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Abstract. The main assumption underlying case-based reasoning is that
a problem with similar features as an earlier one is likely to have the same
solution. However, this assumption has never been formally justified, and
one can easily find practical situations where it is not true.

We use probablity theory to show that even if this fundamental assump-
tion can be wrong for particular instances, it is guaranteed to be correct
on the average, and this no matter what the probability distributions
involved are. We define the concept of a match weight as a well-justified
measure of similarity. We show how it is often possible to effectively com-
pute a lower bound on match weight. We report on the performance of
such bounds when used as a similarity measure in a simple example.

1 Introduction
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Fig.1. Task analyzed in this paper: predict the hidden result Xo.

In this paper, we address the problem of predicting the value of an unobservable
variable Xg given the values of n observable and related variables X1, Xa, ..., X,,
as illustrated in Figure 1. We call the observable variables attributes and the
hidden one the result. Throughout the paper, we use upper case letters to denote
variables, and corresponding lower case for their values; we refer to the observed
values by 21, Zs, ..., 2, and to the true value of the result as z,.

The relationship between attributes and result is known only through a set of
representative cases. Each case is a record C; = (41, 42, ..., Zin, ¥50) containing
the values of all attributes and the result for a particular previous experience.

The goal is to make an optimal prediction of the result given the observed
attribute values and the case base. A simple example is prediction of credit risk,
where {X;} are attributes describing the applicant and the desired loan and



Xo € {good, bad}. More generally, Xo and also the attributes could be a vector
of more complex values. This task is also assumed in [1, 3], and models most
case-based reasoning systems.

We assume that the cases follow the same probability distributions as the
scenarios presented for prediction. The optimal prediction is then the mazimum
likelihood estimate, i.e. T such that

pT(X() = f0|X1 = f1, ...,X,—L = :L'hn)

is maximal using the distribution of the precedent cases.

Recognition and Prediction The problem can pose itself in two forms, which we
shall call recognition and prediction. In recognition, the observable attributes are
a function of the class and some noise. A typical example of this is recognizing
different animals given their features. Many statistical estimation techniques,
including k-nearest neighbours, are designed for this model. It also implies that
the attribute values are independent of one another given the class, so that the
prediction problem can be solved using Bayesian inference ([7, 4]).

In prediction, it is the attributes which determine the result up to some
noise. A typical example of this is predicting credit risk: presumably the different
caracteristics of the loan will influence the course of events and lead to the
credit being good or bad some time in the future. Now, it can no longer be
assumed that the attributes are independent given the result: for example, the
amount of the requested loan and the income of the applicant might well be
statistically independent, but when it is known that the loan has been defaulted
on it becomes far more likely that the amount was large with respect to income.
A prediction using probabilistic inference would thus require the entire joint
probability distribution

pT(X0|X1, ceny Xn)
In the absence of background information, the number of examples required to
estimate this distribution grows exponentially with the number of attributes. We
assume here that the given data is insufficient to provide a sufficiently precise
estimate of this distribution.

Prediction using base-based reasoning Case-based reasoning avoids the need for
explicit probability distributions. Here, we find an earlier case which matches
the current observations as closely as possible, and use its value of X as the
prediction. Thus, the problem is now no longer to find the maximum likelihood
prediction, but to find the precedent which is most likely to have the same result
as the observations, i.e. find a case X; such that

pr(Tio = ol®ij = 5, Tigp = Tp, .., Ty = T7)

is maximized, where j, k, ..., are the indices of the matching attributes. We call
this probability the weight associated with matching this set of attributes. The
weight can be used as a similarity measure among cases: the higher the weight of
a match, the larger the probability that it makes the correct prediction, and the
more similar it is to the current situation. Whether the maximum weight match
also gives the maximum likelihood prediction is an open research question.



A closer look at similarity The assumption underlying case-based reasoning is
that the more similar a case is to the current problem, to more likely it is to
provide the correct solution. Most measures of similarity have an ad-hoc char-
acter without formal justification, although analyses of certain measures have
been proposed ([5, 9]). However, it is not always the case that higher similarity
translates into higher prediction accuracy.

