Fraunhofer Einrichtung

Experimentelles
Software Engineering

Using Case-Based Reasoning for Reusing
Software Knowledge

Authors:
Carsten Tautz
Dr. Klaus-Dieter Althoff

A shortened version of this report was
accepted for the International Conference
on Case-Based Reasoning ICCBR-97

|[ESE-Report No. 004.97/E
Version 1.0
22 August 1997

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.

IESE transfers innovative software deve-
lopment techniques, methods and tools
into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps
them to establish a competetive market
position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern

Abstract

Reuse of software knowledge is a principle for improving productivity and reli-
ability of software development. To achieve this, reuse must be done systemati-
cally. This means that processes for retrieving, reusing, revising, and retaining
have to be defined. At the same time organizational issues (such as the estab-
lishment of a separate organizational unit responsible for organizational learn-
ing) must be considered. In this paper we compare software knowledge reuse
models to the CBR cycle of Aamodt and Plaza [AP94a] and show that the
approaches are very similar. We suggest to extend the CBR cycle by including
organizational issues explicitly and present an organizational “implementation”
of CBR. We conclude that CBR is a promising technology for realizing software
knowledge reuse if our suggested organizational extensions are considered.

Keywords: Organizational View on CBR, Organizational Learning, Experience
Factory, Quality Improvement Paradigm, Software Knowledge Reuse

Copyright [J Fraunhofer IESE 1997 iii

Copyright [Fraunhofer IESE 1997

Introduction

1 Introduction

Reuse practice appears to exhibit considerable potential, far more than
other ongoing activities, to enhance the software development process
and to restructure not only the process of software construction, but also
the actual software development departments. To accommaodate for and
to exploit software reuse, the management and organization of these
departments are to be restructured not just locally and in isolation, but
also in the context of the entire organization. [ZS95, p. 167]

The reuse of all kinds of software knowledge is one of the main pillars of the
approach used for transferring software technologies by our institute. The trans-
fer is based on the Quality Improvement Paradigm (QIP) describing the activities
of continuous improvement, the Goal/Question/Metric (GQM) approach for
goal-oriented measurement and evaluation, and the Experience Factory (EF)
concept describing the organizational structure for implementing a process
improvement program which includes an experience base where all knowledge
relevant to software development is stored [BCR94].

QIP, GQM and EF have been applied successfully in several environments.
Their successful application within NASA's Software Engineering Labora-
tory (SEL) has been recognized with the first IEEE/SEI Process Achievement
Award. Currently, these approaches are the basis of improvement pro-
grams in many companies covering all branches of industry and ranging
from small to midsize and large companies. [Rom96, p. 13]

At this point, we are looking for technical support for realizing the experience
base. We decided to explore case-based reasoning (CBR) for this purpose. CBR
has already been used for software reuse in the past [BE96, FGGH96], however,
in this paper we discuss how well the CBR approach and our reuse approach
match with respect to the conceptual knowledge level [AA96] and the organiza-
tional structure. There are other approaches which use similarity-based retrieval
such as AIRS [OHPB92] and faceted classification [PF87], but the approaches do
not offer a model on the conceptual knowledge level for using and learning
from past experience.

Copyright [J Fraunhofer IESE 1997 1

Reuse of Software Knowledge

The work described here has been inspired by a paper of Althoff and Wilke
[AW97] where they introduce an organizational view! on the “CBR cycle”
described by [AP94a]. Such an organizational view is more helpful in order to
understand the potential uses of CBR in software development and process
modeling support. We strongly support this organizational view on CBR by
detailing the correspondences between the CBR cycle and the reuse of software
knowledge. We will show on an interesting level of detail that CBR is a very
promising technology for developing an EF. Here the importance of CBR goes
beyond realizing particular EF mechanisms, but supports the realization of an EF
on a more general knowledge level [AA96]. In addition, we want to point out
that an organizational structure similar to the EF might be of use for other appli-
cation areas of CBR, too.

The remainder of the paper is structured as follows. The next section gives a
short introduction to the reuse of software knowledge. It is followed by a dis-
cussion of the concept of the EF which provides an organizational structure for
reusing software knowledge (Section 3). Based on this, we compare the reuse
process with the CBR task-method decomposition model as introduced by
[AP94a], a detailing of the CBR cycle (Section 4). Since the reuse process is very
similar to the CBR cycle and organizational issues have long been considered as
part of a successful reuse program, it seems natural to extend the interpretation
of the CBR cycle to include organizational issues explicitly (Section 5). Such
issues have been considered in ongoing project case studies where CBR is used
for realizing EF’s (Section 6). We will shortly describe our planned activities in this
direction and point to issues that are still open (Section 7).

