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Abstract .  Decision trees are widely used in different applications for 
problem solving and for knowledge representation. In the paper algo- 
rithms for decision tree constructing with bounds on complexity and 
precision are considered. In these algorithms different measures for time 
complexity of decision trees and different measures for uncertainty of 
decision tables are used. New results about precision of polynomial ap- 
proximate algorithms for covering problem solving [1, 2] show that some 
of considered algorithms for decision tree constructing are, apparently, 
close to unimprovable. 

1 I n t r o d u c t i o n  

In 1983 the paper [4] was published (short variant was published in 1982 [3]) 
which contained bounds on time complexity of decision trees and algorithms for 
decision tree constructing (in this paper decision trees were named conditional 
tests). In algorithms different measures for time complexity of decision trees 
(depth, weighted depth and others) and different measures for uncertainty of 
decision tables were used. Bounds on precision for these algorithms were consid- 
ered. These algorithms resemble on algorithms of J.R. Quinlan [10, 11] however 
they were proposed independently. Obtained results were published only in Rus- 
sian. 

New bounds on precision of polynomial approximate algorithms for covering 
problem solving [1, 2] show that  some of considered in [4] algorithms are, appar- 
ently, close to unimprovable polynomial approximate algorithms for constructing 
decision trees with minimal depth. 

This paper contains a survey of some results from [3, 4] (definitions of com- 
plexity and uncertainty measures, description of algorithms for decision tree 
constructing, bounds on precision of these algorithms), some results from [5] 
(bounds on complexity of considered algorithms and bounds on precision of al- 
gorithms for one important class of decision tables), and reasons about closeness 
of some algorithms to unimprovable. 

Mentioned results are useful for obtaining bounds on time complexity of de- 
cision trees [7, 8]. Also these results may be useful in data  mining and knowledge 
discovery for decision tree constructing. The considered algorithms allow varia- 
tions of complexity and uncertainty measures in broad bounds: the statements 
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on complexity and precision of these algorithms are true for wide classes of com- 
plexity measures and uncertainty measures. Also some of these algorithms are, 
apparently, close to unimprovable (in the sense of precision) algorithms with 
polynomial time complexity. Therefore considered algorithms may be suitable in 
experiments for constructing of decision trees which are optimal (in some sense 
or other) or close to optimal. 

2 Basic Definitions and Notation 

The notions of decision table, decision tree, complexity measure and uncertainty 
measure are introduced in this section. 

2.1 Dec i s ion  Tables  

For arbitrary nonempty set (alphabet) A the set of all finite words over A con- 
taining the empty word )~ will be denoted by A*. 

Denote w = {0, 1,2, . . .}  and F = {f/ : i E w}. Let k E w \ {0,1} and E~ = 
{0, 1 , . . . ,  k - 1}. We will interpret the set F as a set of attribute names and the 
set Ek as a set of attribute values. Let us denote/2 = {(f~,g) : f~ E F,(i E Ek}*. 

An ordered triple T = (A,~,,#) will be called a decision table if 3 C_ E~', 
u :  A -+ w and # :  {1 , . . . ,  n} -+ F for certain n E w \ {0} respectively, and i # j 
implies It(i) # p(j)  for each i, j E {1 , . . . ,  n}. 

The table T may be conveniently depicted as rectangular matrix with n 
columns, the rows of which are n-tuples from A(T).  Every row $ of this matrix 
is labeled with a number u((f) (the value of decision) while i-th column of it (for 
i = 1 , . . . ,  n) is labeled with the element #(i) of the set F (the name of i-th 
attribute). 

In what follows the set A and the mappings u, p, defining the table T, will be 
denoted by A(T), uT and #T respectively. Let us denote d i m T  = n and call the 
number n the dimension of the table T. Introduce also notation P(T) = {/tT(i) : 
i = 1 , . . . , n }  and 12(T) : {(fi , t i ) :  fi E P(T) ,J  �9 Ek}. 