As an example, consider predicting the sucess of a company, characterized
by two attributes:

— X7 = 1/0 indicates that the company has/does not have debt
— X5 = 1/0 indicates that it is a high-tech company or not

We would like to predict the value of attribute Xo which is equal to 0 if the
company is a failure, and 1 if it will be successful. Let the probability that Xq = 1
given a certain combination of attributes values be given by the following table:

X2 = 0 X2 =1
X1=0{ 09 0.6
X,=1 04 | 05

and note that pr(Xo = 0) = 1 — pr(Xo = 1). In a real application, this table
would of course be unknown. Assume furthermore that all combinations of
attribute values are equally likely, and that we have two sets of cases:

— set Cy: all cases where X1 =0, X5 =1
— set Cy: all cases where X1 =0

so that C's D C1. We would like to predict the success of a company which has no
debt and is a high-tech company, characterized by the vector (#1 = 0, &2 = 1).
A case in set (1 provide a perfect match. Let’s see if it also has the highest
probability of a correct prediction. Using the table, we see that for our company,
the real probability of success is 0.6, the probability of failure is 0.4. A case in C}
predicts success and failure with the same probabilities, and thus the probability
of its 219 making the correct prediction is:

pr(#o = x10 = 0) + pr(zo = 10 = 1) = 0.6” + 0.4 = 0.36 + 0.16 = 0.52

Now consider a arbitrary case in Cs. It predicts success with probability 0.5 -
(0.940.6) = 0.75, failure with probability 1—0.75 = 0.25. Hence, the probability

of making the correct prediction when using an arbitrary case in C is:
pT(i‘g = X9y = 0) —+ pT‘(i’o = X9g = 1) =0.6-0.754+04-02>=0454+0.1=0.55

Thus, using a case in Cy, obviously a worse match than a case in C1, will on
average result in a better prediction! Note that this characteristic is incompat-
ible with many attempts at defining well-justified similarity metrics which are
sensitive to particular values.



Notation Since the scenarios presented for prediction follow the same distri-
bution as the cases themselves, they can be considered as additional members
of the case base for estimating the required probabilities. For the remainder of
this paper, we use underlines as a shorthand denoting matching arguments and
overlines as a shorthand for non-matching arguments of probablity distributions:

— Xj = x5 is written as z;;.
— X;j = wx;; averaged over all possible values of z;; is written as X

The average is always taken over all value combinations of capitalized variables
in the formula. Thus, for example, we write:

pr(mlma a@) for pr(i:O = I50|£1 =51, Ty = mSn)
pr(Xo| Xy, Xp) for

DD pr(zio, i1, i) - pr(2o = zio|#1 = i1, &2 = 2i2)

Ti0€Xo Tin€X1 7,2€X2

2 Statistically independent attributes

Since it is unlikely that we will find a precedent which matches the observations
exactly, we will need to determine which partial match is most likely to give us
the best estimate of the classification. We define:

Definition1. The weight of an attribute value X; = w;; or a combination of
attribute values is the increase in the probability of correct prediction when the
attributes match over its a-priori value:

w(zyy) = pr(Xolay) - pr(Xo)
w(a:i, ) = Pr(ﬁlﬂa oy 2i1) — pr(Xo)

Under the assumption that the distribution of the precedents is the same as
the distribution of the observations, the weight can be computed from these as
follows:

w(Zij, ..., zit) = pr(Xo|@ij, ..., zir) — pr(Xo)

> pr(zolwij, oy zi)” — pr(zo)”
:c,oEXO

Applying these definitions to the example in the introduction, we find:
pr(Xo) = (0.6” + 0.4%) = 0.52
w(z; =0)=0.55—10.52=0.03
w(z; =0,z =1)=052-0.52=10

so that for these particular values the weight of only matching X; is indeed
higher than that of matching both X; and X5!



Average weights A more intuitive result can be obtained if instead of considering
the weights of matches or mismatches with particular values, we only consider
the average weights of matches or mismatches in a certain attribute. We thus

define:

Definition2. The average weight W(X) of matching an attribute X is the
average of w(X = ;) over all possible values z; of the attribute:

W(X)= Z pr(X = z;)w(X = x;)
r;€EX
Applying these definitions to the example in the introduction, we now have:
W(X1, Xo) = Z pr(X1 = 21, X = 22)w(X1 = 21, Xo = 22)

.1]1,.1]2E{0,1}

=0.25-(0.97 + 0.1%) +0.25 - (0.6? + 0.4%) + 0.25 - (0.4% + 0.6%) +
0.25- (0.5 4+ 0.5%) — (0.6% + 0.4%)

=0.206+0.134+0.134 0.125 - 0.52 = 0.59 — 0.52 = 0.07

as the average weight for matching both attributes, and
W(X)= Y pr(Xi=z)uw(z)
z1€{0,1}

=0.5-(0.752 4 0.252 — 0.52) + 0.5 - (0.45% + 0.55% — 0.52)
=0.045

as the average weight for matching X only, so that on average also matching
X5 does produce better results!