2 Reuse of Software Knowledge

The benefits of software reuse are manifold. Among them are improved produc-
tivity, improved reliability, better estimates, and faster time-to-market [SPM94].
Traditionally, the emphasis has been on reusing code. However, reuse does not
have to stop there. All kinds of software-related knowledge can be reused,

1 We subsume two aspects under the term “organizational view”: activities performed by humans rather
than by machines, and the organizational structure, e.g., an organization may be subdivided into several
project organization units and a unit responsible for organizational learning.

2 Copyright [Fraunhofer IESE 1997

Figure 1:

Reuse can be
applied both to
project planning and
performing the
project.

Reuse of Software Knowledge

including products (documents created by a software development project), pro-
cesses (activities or actions aimed at creating some product) [BR91], and any-
thing else useful for software development, e.g., effort prediction and produc-
tivity models or models of the application being implemented.

Reuse can be applied both to the planning of a software development project
and to the performance of the project (see Figure 1).

project
haracteristic
project planning project plan
project goals ﬂ .
reuse guidance
/ Y
/

. t software software
/ requirements development system

/ /

/

o

2.1 Reuse for Planning a Software Development Project

Before software development can start, the development project has to be
planned (with respect to cost, schedule, effort, resource demands, etc.). At the
same time, indicators for detecting deviations from the project plan are defined.

Unlike manufacturing where production is a repetitive task, software develop-
ment has creative elements. This does not mean, however, that software knowl-
edge reuse cannot be applied. Similar processes (project plans) can be used for
similar software systems. Hence, planning a project can be based on plans of
projects already terminated. This fact led to the development of the quality
improvement paradigm (QIP) [BCR94]. It divides the planning process into three
steps, and takes into account that the lessons learned from the performance of
the project (were the predicted cost, effort, resource demands, etc. correct?)
have to be saved in order to improve the planning of future projects (see

Figure 2).

The planning steps are as follows:

e Characterize. The environment, in which the software development takes
place, is described using the project characteristics as input. The characteriza-

Copyright [J Fraunhofer IESE 1997 3

Reuse of Software Knowledge

tion of the environment can be thought of as a set of models used in similar
projects to the one to be planned. Models may describe possible project
plans, the document structure of the software system, expected duration or
effort distribution. In addition, suitable measurement goals are part of the

characterization.
Figure 2:
The six steps of the
Quality Improve-
ment Paradigm (QIP) 6. PACKAGE 1. CHARACTERIZE _
1. characterize
plan 2. set goals
3. choose models
5. ANALYZE 2. SET GOALS perform | 4. perform
5. analyze
evaluate
6. package
4. PERFORM 3. CHOOSE MODELS

e Set goals. Based on the characterization and the capabilities of strategic
importance to the organization, a set of measurement goals is defined. Mea-
surement goals may be project-specific or of general interest to the organiza-
tion. A project-specific goal might be the adherence to the predicted effort
while the reduction of development cost in the long run is of interest to the
organization as a whole. Thus, measurement goals define the successful
project and organization performance. Reasonable expectations with respect
to the goals are derived from the baseline provided by the characterization
step.

e Choose models. Depending on the goals set, the right set of models from
the characterization step has to be chosen or created. Usually, the chosen
models have to be tailored to the specific needs of the project. For instance,
the effort distribution model might express the percentage of effort spent in
each phase (requirements, design, code, test). If the total effort is known, the
effort distribution model can be instantiated by replacing the percentiles with
concrete effort numbers. Other models can be constructed using building
blocks, e.g., a project plan can be constructed using building blocks for each
phase.

The planning phase is followed by the actual performance of the project (step 4
of the QIP). During the performance the project is monitored to make sure that
it uses its resources in the best possible way. For example, if the effort model
predicts 400 hours for the design phase, and the actual design has taken 350
hours even though it is only to 50% complete, then obviously a problem has
occurred for which a solution should be sought. At this point, reuse for perform-
ing the project comes in (see next subsection).