For u �9 ~2(T) define the decision table Tu as follows. If u : )~, then Tu : T. 
Let u ~ A, u : (fjl, J1).. .  (fj~, Jm) and i (1 ) , . . . ,  i(m) are numbers taken from 
the set {1 , . . . ,  n} such that  pT(i(1)) : f j l , . . . ,  pT(i(m)) : fj,~. Then d imTu  : 
d imT,  A(Tu) : { ( a l , . . . ,  cr,~) : (f ix,- . . ,  fin) �9 A(T),tri(1) = gl,...,tri(,~) = 
&~}, while vT'= is the restriction of the mapping t'T to the set A(Tu) and PT,, is 
a mapping coinciding with /~T. (In other words T(fj~, ~I1)... (fj,~, ~,,~) is a sub- 
table of the table T which contains only such rows which on intersection with 
columns labelled by f / l , . . - ,  fJ,~ have numbers (I1,.. . ,  (ira respectively.) 

Denote by T the set of all decision tables, while the set of all decision tables 
T �9 T possessing the following property: either A(T) = ~ or there exists m �9 w, 
such that  vT((i) = m for each (~ �9 A(T), will be denoted by TC. 
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2.2 Dec i s ion  T r e e s  

A finite oriented tree containing exactly one node with no entering arcs will be 
called a finite rooted oriented tree. This singular node is commonly called the 
root of the finite rooted oriented tree. The nodes of the tree having no issuing 
arcs will be called terminal nodes. The non-terminal nodes of the tree will be 
called work nodes. 

Let ~ = wl, d l , . . . ,  win, d,~, wm+l be a sequence of nodes and arcs of finite 
rooted oriented tree G such that  wl is the root of G and wm+l is a terminal 
node of G and for i = 1 , . . . ,  m the arc d~ issues from the node wi and enters the 
node Wi+l. Then ~ will be called a full path in finite rooted oriented tree G. 

A labeled finite rooted oriented tree will be called a decision tree if it satisfies 
the following conditions: 

a) every work node is labeled with an element from F;  
b) every arc is labeled with a number from Ek, while the arcs issuing from 

one and the same node are labeled with distinct numbers; 
c) every terminal node is labeled with a number from w. 
Denote b y / )  the set of all possible decision trees. For F E T) we denote by 

P(F) the set of elements from F used as labels at the work nodes of F,  [2(F) = 
{(fi,(f) : fi E P(F),~i E Ek} and by .~(F) we denote the set of all full paths in 
the tree F. 

Let us put into correspondence to a path ~, ~ E ~ (F ) ,  a word rr(~) from 
12(F). If the path ~ doesn't contain work nodes, then ~r(~) = A. Let the path 
contain m > 0 work nodes, ~ = wl ,d l , . . . ,wm,dm,  wm+l, and for i = 1 , . . . , m  
let the node wi be labeled with element fj~, and the arc di be labeled with the 
number (fl. Then ~r(~) ---- (fjl, ~1)... (fj,,, ~m). 

Let T E T. A decision tree F E 7) will be called a decision tree for the table 
T if it satisfies the following conditions: 

a) P(F) C_ P(T);  
b) if A(T) ~ ~ , then for each n-tuple $ E A(T) there exists a full path 

E E(F) ,  such that  ~ E A(TTr(~)) and the terminal node in the path ~ is 
labeled with the number t~T (2). 

We will denote by D(T) the set of all decision trees for the table T. 

2.3 C o m p l e x i t y  M e a s u r e s  

A complexity measure is arbitrary computable function r : F* -+ w such that  
for arbitrary words (~, j3 E F* the following conditions satisfies: 

a) r  = 0 if and only if c~ = A; 
b) r  = r 
c) < 
d) r < r  + r 
Let w : F -4 w \ {0} be computable function. The following functions are 

complexity measures: 
1) the depth h such that  h(a) = In] for each word a E F*, where I s] is the 

length of the word a; 
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2) a weighted depth r such that  r . . . f j ,~)  = ~-:~i~1 w(fj,) for each 
nonempty word fj ,  . . .  f j~ �9 F* and Cw ()t) = 0; 

3) a function ~o such that  ~0(fj~ . . . f j ,~)  = max{w(f jx) , . . . ,w(f j ,~)}  for 
each nonempty word f j l . . ,  fjm �9 F* and ~w(A) -- 0. 

