
HAL Id: hal-00620801
https://hal.science/hal-00620801

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Compact Directed Acyclic Word Graphs
Maxime Crochemore, Renaud Vérin

To cite this version:
Maxime Crochemore, Renaud Vérin. On Compact Directed Acyclic Word Graphs. Mycielski J.,
Rozenberg G., Salomaa A. Structures in Logic and Computer Science, 1261, Springer-Verlag, pp.192-
211, 1997, LNCS. �hal-00620801�

https://hal.science/hal-00620801
https://hal.archives-ouvertes.fr

On Compact Directed Acyclic Word GraphsMaxime Crochemore and Renaud V�erinInstitut Gaspard MongeUniversit�e de Marne-La-Vall�ee,2, rue de la Butte Verte, F-93160 Noisy-Le-Grand.http://www-igm.univ-mlv.frAbstract. The Directed Acyclic Word Graph (DAWG) is a space-e�cientdata structure to treat and analyze repetitions in a text, especiallyin DNA genomic sequences. Here, we consider the Compact DirectedAcyclic Word Graph of a word. We give the �rst direct algorithm toconstruct it. It runs in time linear in the length of the string on a �xedalphabet. Our implementation requires half the memory space used byDAWGs.1 IntroductionOne of the most surprising facts related to pattern matching and discoveredby Ehrenfeucht et al. [2] is that the size of the minimal automaton acceptingthe su�xes of a word is linear. The surprise is due to the maximal number ofsubwords that may occur in a word: it is quadratic according to the length ofthe word. This is obviously true if the alphabet is unbounded, but still holdsif the alphabet contains at least two letters. In addition to the previous result,Ehrenfeucht et al. proved that the automaton can be built in linear time, whichis indeed a consequence of the previous fact but does not come readily from it.In the present article, we consider the compact implementation of the au-tomaton and show that it has a direct construction that runs in linear time.Fast and space-economical methods for this construction are important becausethe automaton serves as an index on the underlying word, and, as such, is in-volved in several combinatorial algorithms on words.Historically, the �rst linear-size graph to represent the subwords of a word,called the Directed Acyclic Word Graph (DAWG), was described in [2] togetherwith a linear-time construction. When terminal states are added to the DAWG,as shown in [8], the structure becomes the minimal automaton accepting thesu�xes of the word. Regarded as an automaton accepting the subwords of theword, i.e. setting all states as terminal states, the DAWG is not always a minimalautomaton. Indeed, this latter automaton can be slightly smaller, but its con-struction satis�es the same properties ([8, 3, 9]) though the algorithms becomea bit more tricky.Basically, DAWGs provide an implementation of indexes on texts [4]. Theindex on a text T helps searching it for various patterns. For instance, it leadsto an e�cient solution to the string-matching problem, searching text T for a

word w. The typical running time of a query is O(jwj) on a �xed alphabet, andis O(jwj log j�j) if the alphabet � of the text is unbounded.Many other e�cient solutions to problems on words are applications of DAWGs.They include (see [12]): computing the number of subwords of a word, comput-ing the longest repeated subword of a word, backward DAWG-matching, �ndingrepetitions in words [6], searching for a square [7, 9], computing the longestcommon subword of a �nite set of words and on-line subword matching [10],approximate string-matching [21].The su�x tree is an alternative representation of the subwords of a wordthat shares with the DAWG essentially the same applications. McCreight [18]introduced the notion and gave an e�cient construction after the seminal workof Weiner [22] on a similar structure.Su�x trees have been more extensively studied than DAWGs, probably be-cause they display positions of the word in a simpler way although the branchingfrom nodes is not uniform as it is from states of DAWGs. Apostolico [1] lists overforty references on su�x trees, and Manber and Myers [17] mention several oth-ers (see also [19]). Several variants or implementations of su�x trees have beendeveloped, like su�x arrays [17], PESTry [16], su�x cactus [15], or su�x binarysearch trees [14]. Ukkonen [20] designs an on-line construction of su�x trees, andFarach [13] proposes a novel approach leading to a linear-time construction oninteger alphabets.In computational biology, DNA sequences are often only viewed as wordsover the alphabet fa; c; g; tg of nucleotides. In this form, they are objects forlinguistic and statistic analysis. For this purpose, su�x automata (or su�x trees)are extremely useful data structures, but the bottleneck to using them is theirsize. The indexes has to be kept in main memory and their sizes limit their use.The size of available sequences is steadily growing, and therefore saving memoryspace is wanted both for the construction of the index and for its use.The Compact Directed Acyclic Word Graph (CDAWG) keeps the direct ac-cess to information while requiring less memory space. The structure has beenintroduced by Blumer et al. [4, 5]. The implementation is obtained by deleting allstates of outdegree one and their corresponding transitions (excepting terminalstates).We present an algorithm that builds directly compact DAWGs. This con-struction avoids constructing the DAWG �rst, which makes it suitable for thepresently available DNA sequences (about 1:5 million nucleotides long for thelongest sequences). Experiments show that our implementation saves half ofthe memory space required for ordinary DAWGs and su�x trees. At the sametime, the reduction of the number of states (2=3 less) and of transitions (abouthalf less) makes the applications run faster. Time and space are saved simul-taneously. The memory space used by our implementation of compact DAWGsrequires about 6n integers for a word of length n. This is to be compared with7n for DAWGs, 8n for su�x trees. It is just 2n for su�x arrays, but this is paidby a slower access to subwords.This article is organized as follows. In Section 2 we recall the basic notions