4 Copyright [Fraunhofer IESE 1997

Reuse of Software Knowledge

After the project has been completed, an evaluation takes place:

« Analyze. At the end of the project, the collected data and problems which
occurred (and their solutions) are analyzed. The results of this analysis are les-
sons learned and improvement suggestions for future projects. For example,
if a new technique for writing software requirements was applied in the
project, one would like to know whether this requirements technique was
helpful in the subsequent phases. Probably, some improvement suggestions
regarding the technique will be provided by the project team.

e Package. The project feedback has to be consolidated into new, updated
and refined models. For instance, if tutorial material exists describing the
requirements technique, it can be updated using the lessons learned and the
improvement suggestions from the analysis phase. This way, improvement
suggestions find their way into future projects. This is resembled by the
closed loop in Figure 2.

2.2 Reuse for Performing a Software Development Project

Figure 3:

Reuse for software
development must
be supported by an
experience base

The project plan constructed in the planning phase can be used to guide the
performance of the project. Each activity produces deliverables, usually some
kind of document. Humans, however, start very seldom from scratch. Typically,
something is reused. For example, instead of writing an informal application for
a business trip (where we might forget lots of important information for the
administration), we use an application form. The same is true for the develop-
ment of software. Large deliverables can be assembled by reusing old pieces. To
exploit reuse to the fullest extend possible it is necessary to provide support,
e.g., in the form of an experience base where all reusable objects are stored.
This is depicted in Figure 3.

technical software development project

manage-
design coding ment

¥ "
N reuse software reuse V reuse — P ~
\ knowledg | — - software
experience base knowledge

Both technical activities and project management (e.g., for replanning) is sup-
ported by the experience base. Again, any kind of knowledge can be reused,
not just code. For example, if a schedule slippage is detected, the experience
base may be consulted for possible actions like reducing the number of reviews
(which will, however, increase project risks).

Copyright [J Fraunhofer IESE 1997 5

Reuse of Software Knowledge

Reuse for the performance of a software development project is typically
described by a reuse model such as the one proposed by Basili and Rombach
[BR91]. An enhanced version of this model is shown in Figure 4.

Figure 4:
Reuse-oriented soft-
ware development development process model
model based on
[BR91]

create

/identify /nodify

transfer into
\ organizational
\ ownership evaluate
\ and select
\ reuse process model

|
®-®-®

experience base

experience
existing in
the world

at large

record
project-
specific
experience

(re-)package

Given a system S where a new object is to be integrated, a specification x of an
object x is defined. The next step is to identify a set of reuse candidates xq, ...,
Xn- These candidates are evaluated. Eventually the best suited candidate xy is
selected. Depending on how close x, is to x, X is created from scratch, or x is
modified in a suitable way. Then, the new object is integrated into S resulting in
a new system S’. An alternative to modifying x, in such a way that it satisfies x is
to modify S (and consequently x) so that x can be integrated more easily. The
last step of the process is to record the project-specific experience (e.g., x along
with an evaluation whether x was successfully integrated into S) in order to
improve the reuse support. The integration of the new experience into the expe-
rience base is referred to as “packaging”. Integrating new experience may
require to restructure parts of the experience base. This is referred to as “repack-

aging”.

The experience base may not only be populated by experience gained by the
software development organization itself, but also through transferring existing
experience from outside the organization. Such experience can be found, e.g.,
in literature.

6 Copyright [Fraunhofer IESE 1997

An Organizational Structure for
Reusing Software Knowledge

3 An Organizational Structure for Reusing Software Knowledge

Figure 5:

There needs to be a
distinct organiza-
tion for managing

software experience:

the experience fac-
tory

Copyright [J Fraunhofer IESE 1997

For large-scale reuse to work, a distinct support organization (separate from the
software development project organizations) must be established [Gri94]. Such
a support organization must carefully package, document and certify (where
applicable) software artifacts. Klotz puts it this way: “It is not enough that each
individual is creative and capable of learning — the organization as a whole must
also be capable of learning” [Klo94]. The reason is that development project
organizations have different aims than the organization as a whole.

While the project organization wants to make sure its deliverables fulfill their
requirements under given constraints (such as schedule and cost constraints),
the organization as a whole wants to avoid “reinventing wheels and making a
mistake twice. Due to these different aims, a project organization is not inter-
ested in providing knowledge, because this involves extra effort on its side. Con-
sequently, the organization as a whole must be represented by a distinct organi-
zation. Basili et al. [BCR94] call this organization the Experience Factory (EF). The
term includes the experience base already introduced as well as people retriev-
ing, storing and maintaining software knowledge (see Figure 5).

