, 
the realibility of obtained knowledge becomes very important .  

Problem solvers (classifiers) built using machine learning (ML) techniques 
are usually evaluated in the terms of overall performance (accuracy, error rate) 
on given da ta  sets. The training da ta  are used in the knowledge discovery (learn- 
ing) step and testing da ta  are used to obtain some global characteristics of the 
classifier. It  is a question, if this is satisfactory to evaluate the reliability of the 
class assignment of a single example. 

Recently, increasing attention is in the ML community payed to the global 
behaviour of classifiers. So e.g. Domingos and Pazzani studied the naive bayesian 
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classifiers [5], or Kohavi and Wolpert studied the missclassifiacion rates of classi- 
tiers in general [7]. Some research was done also on looking for the best classifier, 
either by running more classifiers on given data  [12] or by using some "meta- 
knowledge" which can help to select the best classifier according to some char- 
acteristics of the data. Let us mention here e.g. the Machine Learning Toolbox 
[6] or work related to the STATLOG project [11, 2]. Nevertheless, the method of 
voting of more classifiers when classifying single example remains the only used 
method which deals with some kind of local evaluation of classification results. 

In human decision making, the expert usually accompanies her decisions by 
some statements about the realibility of the decision. So she may say e.g. "the 
class is x, this was an easy problem" (because for similar cases, she was always 
right), or "it's hard to say, I think that the class is y" (because for similar cases, 
her decision were sometimes wrong). Such insight can help the user (client) to 
bet ter  understand and accept the expert 's  decision. 

In this paper we propose a simple method, which in some sense evaluates 
the reliability of classification of one particular example. We try to learn sim- 
ilar "metaknowledge" as shown in expert 's explanation above by learning to 
recognize correctly classified examples. 

2 M e t h o d  

We propose a general method for evaluation of the reliability of classification, 
which can be easily incorporated in any ML algorithm. The scheme of the method 
is shown in Fig. 1. 

The classification step is performed in the usual way. We use training data  to 
learn the knowledge and testing data  to test it (to obtain the standard evaluation 
of the knowledge in terms of classification accuracy). During classifiaction of both 
training and testing data, we obtain for each example the predicted class value. 
By comparing this predicted value with the real one found in data  (we assume 
supervised learning), we can introduce new (binary!) at tr ibute "match". The 
value of this attr ibute is "yes" if the classification was correct, or "no" if the 
example was misclassified. 

We use this new attribute as the class attribute in the subsequent verifi- 
cation step. Here we run the machine learning algorithm on the same training 
and testing data  for this new class. The resulting verification accuracy can be 
interpreted as "reliability" of the "classification knowledge" learned in the first 
step. 

Our expectations about the behaviour of the proposed method can be for- 
mulated as following hypotheses: 

HI: If the classification accuracy is very high, it makes no sence to perform the 
verification step. 

[-12: In multiple-class domains and/or  in noisy domains the verification accuracy 
can be significantly higher then the classification accuracy. 
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Fig. 1. Scheme of the method 

tt3: If the classifier gives not only the (yes/no) class assignment, but also some 
additional information (probability as in Bayesian classifier, or weight as in 
KEX [1]), this information can be significant for the verification. 

We will further concentrate on the first two hypotheses. If the classification 
accuracy is very high, the verification knowledge will consist only of default rule 
"everything is fine". In this case, the verification accuracy is exact the same as 
the classification accuracy and the verification step brings no benefit. 

If the classifiaction accuracy is low (this can be for the multiple-class or noisy 
domains), there is a chance (because we transformed multiple-class problem into 
binary-class problem) that  the verification accuracy will be higher. Here, the 
verification step can be important. 

If the classification accuracy is higher than verification accuracy, we can 
forget about the verification step. 
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Both "classification knowledge" and "verification knowledge" should be used 
in processing of new, unseen examples. We classify the example and verify the 
"correctness" of this classification. If  the verification accuracy is high (as shown 
before, we can assume, that  verification accuracy is at least equal to classification 
accuracy), we can more believe that  the classification of an example is correct, 
iff the verification confirmes this decision. 

3 Experiments 

We tested the proposed method using Quinlan's C4.5 [10] and Bruha 's  CN4 
[3], a large extension of Clark 's  and Nibblet 's  CN2 [4]. The first sys tem creates 
decision trees, the second system creates decision rules (in unordered mode) and 
decision lists (in ordered mode). To perform our experiments, we modified both  
systems to: 

(1) perform batch consultation from a file, and 
(2) create the at t r ibute match. 

We used some data  from the UCI repository [8]. The results for C4.5 (for 
pruned trees on testing data) are summarised in the Table. 1. For each da ta  set 
we show (for both classification and verification step) the size of the pruned tree, 
the percentage of errors on testing data,  and the est imate of the percentage of 
errors on unseen data.  

