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Abstract. With the dramatic proliferation of case based reasoning sys-
tems in commercial applications, many case bases are now becoming
legacy systems. They represent a significant portion of an organization’s
assets, but they are large and difficult to maintain. One of the contribut-
ing factors is that these case bases are often large and yet unstructured;
they are represented in natural language text. Adding to the complexity
is the fact that the case bases are often authored and updated by differ-
ent people from a variety of knowledge sources, making it highly likely
for a case base to contain redundant and inconsistent knowledge.

In this paper, we present methods and a system for maintaining large
and unstructured case bases. We focus on two difficult problems in case-
base maintenance: redundancy and inconsistency detection. These two
problems are particularly pervasive when one deals with an unstructured
case base. We will discuss both algorithms and a system for solving these
problems. As the ability to contain the knowledge acquisition problem
is of paramount importance, our methods allow one to express relevant
domain expertise for detecting both redundancy and inconsistency nat-
urally and effortlessly. Empirical evaluations of the system prove the
effectiveness of the methods in several large domains.

1 Introduction

A pervasive, yet relatively ignored, problem inherent in using case-based reason-
ing is that of case-base maintenance. A case base is usually constructed over a
long period of time, during which cases that solve approximately the same range
of problems are entered, by different case authors at different times. As well, a
case base may be the result of the union of several different smaller case bases,
or the result of “scanning in” raw material from large quantities of literature.
Similarly, a company’s use for any given case base may change with time. For ex-
ample, the cases for fixing a certain type of printer in an organization will become
outdated when the company acquires a fleet of new printers for replacement. As
the case base grows, errors within the case base become increasingly difficult to
detect. The result can be contradictions or inconsistencies within a case base.
These problems can potentially harm the performance of a case based reasoning



system. All these reasons contribute to the need to update and reorganize a case
base during its lifetime.

A case-base maintainer must be responsible for several different tasks. First,
as time passes, cases may become redundant simply because there are more
powerful cases in the same case base. In addition, some cases may contain in-
consistent information either with other parts of the same case or with the
background knowledge. A need then arises for identifying these cases and decid-
ing whether to eliminate them. Second, a large case base implies that the cases
are not used uniformly. Some cases are used more often than others, and this
usage distribution can be dependent on many different factors, including time,
the company’s asset distribution and business strategies. A dynamic case base
requires constant reorganization, so its most frequently, most recently accessed
cases are easily presentable to the user. This requirement suggests a hierarchical
organization structure for the case base. A complex aspect 1s that this structure
must respond to the continuous change in the user environment. A final aspect of
case base maintenance is in the ability for a system to identify and suggest solu-
tions to “inconsistent cases.” A case consists of a description of a target problem
and a solution. If the case description and solution contain errors, it may lead to
contradiction in the solution of a case. This problem will render a case solution
unusable by the user. Thus, a case-base maintenance system should have the
ability to identify inconsistent cases and parts of a case that are inconsistent
with each other.

The problem of case-base maintenance is akin to that of software mainte-
nance. It is now well known that as a software system is constructed, a major
portion of an organization’s resources is devoted to “software maintenance” in
its entire life cycle; estimates put this effort at 50 to 70 percent of the total cost
for developing and using the software in its life cycle [MO83, LS81, LST78]. We
conjecture that the same amount of effort will be experienced by organizations
exploiting case base reasoning systems.

2 Previous Approaches

The previous research in maintaining case-base systems has addressed many dif-
ferent aspects of the cleaning problem. [Aha91], by David Aha, presents several
case-based learning (CBL) algorithms which are tolerant of noise and irrelevant
features. These algorithms can predict feature values in future cases and, thereby,
detect anomalies or possible errors in the data. However, CBL algorithms make
several assumptions about the structure of the data, including the requirement
that an explicit structure consisting of feature-value pairs be given. Also, fea-
tures must be uniformly important across all cases for these approaches to work.
Moreover, these methods concentrate on local, single-case level solutions. Fur-
ther research conducted in this area concentrates on detecting discontinuities in
case bases [ST96]. However, this research is still focused on very well structured
cases, the cases are actually stored in a relational database. Predicting that a
case 1is discontinuous involves examining the relationships between attributes



across all cases.