/’| project organizationn

project organization 1

activities:

1. characterize environment
2. set goals
3. choose models

ject t T A e
project team 4. perform project ’
software knowledge rgs?siazclléh e
derived from past projects deliverables
activities:

5. analyze
experience , 6. package
engineer experience base _
experience factory

In [BC95] Basili and Caldiera associate with each organizational unit the steps of
the QIP. Both organizational units participate in all steps,;however, for each step
one unit takes over the responsibility: steps 1-4 (planning and performing a
project) are the responsibility of the project organization while steps 5 and 6
(analyzing and packaging) are the responsibility of the EF.

Comparison of the CBR
Approach and the Reuse
Approaches

In the next section, we will see that this organizational concept can be used
together with the CBR approach for reusing software knowledge.

4 Comparison of the CBR Approach and the Reuse Approaches

For comparing both the QIP and the reuse-oriented software development
model with the CBR approach, we use the task-method decomposition model
proposed by Aamodt and Plaza [AP94a] for four main reasons. First the task-
method decomposition model bases on Aamodt and Plaza’s CBR cycle which
does not differ from other CBR cycles described in the literature with respect to
its basic contents [Kol93]. Second the combination of CBR and knowledge level
analysis [AA96, Aam95, AP94b] is very helpful for our problem at hand (namely
to find a technological basis for an EF). Third the task-method decomposition
model has been successfully used within the evaluation of the Inreca CBR sys-
tem as a means of analysis and comparison [Alt96, AA96]. Fourth the CBR cycle
of Aamodt and Plaza appears to be widely accepted in the literature [Wes95,
Alt96, Ehr96, BW96, AABM95, VMB96, LBP+96, etc.].

We now shortly introduce the four top-level (sub)tasks “retrieve”, ““reuse”,
“revise”, and “retain” of the CBR task-method decomposition model.

e Retrieve is decomposed into “identify features” (identifies relevant set of
problem descriptors), ““search’ (returns a set of cases which might be similar
to the new case), “initially match” (chooses a set of cases that are similar to
the new case), and ““select” (chooses the most suitable case from the set).
“Search” and “initially match” can be interpreted as a combined task,
because the identification of similar cases involves a goal-oriented search,
i.e., the search for similar cases. Combining ““search” and “initially match”
allows for an efficient implementation, since the task ““search’ does not need
to return all possibly similar cases.

* Reuse is decomposed into ““copy” (takes the selected case as the basis) and
“adapt” (transforms the solution of the selected case to a solution for the
new case).

» Revise is decomposed into “evaluate solution™ (evaluates the success of the
solution constructed in the reuse task) and “repair fault™ (detects defects in
the current solution and generates or retrieves explanations for them).

e Retain is decomposed into “extract” (identifies the information which must
be stored), “index’ (identifies the types of indexes needed for future retrieval

8 Copyright [Fraunhofer IESE 1997

Comparison of the CBR
Approach and the Reuse
Approaches

as well as the structure of the search space), and “integrate” (updates the
knowledge base with the parts of the actual experience likely to be useful in
future problem solving).

4.1 Comparison of the CBR Approach and the QIP

The steps of the QIP compare to the CBR approach as follows:

Copyright [J Fraunhofer IESE 1997

QIP step 1 (characterize). In this step project characteristics are used to
retrieve a set of relevant models. This corresponds to ““identify features”,
“*search” and “initially match” of the task “retrieve”. Since no best candidate
is selected at this point, the “select™ task is not part of QIP step 1.

QIP step 2 (set goals). In this step measurement goals for the software
development projects are chosen. This can be interpreted as ““selecting goal
cases™, i.e., the responsible manager looks for strategic improvement goals
and/or combinations of them (e.g., “reduce the software development effort
by 30%"). Therefore, QIP step 2 corresponds to the task “select™ with
respect to measurement goals (a subset of all relevant models returned in QIP
step 1).

QIP step 3 (choose models). Here, the rest of the relevant models (describ-
ing products, processes, expectations for the goals) is selected in accordance
with the goals selected in QIP step 2. Therefore, QIP step 3 corresponds to
the task ““select™ with respect to everything but measurement goals. In addi-
tion, a project plan is assembled, i.e., the relevant models are integrated. This
typically requires modification of the retrieved models. Hence, QIP step 3 cor-
responds also to the “reuse” task.