Case-based reasoning works on the average It turns out that in fact, the intuition
underlying case-based reasoning is in fact always correct as long as only average
weights are considered:

Theorem 3. Independently of the probability disiributions, the average weight
W(X) of any attribute or combination of attributes X is always non-negative.

Proof:
Observe that by Jensen’s inequality and the convexity of squaring, for any zg:

Z pr(X = a;)pr(Xo = x| X = J:Z-)2 >

2
Z pr(X = a;)pr(Xo = zo|X = zl)]
r;e€X

r;,eX

=pr(Xo = x0)2
so that:
W)= Y [Z pr(X = ai)pr(Xo = zolX = >] — pr(Xo = w0’
ro€Xg Lz, €X

Z Z p'l"(XO = 1‘0)2 —p’i“(Xo = .’L‘())2 =0
To€Xo



and the theorem is proven.
QED

For independent attributes, we can show an even stronger theorem:

Theorem4. Given a sets of atiributes A and an atiribute B which is statisti-
cally independent of all attributes in A:

W(4)+W(B) < W(4,B)

Proof: Without loss of generality, we assume A to be single attribute; if 4 is a
set of attributes, it can be regarded as a single vector-valued attribute. We prove
the theorem by induction over the sets of possible values that the attributes A
and B can take. For the base of the induction, assume that A can take only a
single value, whereas B can take n values. Then, attribute A is always matched,
thus W(A) = 0 and W(A, B) = W(B), and the theorem is true.

Now assume that the theorem holds for any A with up to k attribute values,
and B takes n values. Let A be an attribute with k41 values, labelled vy through
vh41. Define a new attribute A’ with k values v} through v} such that:

vi=wv,i=1..k—1
v, = U V Uk41

so that A’ takes the same values as A except that it takes values v} whenever A
takes values vg or vp41. We define the following shorthand notation:

p=pr(A=uw)

g = pr(A = vk41)

r=pr(Xo|A = vk, B=1;)

s = pr(Xo|A =vpq1, B = 1)

t = Z pr(B = z;)pr(Xo|A = vi, B = z;)
m]EB

u= pr(B )pr(Xo|A = vk, B = 1)
szB

Since most terms in the weight calculations involving A and A’ are identical, the
following differences only involve the terms referring to vy and vj41; we have:

W(A,B)—W(A', B)

>3 (B =+ s = ——lom) + (03)°

zo€Xo z;€EB

Yo D mB= p-l-q {P"r” +par® +pes” + ¢°5° —p*r* — ¢°5°}

z0€Xpz;EB

DN T

z0€Xpgz; ER



and:

" FENE .
w(a) -w(A) = IDGZXON +4q py q[(pt) + (qu)7]
_ _Pg 2 u?
B z;ﬂ p+ q( +u)
so that:
[W(A, B) = W(A) - W(B)] - [W(A, B) - W(A') - W(B)] =
Pq N2 2 2 2
—— D pr(B=a;)(r" + )] - (1" +u") p =
zoze;(o r+yq JJZE:B
Yo D r(B=a)r 1= 4 () pr(B =1,)5 - o
zg€Xp P e z;EB z;EB
>0

since by Jensen’s inequality:

[Z pr(B = z;)r’] =
#;EB
I w(B =)= 3 (B
z;EB z;EB
> [ pr(B=g,)r"1-[>_ pr(B
2;EB #;EB
=Zpr =z;)(r* =r") =0
2;€B

and similarly

ST

J.JeB

—zj)s

z;)pr(Xo|A = vk, B = z;)

= zJ)PT(&Vl =, B= %)2]

]—4”>0

Since the theorem is satisfied for A’; which has only & values, it is also satisfied
for A. This completes the induction, and the theorem is proven.