Another area of case-base maintenance is concerned with optimization. Smyth
and Keane [SK95] suggested a competence-preserving deletion approach. The
premise of this approach i1s that each case in the base should be classified ac-
cording to its competence. These classifications are made according to two key
concepts: coverage and reachability. Coverage refers to the set of problems that
each case can solve. Reachability is the set of cases that can provide solutions
for each current problem. Cases that represent unique ways to answer a specific
query are pivotal cases. Auxiliary cases are those which are completely subsumed
by other cases in the base. In between these two extremes are the spanning cases
which link together areas covered by other cases and support cases which exist
in groups that support an idea. The deletion algorithm then deletes cases in
the order of their classifications : auxiliary, support, spanning and then pivotal
cases.

An unresolved issue is how these auxiliary cases are identified, and what will
be done once they are found. In addition, in our experience, we found that simply
deleting cases from a legacy case base is a very dangerous endeavor; since cases
represent significant assets of an organization, deleting them could represent a
possible loss to the company. In addition, Smyth and Keane’s theory does not
address the issue of detecting erroneous cases.

3 The Case for Case Base Maintenance

In this section we further clarify the case-base maintenance problem using an
industrially relevant domain — the computer printer trouble-shooting domain.
We show through the use of this domain that case maintenance is a serious
problem not only in theory, but also in practice.

3.1 Two Types of Cases

The majority of the work in case based reasoning has concentrated on cases with
well defined features. These cases have a relational structure, where each feature
is more or less a field in a relational database. In reality, however, formulating
a case 1nto a structured format requires extensive knowledge engineering. For a
given domain, the user has to first determine the important features to use to
represent each case. Then a decision has to be made on the type of values for
each feature. The process of authoring knowledge in this feature-value format
requires extensive maintenance when a new feature is discovered and inserted,
or when an existing feature becomes irrelevant.

In industrial practice, a majority of the case bases come directly from ei-
ther unstructured text documents, which are scanned in, or end-users’ verbal
description. These cases may have generic features such as problem description
and problem solution, but each of these features probably will not be further
partitioned down to a relational level. As an example, in a computer-printer
repair domain, a case might be described as:



Problem: Paper continues jamming laser printer due to dirty
and/or sticky internals.

SOLUTION : The internal components of the laser printer are
dirty and perhaps gummed up. There is also a possibility the
paper

is sticking together. Running regular gummed labels through a
laser printer is a key source of the problem because the high
heat

melts the gum labels.

Structured, relational cases often lend themselves to maintenance. Each at-
tribute is associated with a set of values. The cases can be scanned and values
that appear infrequently for a particular attribute can be modified or brought to
the user’s attention. Alternatively, integrity constraints can be specified ensuring
that each value entered is a legal one for that attribute. Unstructured cases, on
the other hand, are more problematic. Often the cases can not be reduced to a
set of variable value pairs so even range checking can be a complex problem. A
case-base management agent must be able to account for unstructured cases as
well as structured cases.

3.2 The Inconsistent-Case Problem

As a case base grows larger, the number of inconsistent cases will inevitably
increase as well. A case can be inconsistent in two different ways:

1. A case can be inconsistent with the background knowledge in an application
domain. For example, due to a mis-spelling, a case-base maintainer in a
medical domain might have entered “the patient 1s 200 years old”. This is
inconsistent with the knowledge that all humans are no older than 115 (if
the Guinness Book of World Records is to be believed!).

2. A case can be inconsistent because sections of the it contradict each other.
For example, a case from printer-repair domain may have an inconsistent
solution requiring the user to both repair and replace the printer.

The medical case-base example above presents an instance of a soft constraint
violation. A soft constraint violation could occur when a uncommonly occurring
feature value is found in a case. In this situation, a warning is desired to bring
this 1tem to the users’ attention. The printer example, however, demonstrates a
hard constraint violation. Hard constraint violations are logical contradictions.
A self cleaning agent must be able to identify both types of constraint violations.

3.3 The Redundant-Case Problem

With a large legacy case base a need arises to detect if two cases are equal or
if one case subsumes another by some criteria determined by the background
knowledge. A special case is when two cases are considered equivalent; that is,
all attribute values are identical.



An example of redundancy in the printer-repair domain is displayed in Ta-
ble 1. It demonstrates the difficulty of identifying redundant cases when the cases
are unstructured. A string comparison of the two cases presented will detect some
similarities, but there are significant differences between the cases.

Case 1

CASE NAME: Envelopes jam laser printer due to glue.
SOLUTION: Normal envelopes and laser printers do not get along
together. Problems include poor glue heat tolerance.

Case 2

CASE NAME: Paper continues jamming printer due to sticky internals
SOLUTION: Envelopes do not work very well with laser printers.