A bounded complexity measure is a complexity measure r such that  r > 
Ic~[ for each word (~ E F*. For example, the depth and a weighted depth are 
bounded complexity measures. 

If r and r are complexity measures then the functions Cz and r are com- 
plexity measures too where r = max(r  r and r = r -~- 
r for each word c~ E F*. If also r is bounded complexity measure then Ca 
and r are bounded complexity measures. 

Extend a complexity measure r on the sets I2, 79 and T.  Let a E 12. For 
a = )t we certainly have r = 0. Let a r )~ and (~ = (fj~, 51)... (fjm, 5rn). Then 
r = r For F E 79 we assume r  = max{r : ~ E Z(F)} .  
For T E T we assume r = m i n { r  r e 79(T)}. 

2.4 U n c e r t a i n t y  M e a s u r e s  

Let Q be the set of all rational numbers. An uncertainty measure is arbitrary 
computable function 7 : T -+ Q such that  for each decision table T E T if 
A(T) = ~ then 7(T) = 0 and if A(T) ~ ~ then the following conditions are 
satisfied: 

a) v(T) > 0; 
b) for each f/0, f i l , . . - ,  f/,~ E P(T) and (f0,51,... ,  5,~ E Ek the inequality 

7(T)-7(T(fo, 50)) > 7(T(f i l ,  51) . . .  (fi,,, 5m))-7(T(fi~, 51)... (fi,,, 5m)(fo, 50)) 
holds; 

c) if 7(T) < 1 then T E TC, and if T E TC then 7(T) -- 0. 
Let T E T.  A table T' will be called a separable sub-table of the table T if 

there exists a word a E 12(T) such that T I = Tc~. The table T will be called a 
boundary table if T ~ TC and for each fi E P(T) and 5 E Ek either T(fi, 5) = T 
or T(S~, 5) e TC. 

The following functions are uncertainty measures. 
1) Function R(x) where R(T) is the number of non-ordered pairs of tuples 

$1,~2 from the set A(T) such that //T((~I ) ~ /]T(~2). 
2) Function G(x) where G(T) is the number of separable sub-tables of the 

table T which are boundary tables. 
3) Function H(x). Let T E T,  d i m T  -- n, ~ ,~  E A(T), ~ = ( a l , . . . , ~ r , ) ,  

~-~- (51,. . . ,hn),  {i:  { E {1, . . . ,n},o ' i  = 5i}  ~- {i l , . . . , i ra}  and pT(il)  = f j , , . . . ,  
pT(i,~) = fj•. We will say that  the pair ~ ,~  separates the table T(f~,  5~,)... 
(f j , ,  5i,~). Then H(T) is the number of non-ordered pairs of tuples ~, 5 E A(T) 
such that  t'T(~) r t'T(~) and the pair ~, ~ separates a boundary table. 

One can prove that  G(T) <_ H(T) < R(T) for each table T �9 T.  
If V1 and 72 are uncertainty measures then the function 3'3 -- P'/1 + q3'2 is 

uncertainty measure where p and q are non-negative rational numbers such that  
p T q  > l. 
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It is not difficult to see that there exist algorithms with polynomial time 
complexity for computing functions R(r) and H(x) on the set T. One can prove 
that for each table T E T such that A(T) r 0 each separable boundary sub- 
table of the table T is separated by some pair ~,~ E A(T) such that vw(~) r 
~T(~). Using this fact it is not difficult to prove that there exists algorithm with 
polynomial time complexity for computing function G(x) on the set T. 

3 Algorithms for Decision Tree Constructing 

Let r be a bounded complexity measure and 7 be an uncertainty measure. 
Algorithm U7,r which constructs decision tree U7,r (T) for given arbitrary table 
T E 7- is dealt with in present section. Complexity and precision of the algorithm 
U7,r are estimated. 

3.1 A lgo r i t hm Description 

Let us apply the algorithm U7,r to a table T E T. 

1-st step. Construct a tree consisting of a single node w. 
Let T E Ts If A(T) = 0 , then the node w will be assigned the number 0 

as label. If A(T) r 0 then the node w will be labeled with number VT(~), where 
E A(T). Proceed to the second step. 