QED

3 Dealing with dependent attributes

With the exception of Theorem 3, all results so far have assumed that attributes
are statistically independent of one another. In reality, such independence will
occur only very rarely. This can have dramatic effects. For example, let X and
Y be two attributes such that always X = Y. Thus, whenever X matches, Y

will also match, and the weight W(X,Y) =

W(X) = W(Y)!



Practical experience has shown that in many practical problems, attribute
dependence can be modelled using probabilistic networks ([7, 2]). A probabilistic
network is a directed acyclic graph whose nodes are attributes and whose arcs
indicate statistical dependencies between nodes. Nodes are statistically depen-
dent only on their direct parents, i.e. if node z has parents yg, .., yg, then for any
other set of nodes 7:

pr(®|yo, - Yk, Z) = pr(z|yo, -, Yx)

More important than the links which are present in the network are those which
are absent; these indicate independence relations. More precisely, any pair of
nodes 1 and x5 with parents 7; and 75 and not having a path between them
is statistically independent given Z1 U Z3, i.e.:

pr(xi|es, Z1 U Za,Y) = pr(x1|Z1 U Z3)

This result was proven by Olmsted ([6]); it also figures as Corrolary 4 on page
120 of [7]. Thus, two variables X and Y which have no direct link between them
are conditionally independent given the values of their common ancestors Z:

pr(X =a,Y =y|Z) =pr(X = 2|Z) - pr(Y = y|Z)

Conditional weights We define the conditional weight of a set of matching or
mismatching attributes A given a set of matching or mismatching attributes B:

W(A|B) = W(4,B) - W(B)
We can now prove:

Theorem 5. Assume that X and Y are conditionally independent given an at-
tribute or set of attributes 7. Then:

W(X|Z) +W(Y|Z) < W(XY]|Z)

Proof: We apply the following transformations:
WX\ Z)=W(X,Z) - W(Z)

= pr(2) - [pr(XolX, 2) — pr(Xolz)]
2€EZ
WY|Z) = Zpr pr(X0|Y z) — pr(&@)]
2€Z
WX, Y[Z) =S pr(z) - [pr(XolX, Y, 2) — pr(Xo|2)]
z€EZ

We now prove the theorem by showing that the inequality holds for every z, i.e.
we show that:

pr(Xo| X, 2) — pr(Xo|z) + pr(Xo|Y, z) — pr(Xo|z) < pr(Xo|X, Y, z) — pr(Xo|2)



Let p.(:) be the probability distribution pr(:) conditioned on z. By the as-
sumption of conditional independence, p.(Xo,X) and p.(Xo,Y) are indepen-
dent probability distributions. Also define W.(-) = p.(Xo|-) — p.(Xo), so that

we have:

W.(X)+ W.(Y) S W.(X,Y)

Since X and Y are independent with respect to this weight calculation, this
inequality is true by Theorem 4, and so the theorem is proven. QED.

4 Using weights as similarity metrics

?
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Fig. 2. Ezample of assessing credit risk.

Since match weights give the probability that a case makes the correct predic-
tion, they would make an ideal similarity metric for indexing cases. This requires
in particular an efficient way of computing match weights for any combination of
features. Note that estimating match weights for large combinations of features
directly from the case base will give inaccurate values due to an insufficient num-
ber of examples. Conditional independence relations provide a way to obtain a
lower bound on the match weight given the match weights for small combina-
tions of features. This lower bound could be used as a similarity metric, and we
now give an algorithm for computing it.

A synthetic example of assessing credit risk is used to illustrate. It has 9
attributes whose dependencies are accurately characterized by the graph shown
in Figure 2. Credit risk (good/bad) is computed as a deterministic function of
all attributes. As an example, assume that we want to know the weight of
matching a case in attributes X3, X4, X5, X6, X7 and Xs.



Bounding match weights The algorithm for bounding match weights has the
following steps:

1. reduce the probabilistic network for all attributes to one which contains only
those that participate in the match.

2. perform a topological sort, ordering the nodes in the network so that every
node is only connected to predecessors in this ordering.

3. approximate the conditional match weights for all attributes and arcs in the
network by counting out in the case base.

4. compute the weight of the combined match by composition.