The high heat melts the gummed labels.

Table 1. Example of redundant cases in the printer repair domain

4 Maintenance Algorithm

4.1 Overview

Our approach to solving the maintenance problem for unstructured case bases is
to integrate an agent within a case based reasoning system. In order to minimize
the knowledge acquisition bottleneck, the agent allows unstructured cases to be
processed as well as the structured ones. We first use an information-retrieval
based algorithm to parse the cases by mining key words and important keywords
and key phrases from the unstructured text. These keywords and phrases will
offer the basis for subsequent modules to operate on. After the information-
retrieval step, we then use a specialized redundancy-detection and inconsistency-
detection module to manage the case base.

4.2 Keyword and Phrase Retrieval from Unstructured Cases

We use information retrieval techniques to partially automate the normalization
process. The specific steps in this process are:

1. Remove the stop words. Stop words are those words proven to be poor in-
dexers, such as “the” and “of”. They typically comprise between 40% - 60%
of the words within a document[SM83].

2. Collapse words using a domain thesaurus. In this application, the thesaurus
is used to standardize terms. For example, “sega unit” and “sega player”
may both appear in a case-based reasoner designed to diagnose cable failure.



These can both be reduced to “sega player” in order to facilitate string
matching.

3. Identify significant terms through statistical measures. Keywords are those
words which appear frequently within a small set of cases and infrequently
across all other cases[FBY92] [SM83]. The key word, the weight of the key
word within the file and the documents in which the key word appears are
retained.

4. Identify key phrases. Phrases are groups of more than one word which have
high inter-case cohesion[SM83]; if one word appears in a case, then the other
words have a very high probability of also appearing. Identified phrases must
appear in > T cases, where T is a standard threshold or user specified.

5. Generate an inverted index for the entire case base and for the key words.
Our inverted index is a list of the terms that appear in the case base, the
document number in which the term appears and the weight of the term
within the document. This last measure 1s the frequency of the term within
the case.

An example of the information retrieval process applied to one case in the
printer-repair domain is shown in Table 2.

Step 1: Read in Original Case

CASE NAME: The printed page is black.

CASE SOLUTION: The printed page is black due to an unseated toner
cartridge Reseat the toner cartridge and reprint the document.

To reseat the toner cartridge:

1.) Turn the laser printer off.

2.) Open the top by pressing button to release latch.

NOTE: Some printers require removing the paper tray first.

Step 2: Case After Stop Words Removed

CASE NAME: printed page black

CASE SOLUTION: printed page black unseated toner cartridge reseat
toner cartridge reprint document

reseat toner cartridge turn laser printer press button release latch
printers require removing paper tray first

Step 3: Key Words And Phrases

KEY WORDS: toner, cartridge, tray, press, button, release, latch
PHRASES: toner cartridge, page black, paper tray, reseat toner cartridge.

Table 2. Example of Information Retrieval Techniques Applied to Incoming
Case

Information retrieval techniques facilitate the comparison of cases. Cases are
“normalized” allowing the similarities or differences between cases to become



more pronounced. The normalized representation of the case can be used by
retrieval schemes also to better solve the user’s problem.

4.3 Guidelines for Inconsistent Cases

Addressing the Knowledge Acquisition Problem We chose to use string
based rules to represent guidelines. These rules are very close to natural language,
and the matching with the underlying case base is done through a string-based
fuzzy matching algorithm. This method offers medium speed, but string-based
rules are easy for the user to understand and easy for the expert to supply. An
additional advantage is that string based rules can be easily modified by the
user in case of spelling errors, irrelevant information or difficult wording. For
this reason, we call these rules “guidelines”.

Guideline Representation String-based guidelines are simply impossible com-
binations of key words or phrases. Therefore if K represents the keyword set, rules
can be expressed as ki A ka A ... Ak where {k; € K|i = 0..n A |K| = n}. An
example guideline in the printer-repair domain is: {Guideline: laser printer
black ribbon}

Laser printers do not use ribbons, so this combination of words should not
appear in a case. Range inconsistencies can also be defined. These rules are
referred to as adjacency rules: {Guideline : channel < 89}

Violations of string-based guidelines are detected by examining the inverted
index of the incoming case. If all of the words within a guideline are detected
within one case, that case is flagged as possibly violating the guideline. The
case must then be examined to determine adjacency of the words within the
guideline. In the second example, the word “channel” is located and then the
word directly following is tested to determine if it is a number and it 1s greater
than “89”. If so, a 100% chance of contradiction is reported to the user. Using
hashing functions greatly reduces the amount of time required to “test” a case
for consistency.