QIP step 4 (perform). During this step the project is performed. Even
though the CBR process implies, that the solution is applied between the
tasks ““reuse” and ““revise”, it does not provide an explicit task for this. There-
fore, there is no correspondence to QIP step 4. One of the reasons is that the
project is usually not executed by the people responsible for running the CBR
system. In terms of the EF concept, CBR specialists work in the EF, while the
project is performed by the people in the project organization. Nevertheless,
a model describing the CBR approach should also consider organizational
issues, meaning that it should include the case application explicitly.

QIP step 5 (analyze). In this step the project performance is analyzed. Les-
sons learned and improvement suggestions with respect to the knowledge

Another correspondence here is between defining similarity (as a special kind of general knowledge usu-
ally done by a domain expert) in CBR and defining goals (as concrete improvement goals derived from
strategic business goals usually determined by the responsible manager) in QIP [AW97]. In both cases the
resulting definition guides the later selection process and, thus, is of crucial importance for the whole
procedure.

Comparison of the CBR
Approach and the Reuse
Approaches

applied are written. Hence, QIP step 5 corresponds to the task “revise™, but
also to “extract” of the task “retain”, because the output of QIP step 5 is
exactly what has to be packaged in the next step.

QIP step 6 (package). Here, the lessons learned and improvement sugges-
tions are integrated into the experience base. This includes formalizing the
experience as well as restructuring the experience base. Therefore, QIP step 6
corresponds to “index” and ““integrate” of the task “retain”.

Table 1 summarizes the correspondences.

Table 1:
Summary of the CBR QIP1 QIP 2 QIP3 QIP 4 QPS5 QIP 6
comparison
between the CBR retrieve identify features X
cycle and the QIP search X
initially match X
select X (goals) X (other)
reuse copy X
adapt X
revise evaluate solution
repair fault
retain extract
index
integrate

4.2
Model

10

Comparison of the CBR Approach and the Reuse-Oriented Software Development

Reuse within a software development project basically consists of seven steps
which are related to the CBR approach as follows (see Figure 4 on page 6):

Specify. In this first step the need for a new object is recognized, and the
needed object is specified. This step corresponds to “identify features” of the
task “retrieve”.

Identify. An initial set of possible candidates is identified. This corresponds
to “search” and “initially match” of the task “retrieve”.

Evaluate and select. The most suitable candidate is selected. This step cor-
responds to “select” of the task “retrieve”.

Modify or create. Either the most suitable candidate is modified to fulfill the
initial specification or a new obiject is built from scratch. Both correspond to

Copyright [Fraunhofer IESE 1997

Table 2:

Summary of the
comparison
between the CBR
cycle and the reuse-
oriented software
development model

Copyright [J Fraunhofer IESE 1997

Comparison of the CBR
Approach and the Reuse
Approaches

the task ““reuse”. However, the creation of a completely new case is only
indirectly covered by the CBR cyclel.

Integrate. The new object is integrated into its surrounding system. Again,
as the CBR cycle does not include the application of cases explicitly, this step
has no correspondence. In terms of the EF concept, integration work is done
in the project organization. Usually, the EF people are not involved in this
step.

Record experience. The success of using the new object is evaluated. This
corresponds to the task “revise” as well as to “extract” of the task “retain”.
(Re-)package. This involves the integration of the experience into the experi-
ence base. Hence, this step corresponds to “index” and ““integrate” of the
task ““retain”.

Table 2 summarizes the results of this comparison.

CBR specify identify select create grate ence

evaluate modify record
and or inte- experi- (re-)
package

retrieve identify

features X

search X

initially
match

select X

reuse copy X

adapt X

revise evaluate

solution

repair
fault

retain extract X

index X

integrate X

The result of the two comparisons carried out in this section is twofold. First we
have shown that there are many commonalities between the CBR cycle and the
two software knowledge reuse models. This can be viewed as a successfully
passed plausibility test for CBR as a candidate technology for realizing software
knowledge reuse. Second in both comparisons there is one basic correspon-

1 For instance, selecting some kind of default case that contains an empty solution, i.e., no solution, such

that the solution of the new case must be created completely by hand. This would be the extreme case
of a 100% adaptation.