In general, it will be very rare for all attributes in the case description to
match the observations. The first step is thus to construct a reduced probabilistic
network containing only attributes which participate in the match. In this new
network, paths through nodes which have been eliminated are replaced by direct
links. Such direct links must be created for all paths which are either:

— a sequence of ancestor relations, or
— two sequences of ancestor relations leading to a common ancestor.

but not between nodes which share a common successor (so-called head-to-head
nodes in the literature on Bayesian networks).

Combining match weights Theorem 4 now allows us to combine weights esti-
mated from the case base into bounds on weights for simultaneous matches of
all features in a network. This computation is very similar to the proapgation of
probabilities in probabilistic networks ([7]):

1. perform a topological sort on the network, classifying nodes into classes
Gy, ..., G such that all parents of nodes in G441 are in Gy, Gk_1, ..., Go.
2. W0
3. fori+ 0tokdo
— for all X € G; with ancestors Y': estimate W(X|Y) from the case base
and set W « W 4+ W(X|Y)

In this example, we have two classes: Gy = { X3, X6, X7} and G1 = {X4, X5, Xg}.
Thus, we require the weights W (X3), W(Xs) and W (X7) as well as the condi-
tional weights W (X|Xa), W (Xs| Xa, Xo) and W (Xs|.Xz).

Approzimating match weights from the case base Average weights can be pre-
computed by counting out all pairs of matching cases. For computing the weight
of the combination W (X3, Xy, ..., Xim), the algorithm would be as follows:

LWy = 0,W; <0
2. for all pairs of cases C;, Cj
matching in X3, X7, ..., X;n do

if zg; = Zoj then Wy « W; + 1
else Wy « W; + 1.



Wy
3. return W AW,

This algorithm can also be used to estimate several match weights in parallel
during a single pass over all case combinations. Conditional match weights are
best computed using the formula:

W(A|B) = W(4,B) - W(B)

Dealing with inexact maiches Weights are computed only for attributes which
match exactly. For attributes with a large number or values, such as numbers,
this will rarely be the case. It would be desirable to take into account imprecise
matches in such attributes as well.

Plaza ([8]) has studied similarity measures where attribute values are grouped
into a hierarchy such that all values in a group share some similarities. For
example, an attribute taking as values real numbers between 0 and 10 could be
represented by a hierarchy of intervals:

level 0: [0..10]

— level 1: [0..4], [5..10]

— level 2: [0..2],[3..4],[5..7],[8..10]
— level 3: 0,1,2,3,4,5,6,7,8,9,10

Now, a match can occur at different levels. For example, values 2 and 5 would
match at level 0, whereas 5 and 7 would match at level 2. Depending on the level
of the match, its contribution to the total similarity can be smaller or greater.
Such hierarchies can be applied to weight computations as well and signifi-
cantly improve accuracy. Now, we consider every level in the hierarchy a separate
attribute, and compute weights for matches at all levels in the hierarchy. This
results in much higher weights and thus greater confidence in the prediction.

5 Discussion

Most existing theoretical analyses of statistical prediction have considered the
classification problem, where attributes can be assumed to provide independent
evidence to the classification; examples of this are work in Bayesian inference ([7,
2]) as well as k-nearest neighbour classifiers.

In this paper, we have instead considered the prediction problem, where the
contributions of attributes are not independent. The case-based reasoning ap-
proach is promising for this problem class because it does not require any as-
sumptions about the nature of the relationship between attributes and the result.
owever, assumptions about the attribute-class relationship are often introduced
in the similarity measure used for case indexing. The analysis in this paper does
not require any such assumption.

The main novel results of this paper are that on average, increased similarity
does indeed lead to improved prediction independently of how atiributes and
classes are distributed, and that furthermore it is possible to compute lower
bounds on the true probability of correct prediction.



In practice, these lower bounds seem to provide very powerful similarity met-
rics, although our experiments are still too rudimentary to give definite conclu-
sions. The sum of the weight and the a-priori probability of correct prediction
is equal to the probability that the case makes the correct prediction. If it is
close to 1, which is often the case in our synthetic example, this provides a good
confidence measure for using the particular case. In applications where bounds
are always much smaller than 1, this is an indication that either the case base
is really much too sparse, or that the attributes used are not the right ones for
classification. In this case, the bounds may also help in guiding the search for
attributes which would allow more accurate classification.
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