4.4 Solving the Redundancy Problem

Once each case has been given a standard description or profile, redundancy and
subsumption can be partially identified.

Equivalence and Pure Subsumption First consider the case where two cases
have the exact same string representation - clearly they are equivalent for all
intents and purposes. However, that is not the interesting situation. We also
detect situations where both the descriptions and the solutions of two cases are
close to each other by our nearest-neighbor similarity function. These cases are
then presented to the user for further examination.

Cases can also be redundant because they are subsumed by others. The
advantage of identifying pure subsumption is that the user can be presented



with two redundant cases and the system can explain that Case 1 subsumes
Case 2. In this way, the system can provide the user with information regarding
which is the more powerful case. Consider Subsumption Rule 1

Case 1 : Problems (p1,p2) Solution (s1)
Case 2 : Problems (p1,p2, q1) Solution (s1)

g1 can either be a keyword or a set of words containing a keyword. In this
case, Case 1 subsumes Case 2. The sufficient conditions for solution s; have
been established to be (p1,p2). The value of ¢ is irrelevant. Once the first two
premises hold, the solution can be offered to the user. Once this scenario has
been detected, the system allows the user to view both cases and highlights the
unnecessary condition. As it is possible that Case 1 is an inconsistent case, the
fact that it subsumes Case 2 does not mean that Case 2 should be summarily
deleted from the case base. The user must examine both cases and decide on the
suitable course of action.

Similarly, consider Subsumption Rule 2:

Case 1 : Problem: (p1, p2) Solution: (s1)
Case 2 : Problem: (p1, p2) Solution: (s1, s2)

Similarly to the first example, so can either be a key word or a set of words
containing a key word. In this case, Case 1 again subsumes Case 2. If (s1) is
sufficient to solve Case 1, then it is sufficient to solve Case 2. Any additional
information or suggested actions are extraneous.

There is one more possibility (Subsumption Rule 3):

Case 1 : Problem: (p1) Solution: (s1, s2)
Case 2 : Problem: (p1, p2) Solution: (s1)

In this instance, the system generates a third case:
System Generated Case : Problem (p;) Solution (sy)

This new case subsumes both Case 1 and Case 2 by the previous two subsumption
rules.

Example We now present an example of how to apply the subsumption rules.
Consider the two cases in Table 3. Both cases have the same solution, but Case
2 contains extraneous problem descriptions. By Rule2, Case 2 is subsumed by
Case 1. With the end-user’s authorization, Case 2 can then be eliminated from
the case base.

5 Empirical Testing

We have implemented the agent architecture in the framework of the CaseAd-
visor system' developed at Simon Fraser University.

! To get an evaluation copy, contact http://www.cs.sfu.ca/cbr.



Case 1

Problem : Envelopes jam laser printer due to glue.

Solution: Normal envelopes and laser printers do not get along
well together. Problems include poor glue heat tolerance.

Case 2

Problem : Paper continues jamming printer due to glue in the internals.
The gummed labels of the envelope have melted.

Solution: Envelopes do not work very well with laser printers.

Problems include poor glue heat tolerance.

Table 3. Detecting Redundancy in the Printer Repair Domain. In this example,
Case 2 1s subsumed by Case 1

CaseAdvisor™ is a case-based reasoning system implemented in C++ and
operates on both the PC and the Internet environments as either a stand alone
system or a client/server system. It’s advanced functionalities includes visual case
authoring, interactive problem resolution, interactive planning using decision
forests, and case adaptation for sales automation. For case bases, it supports
both flat file structures and ODBC database structures. CaseAdvisor comes
in both an application version for the Windows and UNIX environments, and
an API (application programming interface) version. So far, CaseAdvisor has
been successfully applied to many different help-desk applications in industrial
settings (for example, call center applications and financial package suggestions).

Our tests are aimed at establishing the validity of the agent-based approach
to case-base maintenance. We hope to confirm through the experiments the
following conjectures:

— The information-retrieval approach for processing unstructured cases is fea-
sible for large case bases.

— The redundancy-detection module 1s capable of detecting most redundant
cases.

— The inconsistency-detection module is capable of detecting intra-case incon-
sistencies through the use of string-based guidelines.

— Finally, the knowledge-acquisition bottleneck problem is adequately addressed
by the agent.