Classification Verification 
data size Errors Estimate size Errors Estimate 

1 Monk 1 
2 Monk 2 
3 Monk 3 
4 Heart 
5 Austral. credit 
6 Indian diabetes 
7 Soya 
8 LED 0% noise 
9 LED 10% noisei 

10 LED 20% noise 
11 LED 30% noise 

14 35.2% 35.7% 
31 59.2% 35.1% 
12 6.1% 23.8% 
28 13.1% 26.0% 
12 14.6% 16.9% 
27 23.2% 3O,6% 
72 18.9% 26.6% 
19 0.0% 10.5% 
41 24.0% 41.7% 
67 39.0% 60.1% 
117 47.0% 69.9% 

1 35.2% 24.0% 
52 45.1% 21.5% 
1 6.1% 10.5% 
5 12.2% 14.3% 
1 14.6% 9.6% 

131 27.3% 22.6% 
16 15.7% 11.7% 
1 0.0% 1.1% 

35 18 .0% 20.0% 
61 24.3% 27.7% 
67 24.7% 25.4% 

Table 1. Results of experiments for C4.5 

The results for CN4 are summarised in the Table. 2. We show for both ordered 
and unordered mode the number of rules and the accuracy on testing data.  
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Ordered mode Unordered mode 
Classification Verification Classification Verification 

data size Accuracy size Accuracy size Accuracy size Accuracy 
1 Monk 1 
2 Monk 2 
3 Monk 3 
4 Heart 
5 Austral. credit 
6 Indian diabetes 
7 Soya 
8 LED 0% noise 
9 LED 10% noise 

10 LED 20% noise 
11 LED 30% noise 

8 lOO.O% 
43 69.7% 
19 90.0% 
2O 65.9% 
56 76.9% 
85 71.1% 
43 70.2% 
10 100.0% 
25 81.3% 
35 68.3% 
39 62.7% 

1 100.0% 
10 69.7% 
1 90.0% 
1 65.9% 

10 76.9% 
70 70.1% 
3 71.0% 
1 100.0% 

19 87.7% 
17 77.0% 
24 75.3% 

24 100.0% 
63 53.5% 
24 85.2% 
35 53.3% 
53 80.8% 
104 72.7% 
33 71.8% 
11 100.0% 
37 82.7% 
52 74.7% 
56 71.0% 

1 100.0% 
16 53.5% 
1 85.2% 
1 53.3% 

22 80.8% 
53 72.2% 
26 72.6% 
1 100.0% 

23 82.7% 
17 74.7% 
6 72.0% 

Table  2. Results of experiments for CN4 

We run both systems with default parameters,  only in some cases, we changed 
the pruning confidence level for C4.5. 

The verification step very often results in the default rule (of size 1); this 
gives the same verification accuracy as the classifiaction accuracy. In all cases 
(with exception of C4.5 results for the P ima  indian diabetes data) the knowledge 
obtained in the verification step was significantly smaller then the knowledge 
obtained in the classification step. In the case of the P ima indian diabetes data,  
the verification accuracy was lower then the classification accuracy for both  
systems (so some overfitting occured in this case). On the contrary, best results 
(greater verification accuracy then classification accuracy) were obtained for the 
noisy LED domains. For C4.5, the est imated number of errors on unseen da ta  
was significantly lower for the verification step for every dataset.  

The plot of verification accuracy on testing da ta  vs. classification accuracy 
on testing da ta  for C4.5 is shown in Fig. 2. The numbers used in the graph corre- 
spond to the numbers of datasets in the Table. 1. Same graf for CN4 in ordered 
mode is shown in Fig. 3. Since for CN4 in unordered mode the verification ac- 
curacy does not significantly differ from the classification accuracy for all used 
datasets,  we don ' t  plot the results. 

4 C o n c l u s i o n s  a n d  f u r t h e r  w o r k  

The paper  describes a simple method for evaluation of the reliability of classi- 
fication result for a particular example. We didn ' t  overcome the problem with 
using "global" characteristics (overall accuracy) on a single example. We only 
t ransformed the s tandard task of learning classes into the task of learning correct 
decisions. 



9/ 
1oo% 

50% 

ver i f i ca t i on  a c c u r a c y  

312 

50% 

c l a s s i f i c a t i o n  a c c u r a c y  

100% 

Fig. 2. Verification vs. classification accuracy for C4.5 

Our preliminary results show, that  the verification step often brings no better  
results than the classification step. Sometimes, the results of verification step can 
be even worse (see the Indian diabetes data). Nevertheless, since the verification 
accuracy can be taken as at least the same as the classification accuracy, we can 
make (in more cases) more reliable statements about the class assignment done 
by the classifier. Ofcourse, more experiments should be done with different ML 
algorithms. 

What  was not done yet are experiments related with the hypothesis H3. One 
straightforward way how to use the probability (or weight) is not to classify 
examples, where the probability (weight) is "near the border" (e.g. probability 
is near 0.5 for binary class domains). The relationship between probability (or 
weight) of assigned class and the "correctness" of the classification should be 
studied in our next work. 

We feel, that  no general conlusions can be made on the basis of our experi- 
ments. But we think, that  the topic touched in our paper has a great practical 
importance (if the ML classifiers should be used to r e a l l y  classify new examples) 
and that  it is worth further study. 
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Fig. 3. Verification vs. classification accuracy for CN4, ordered mode 
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