Let T ~ TC. Label the node w with the word )~ E 12(T) and proceed to the 
second step. 

Suppose t > 1 steps have already been made. The tree obtained in the step 
t will be denoted by G. 

(t + 1)-th step. If no one node of the tree G is labeled with word from 12(T) 
then we denote the tree G by U7,r (T). Operation of algorithm UT,~ is therewith 
completed. 

Otherwise we choose certain node w in the tree G which is labeled with a 
word from 12(T). Let the node w be labeled with word ~. 

If T~ E TC then replace the word ~ as the label of the node w with the 
number VT(~) where ~ E A(T~) and proceed to the (t + 2)-th step. 

Let T(~ ~ TC. Let (ri be for every fi E P(T) the minimal number from the set 
Ek for which 7(Ta(f~,o'i)) = max{7(Ta(f~,o')) : (r E Ek}. Let Ia  = {f~ : fi E 
P(T),7(To~) > 7(Ta(fi,  (ri))}. For every fi E Ia let d([i) = max{r 
(7(Tc~) -7(Tc~(fi, ~i)))}. Let p be the minimal number from w for which fp E Io~ 
and d(yp) = min{d( /0  : f~ e I s} .  Assign the element fp the node w as label 
instead of the word c~. For every (i E Ek such that A(To~(fp, 5)) ~- 0 add the 
node w((f) to the tree G and draw the arc from the node w to the node w(ti). 
This arc will be labeled with the number 5 while the node w((f) will be assigned 
the word c~(fp, 5). Proceed to the (t + 2)-th step. 

Note that if the depth h have been taken as complexity measure then the 
value d(fi) in description of the algorithm UT,h may be substituted by the value 
7(T~(fi, ei))- The output of the algorithm remains the same. 
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Propos i t ion  1. Let r be a bounded complexity measure and 7 be an uncertainty 
measure. Then for every table T E T the work of algorithm UT,r is completed 
in finite number of steps. The thereby constructed tree U.~,r (T) is a decision tree 
for the table T. 

3.2 Complex i ty  Bounds  

Consider an upper bound for number of steps made by algorithm U7,r when 
constructing the tree UT,r By [A(T)I we will denote the cardinality of the 
set A(T). 

T h e o r e m  2. Let r be a bounded complexity measure, 7 be an uncertainty mea- 
sure and let T E T .  Then the process of constructing the tree U.y,r (T) by the 
algorithm Uu,r is carried out in at most 2 I~(T)I + 2 steps. 

Detailed investigation of algorithm U~,r complexity falls out of the scope 
of present work. Still the following sufficient condition of existence of polyno- 
mial upper bound for its time complexity can be obtained by analysis of the 
description of algorithm UT,~ on the basis of Theorem 2. 

Let us suggest existence of algorithms computing the function r on the set 
F and the function 7 on the set T with polynomial time complexity. Then the 
algorithm U7,r has polynomial time complexity. In particular, the algorithms 
UR,h, UG,h, UH,h satisfy the above condition. 

3.3 Prec is ion  Bounds  

For each word a E $2 we denote by X(a) the set of letters from the alphabet 
{(fi, 5) : fi E F, J E Eh} which are contained in a. Let r be a bounded complex- 
ity measure. Define the mapping Me : T --+ w as follows. Let T E T, dim T = n 
and #T(1) = f j l , . . . , p w ( n )  = f j , .  For each J = (J1,.-. ,hn) E E~ denote 
Mr = min{r : a  E 12(T), X(a) C { ( f j , , 6 l ) , . . . , ( f j , , 6 n ) } , T a  E TC}. 
Then Me(T)  = max{Mr (T, J) : $ E E~}. The value of this mapping will be 
used in precision bounds for algorithm U~,r 

Propos i t ion3 .  Let r be bounded complexity measure and T E T .  Then r > 
Me(T). 

The upper bound on the complexity of the decision tree constructed by 
the algorithm U7,r is considered in the below statement. We denote r : 
r162 (T)). 