11

Organizational

“Implementation” of Case-

Based Reasoning

dence missing. For the same reason already seen with the perform step of the
QIP, the CBR cycle does not include any explicit correspondence for the “inte-
grate” step of the reuse model. The consideration of the underlying reasons
leads to the organizational issues of using CBR systems.

5 Organizational “Implementation” of Case-Based Reasoning

12

Since we want to use CBR technology for realizing software knowledge reuse in
industrial environments we must cope with organizational aspects. What we
now suggest is to extend the interpretation of the CBR cycle to explicitly include
human activities as, e.qg., it is done by an EF. There exists quite a natural exten-
sion because CBR was originally developed for being both a methodology for
building intelligent systems and a model of people [Kol93, Sch82, Str92]. For
instance, Janet Kolodner states it as follows: “CBR is both, and explorations in
CBR have been of both the ways people use cases to solve problems and the
ways we can make machines use them” [Kol93, p. 27]. Thus, CBR is a rather
general framework for describing problem solving and learning based on experi-
ences. We would like to call such an extended CBR cycle, which also explicitly
includes human activities, a “CBR Process Model”. Based on our analysis above,
it is obvious that the EF concept and the CBR process model have many corre-
spondences and analogies. An EF is an infrastructure for the systematic reuse of
all kinds of experiences during software development. Compared to this the
CBR process model is more general because it models experience based reason-
ing and acting for any kind of problem (e.g., business processes). However, we
believe that the organizational structure introduced in this paper can also be
used for application areas of CBR! other than software knowledge reuse and,
thus, is of further relevance for the CBR community.

We shortly want to motivate this with the following example where QIP is used
for the build-up of (any kind of) knowledge2 according to the following general
procedure:

1 Itwill be aninteresting research task to analyze the commonalities and differences with other approaches
to the organizational implementation of CBR like [Bar97] or [BWA+97].

2 This means processing of knowledge from the perspective of an organizational unit, i.e., the built-up
knowledge can be processed by humans, computers, or both.

Copyright [Fraunhofer IESE 1997

Current Status

e QIP step 1 (characterize). Analyze the status-quo: What do you already
know? Which knowledge areas are weak, which are strong?

* QIP step 2 (set goals). Decide in which areas you want to build up your
knowledge and to what extent.

e QIP step 3 (choose models). Plan how to reach your goals, i.e., choose a
process which describes how to proceed.

e QIP step 4 (perform). Proceed according to your plan.

* QIP step 5 (analyze). Check if you have reached your goals. If not, why
not?

* QIP step 6 (package). Integrate the new knowledge into the CBR system
and start the next cycle.

In [Bas95] Basili compares the QIP to several other quality improvement
approaches. For some of them CBR has been applied at least partly [AILM97].

As a consequence, we would like to suggest to join research efforts on the prac-
tical realization of the CBR process model and the EF within industrial and other
business environments, because we believe that there are many helpful com-
monalities and supplementations.

6 Current Status

Our current work bases on the general framework described in [AA96, ABS96],
and [Alt96]. [BAM97] describes the analysis of a collection of experiences with
respect to the application of CBR and the development of CBR systems, gath-
ered by several questionnaires®. These experiences have been made reusable by
means of CBR technology?, i.e., each questionnaire has been represented as a
structured case. For instance, for a concrete application problem it can be
searched for a similar problem or a similar CBR tool (i.e., a CBR tool that in prin-
ciple can deal with the problem).

1 50 questionnaires have been collected from 14 countries.

2 We used the CBR-Works system from teclnno (Kaiserslautern, Germany). The cases have been represent-
ed (and are available) in the Casuel common case and knowledge representation format [MBC+94]. It is
planned to make this system accessible via WWW based on the CBR-Works web server.

Copyright [J Fraunhofer IESE 1997 13

Summary and Outlook

There are a number of ongoing industrial, research and in-house projects at our
institute in the context of EF development. Currently the main effort here has
been on identifying and capturing experiences (data, information, and knowl-
edge) for potential reuse. Up to now CBR has not been used for their realiza-
tion.

7 Summary and Outlook

We showed that the CBR approach as described by Aamodt and Plaza [AP94a] is
similar to the models used in the area of software engineering for reusing
knowledge both on the project planning level and the project performance
level. In the second part, we introduced an organizational structure for reusing
software knowledge.

We plan to use a CBR system for software knowledge reuse and evaluate its
benefits. For this purpose a common model incorporating the CBR process
model and the reuse process models is being developed. Such a model will
describe CBR-based reuse of software knowledge in sufficient detail. The orga-
nizational model introduced in this paper can be used as a basis for further eval-
uation with respect to useful support by using CBR systems.