5.1 Testing the Information Retrieval Module

Even the one time cost of normalizing a case base is not that expensive. The time
required to remove the stop words from all of the cases applying the user defined
thesaurus, the time to extract keywords and phrases from the cases and the time
to build the inverted file structure were all measured. The information retrieval
module was applied to b different case bases containing different types of data.



Each case was on average 0.3 kilobytes in size. The Sheffield LISA collection is
a database of abstracts and titles extracted from The Library and Information
Science Abstracts database from Sheffield University. We performed empirical
testing on different components of the Sheffield LISA collection varying the case
size from 500 cases to 8000. In all instances, the information retrieval module
finished processing in less than 120 seconds. This proves that the self clean-
ing module can handle large case bases in a reasonable amount of time. When
applied to an actual case base designed to diagnose cable failures, the informa-
tion retrieval module completed processing in less than one second. Testing was
completed on large test files to illustrate how the information retrieval module
scales.

5.2 Testing the Redundancy-detection Module

The redundancy module is responsible for testing an incoming case for possible
redundancy. If there is no possible redundancy, the case is simply added to the
existing case base. If there is, the case is presented to the user along with the
case causing the possible conflict. The user then determines which, if any, of the
cases should be deleted from the case base.

A = Cable Domain

B = Sheffield LISA Domain
C = Sheffield LISA Domain
D = Time Magazine (1963)
E = Adult Census Data

Time
(seconds) Constant Case Varying Case
175 Size Size

1.50
1.00

0.50
025 (A

42 500 2000 - 425 8192
(0.3kb) (0.3kb) (0.3kb) (3kb) (0.12kb)

Number of Cases
(Size of Cases (kb))

Fig.1. CPU Time to Detect Redundancy

Figure 1 demonstrates that the algorithm to detect redundancy is efficient
enough to be applied in a case authoring module. The average size of the case is
also presented in the figure to illustrate the relative performance of the redun-
dancy module is dependent on both the number of cases AND the typical case
size. The case base with the largest number of cases, 8192, only needs approxi-
mately 0.25 seconds to check for redundancy due to the relatively small size of
the cases. The results presented show that the redundancy module scales up to



large case bases quite efficiently. Again, the case base containing, on average,
three (3) kilobyte cases took the longest period of time to test for redundancy.
However, the system still performed the redundancy check in less than two sec-
onds.

The next experiment involved using blind subjects to type in cases from the
same data sources. Five (5) subjects were required to input cases and submit
them to be added to the case base. Approximately 50% of the required cases
to enter were, in fact, redundant. The data sources used were in the form of
decision trees, rather than cases, to introduce a level of indirection. One branch
of the decision tree is equivalent to a case. Figure 2 presents the results of this
experiment.

Identified Not Identified

Redundant 97 6 103
Not
Redundant 20 87 107
117 93

Fig. 2. Quality of Redundancy Module

Figure 2 demonstrates the efficacy of our redundancy module. 94% of the re-
dundant cases were correctly identified by the application. Another encouraging
statistic is that 83% of all cases identified as redundant were in fact redundant.
Out of the 210 cases entered, 97 were correctly 1dentified as redundant, 20 were
falsely identified as redundant, 6 were falsely identified as not redundant and
the remaining 87 cases were correctly classified. Using fuzzy string matching to
determine redundancy allows for false positives. The threshold for identifying
redundancy can be modified. However, this modification must be made at the
expense of increasing the number of redundant cases that are not identified by
the module.

5.3 System Design

The redundancy and inconsistency detection algorithms are now integrated as

part of a larger case-base management module in CaseAdvisor system. Given a

collection of text files containing case information, this module semi-automatically
extracts the case base and performs redundancy and inconsistency testing and

management. The module is also able to merge two case bases and accept a new

case while detecting redundant and inconsistent cases.



6 Conclusions and Future Work

We maintain that case-base management should be taken seriously by every
practitioner and researcher. Of high importance is the issue of how to contain
knowledge acquisition costs while maintaining the case base. Our solution for
this problem is a case base maintenance agent which can retrieve important
information from a case base and then use this information to detect redundant
and inconsistent cases. Qur experiments confirmed that the approach can be
used to address practical problems of large sizes.

One area of future work is conducting more experiments on the inconsistency
detection algorithm. A first task of the experiments is to obtain more realistic
guideline for inconsistency detection. These guidelines will be provided by the
actual users of the system. With these guidelines we will be able to perform
efficiency and usability analysis on the algorithm.
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