T h e o r e m  4. Let r be a bounded complexity measure, 7 be an uncertainty mea- 
sure and T E T .  Then 

Me (T), i f  Me (T) < 1; 
r < (Mr Me(T), i f  Me(T) _> 2. 
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If the depth h is taken as complexity measure then the following statement 
holds. 

T h e o r e m  5. Let 7 be an uncertainty measure and T E T.  Then 

Mh(T), i f  Mh(T) < 1; 
hy(T) <_ Mh(T)(lnT(T) _ l nMh(T)+  1), i f  Mh(T) ~ 2. 

If the depth h is taken as complexity measure and a function 7 E {R, G, H} 
is taken as uncertainty measure then the following statement holds. 

T h e o r e m 6 .  Let 7 be an uncertainty measure from the set {R, G, H} and T E 
T.  Then 

h(T), i f  h(T) < 1; 
hy(T) < h(T)(lnT(T ) _ lnh(T) + 1), i f  h(T) >_ 2. 

The following statement allows us to estimate the quality of bounds from 
Theorem 5 and 6 for uncertainty measures from the set {R, G, H}. 

T h e o r e m  T. Let 7 be an uncertainty measure from the set {R,G,H} ,  Ay = 
{(Mh(T), 7(T)) : T E T, A(T) # ~} and By = {(h(T), 7(T)) : T E T, A(T) 
~}. Then Ay = By = {(0,0)} U {(re, r) : m , r  E w \ {0},m < r} and for each 
pair (re, r) E Ay there exists a table T(m,r )  E T such that Mh(T(m,r))  = 
h(T(m, r)) = m, 7(T(m, r)) = r and 

m, i f  m < 2or  r < 3m; 
hy(T(m,r ) )>  [ ( m - 1 ) ( l n r - l n 3 m ) J + m ,  i f m > 2 a n d r > 3 m .  

Theorem 7 implies that bounds of Theorem 5 and Theorem 6 for uncer- 
tainty measures from the set {R, G, H} don't allow essential improvement. Non- 
existence of function f : w --+ w, such that for each table T E T the inequality 
hy (T) < f (h  (T)) holds, follows additionally from Theorem 7 for each uncertainty 
measure 7 ~ {R, G, H}. 

The situation with so called diagnostic decision tables is different. We will 
say that a table T E T is diagnostic decision table if A(T) # I~ and for each 
-~,~ E A(T) such that V r ~ the relation VT(~) r VT(~) holds. Diagnostic 
decision tables are meeting in pattern recognition [6] and fault diagnosis [9]. 

Proposi t ion8.  Let T be a diagnostic table from 7-. Then 

hR(T) < 2(h(T)) 2 Ink + h(T). 

3.4 On Unimprovabil i ty of Some Algorithms 

Let S be a set of N points and ~" -- {$1, . . . ,  Sin} a collection of subsets of S. 
Set Covering problem is the problem of selecting as few as possible subsets from 
:T such that every point in S is contained in at least one of the selected subsets. 
This problem is NP-hard. 
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In [2] it was proved that  for each 0 < c < 1/4, the Set Covering prob- 
lem cannot be approximated within factor of c log s N in polynomial t ime unless 
NP C DTIME(nP~176 In [1] it was proved that  for each r > 0, the Set 
Covering problem cannot be approximated within factor of (1 - e) In N in poly- 
nomial t ime unless NP C DTIME(n ~176 log2 n)). 

Let T E T. Decision Tree Constructing problem is the problem of searching 
decision tree with minimal depth for the table T. Using mentioned result from 
[1] it is not difficult to prove that  for each e > 0, the Decision Tree Constructing 
problem cannot be approximated within factor of (1 - c) In R(T) in polynomial 
time unless NP C DTIME(n ~176 log2 n)). 

Taking into account that  algorithms UR,h, UG,h, UH,h have polynomial time 
complexity, using inequalities G(T) < H(T) < R(T) (which are true for each T E 
T) and using Theorem 6 we obtain that  unless NP C DTIME(n ~176176 
then algorithms UR,h, UG,h, UH, h are close to unimprovable approximate poly- 
nomial algorithms for Decision Tree Constructing problem solving. 
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