8 Acknowledgements

14

We would like to thank Guinther Ruhe and Frank Bomarius for the fruitful dis-
cussions. Jirgen Munch and Martin Verlage raised many issues we had to think
about. Thanks also to Christiane Gresse and the anonymous referees for review-
ing the submitted paper. They all have contributed to this final version in a con-
structive way.

Copyright [Fraunhofer IESE 1997

9 References

[AA96]

[AABMO5]

[Aam95]

[ABS96]

[AILMO7]

[Alt96]

[AP94a4]

[AP94b]

[AW97]

Copyright [J Fraunhofer IESE 1997

References

Klaus-Dieter Althoff and Agnar Aamodt. Relating case-based prob-
lem solving and learning methods to task and domain characteris-
tics: Towards an analytic framework. AICOM, 9(3):109-116,
September 1996.

K.-D. Althoff, E. Auriol, R. Barletta, and M. Manago. A Review of
Industrial Case-Based Reasoning Tools. Al Intelligence. Oxford (UK),
1995.

A. Aamodt. Integration of knowledge acquisition and machine
learning. In Y. Kodratoff and G. Tecuci, editors, Knowledge Acquisi-
tion and Learning by Experience: The Role of Case-Specific Knowl-
edge, pages 197-245. Kluwer Academic Publishers, 1995.

Klaus-Dieter Althoff and Brigitte Bartsch-Spdrl. Decision support for
case-based applications. Wirtschaftsinformatik, 38(1):8-16, Febru-
ary 1996.

D. A. Adams, C. Irgens, B. Lees, and E. MacArthur. Using case out-
come to integrate customer feedback into the quality function
deployment process. In R. Bergmann and W. Wilke, editors, Pro-
ceedings of the Fifth German Workshop on Case-Based Reasoning,
LSA-97-01E, pages 1-9. Centre for Learning Systems and Applica-
tions, University of Kaiserslautern, March 1997.

Klaus-Dieter Althoff. Evaluating case-based reasoning systems: The
Inreca case study. Postdoctoral thesis, University of Kaiserslautern,
July 1996. (submitted).

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AICOM,
7(1):39-59, March 1994.

E. Armengol and E. Plaza. A knowledge level model of case-based
reasoning. In S. Wess, K.-D. Althoff, and M. M. Richter, editors, Top-
ics in Case-Based Reasoning, pages 53-64. Springer-Verlag, 1994.

Klaus-Dieter Althoff and Wolfgang Wilke. Potential uses of case-
based reasoning in experienced based construction of software sys-
tems and business process support. In R. Bergmann and W. Wilke,
editors, Proceedings of the Fifth German Workshop on Case-Based

15

References

16

[Bas95]

[BCO5]

[BCR94]

[BE96]

[BRO1]

[Bar97]

[BAMO7]

[BWO6]

[BWA+97]

[Ehro6]

Reasoning, LSA-97-01E, pages 31-38. Centre for Learning Systems
and Applications, University of Kaiserslautern, March 1997.

Victor R. Basili. The Experience Factory and its relationship to other
quality approaches. In Marvin V. Zelkowitz, editor, Advances in
Computers, vol. 41, pages 65-82. Academic Press, 1995.

Victor R. Basili and Gianluigi Caldiera. Software quality manage-
ment: Strategy and practice. Sloan Management Review, pages 55—
64, Fall 1995.

Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experi-
ence Factory. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 469-476. John Wiley & Sons, 1994.

R. Bergmann and U. Eisenecker. Case-based reasoning for support-

ing reuse of object-oriented software: A case study (in German). In

M. M. Richter and F. Maurer, editors, Expert Systems 95, pages 152-
169. infix Verlag, 1996.

Victor R. Basili and H. Dieter Rombach. Support for comprehensive
reuse. |[EEE Software Engineering Journal, 6(5):303-316, September
1991.

Brigitte Bartsch-Spérl. How to introduce cbr applications in cus-
tomer support. In R. Bergmann and W. Wilke, editors, Proceedings
of the Fifth German Workshop on Case-Based Reasoning, LSA-97-
01E, pages 39-48. Centre for Learning Systems and Applications,
University of Kaiserslautern, March 1997.

Brigitte Bartsch-Sporl, Klaus-Dieter Althoff, and Alexandre Meisson-
nier. Learning from and reasoning about case-based reasoning sys-
tems. In Proceedings of the Fourth German Conference on
Knowledge-Based Systems (XPS97), March 1997.

Brigitte Bartsch-Sporl and Stefan Wess (eds.). Special issue on case-
based reasoning (in German). Kinstliche Intelligenz, 1, 1996.

R. Bergmann, W. Wilke, K.-D. Althoff, R. Johnston, and S. Breen.
Ingredients for developing a case-based reasoning methodology. In
R. Bergmann and W. Wilke, editors, Proceedings of the Fifth Ger-
man Workshop on Case-Based Reasoning, LSA-97-01E, pages 49—
58. Centre for Learning Systems and Applications, University of Kai-
serslautern, March 1997.

Dieter Ehrenberg (ed.). Special issue on case-based decision support

Copyright [Fraunhofer IESE 1997

[FGGH96]

[Gri94]

[Kl094]

[Kol93]

[LBP+96]

[MBC+94]

[OHPB92]

[PF87]

[Rom96]

[Sch82]

[SPM94]

[Str92]

Copyright [J Fraunhofer IESE 1997

References

(in German). Wirtschaftsinformatik, 38(1), 1996.

C. Fernandez-Chamiso, P. A. Gozales-Calero, M. Gomez-Albarran,
and L. Hernandez-Yanez. Supporting object reuse through case-
based reasoning. In I. Smith and B. Faltings, editors, Advances in
Case-Based Reasoning, pages 135-149. Springer-Verlag, 1996.

Martin L. Griss. Software reuse experience at Hewlett-Packard. In
Proceedings of the Sixteenth International Conference on Software
Engineering, page 270. IEEE Computer Society Press, May 1994.

Ulrich Klotz. Out of the economic crisis with organizations capable
of learning (in German). Ergonomie und Informatik, pages 3-12,
July 1994.

Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

Mario Lenz, Hans-Dieter Burkhard, Petra Pirk, Eric Auriol, and
Michel Manago. CBR for diagnosis and decision support. Al Com-
munications, 9(3):138-146, 1996.

M. Manago, R. Bergmann, N. Conruyt, R. Traphoner, J. Pasley,

J. LeRenard, F. Maurer, S. Wess, K.-D. Althoff, and S. Dumont.
Casuel: A common case representation language. Technical Report
Deliverable D1, Version 2.01, Esprit Project Inreca (P6322), 1994.

Eduardo Ostertag, James Hendler, Rubén Prieto-Diaz, and Christine
Braun. Computing similarity in a reuse library system: An Al-based
approach. ACM Transactions on Software Engineering and Method-
ology, 1(3):205-228, July 1992.

Rubén Prieto-Diaz and Peter Freeman. Classifying software for reus-
ability. IEEE Software, 4(1):6-16, January 1987.

H. Dieter Rombach. New institute for applied software engineering
research. Software Process Newsletter, pages 12-14, Fall 1996. No.
7.

Roger C. Schank. Dynamic Memory: A Theory of Learning in Com-
puters and People. Cambridge University Press, 1982.

Wilhelm Schéafer, Rubén Prieto-Diaz, and Masao Matsumoto. Soft-
ware Reusability. Ellis Horwood, 1994.

Gerhard Strube. The role of cognitive science in knowledge engi-
neering. In k. Schmalhofer, G. Strube, and Th. Wetter, editors, Con-

17

References

temporary Knowledge Engineering and Cognition, pages 161-175.
Springer-Verlag, 1992.

[VMB96] Manuela Veloso, Hector Mufioz-Avila, and Ralph Bergmann. Case-
based planning: Selected methods and systems. Al Communica-
tions, 9(3):128-137, 1996.

[Wes95] S. Wess. Case-Based Reasoning in Knowledge-Based Systems for
Decision Support and Diagnostics (in German). PhD thesis, Univer-
sity of Kaiserslautern, 1995.

[2S95] Mansour Zand and Mansur Samadzadeh. Software reuse: Current

status and trends. Journal of Systems and Software, 30(3):167-170,
September 1995.

18 Copyright [Fraunhofer IESE 1997

Document Information

Title: Using Case-Based Reasoning
for Reusing Software Know-
ledge

Date: August 22, 1997

Report: IESE-004.97/E

Status: Final

Distribution: Public

Copyright 1997, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