on DAWGs. Section 3 introduces the compact DAWG, also called compact su�xautomaton, and contains the bounds on its size. We show in Section 3.4 how tobuild the compact DAWG from the DAWG in linear time with respect to the sizeof this latter structure. Direct construction algorithm for the compact DAWG isgiven in Section 4.2 De�nitionsLet � be a nonempty alphabet and �� the set of words over �, with " as theempty word. If w is a word in ��, jwj denotes its length, wi its ith letter, andwi::j its factor (subword) wiwi+1 : : : wj . If w = xyz with x; y; z 2 ��, then x, y,and z are factors or subwords of w, x is a pre�x of w, and z is a su�x of w. S(x)denotes the set of all su�xes of x and F (x) the set of its factors.For an automaton, the tuple (p; a; q) denotes a transition of label a startingat p and ending at q. A roman letter is used for mono-letter transitions, a greekletter for multi-letter transitions. Moreover, (p; �] denotes a transition from pfor which � is a pre�x of its label. In this notation the target state is not given.Here, we recall the de�nition of the DAWG, and a theorem about its imple-mentation and size both proved in [3] and [9].De�nition 1. The Su�x Automaton of a word x, denoted DAWG(x), is theminimal deterministic automaton (not necessarily complete) that accepts S(x),the (�nite) set of su�xes of x.
I 1 2 3 4 5 6 7 9 F8 10g t a g t a a a cg a a c

c
a c

t a
Fig. 1. DAWG(gtagtaaac).For example, Figure 1 shows the DAWG of the word gtagtaaac. States thatare double circled are terminal states.Theorem2. The size of the DAWG of a word x is O(jxj) and the automaton canbe computed in time O(jxj). The maximum number of states of the automatonis 2jxj � 1, and the maximum number of edges is 3jxj � 4.Recall that the right context (according to S(x)) of a factor u of x is u�1S(x).The syntactic congruence associated with S(x) is denoted by�S(x)and is de�ned,for x; u; v 2 ��, by:

u �S(x) v () u�1S(x) = v�1S(x).We call classes of factors the congruence classes of the relation �S(x). Thelongest word of a class of factors is called the representative of the class. States ofDAWG(x) are exactly the classes of the relation �S(x). Since this automaton isnot required to be complete, the class of words not occurring in x, correspondingto the empty right context, is not a state of DAWG(x).Among the congruence classes we make a selection of classes that are calledstrict classes of factors of �S(x) and that are de�ned as follows.De�nition 3. Let u be a word of C, a class of factors of �S(x). If at least twoletters a and b of � exist such that ua and ub are factors of x, then C is calleda strict class of factors of �S(x).We also introduce the function endposx: F (x) ! N, de�ned, for a word u,by: endposx(u) = minfjwj j w pre�x of x and u su�x of wgand the function lengthx de�ned on states of DAWG(x) by:lengthx(p) = juj; with u representative of p:The word u also corresponds to the concatenated labels of transitions of thelongest path from the initial state to p in DAWG(x). Transitions that be-long to the spanning tree of longest paths from the initial state are calledsolid transitions. Equivalently, for each transition (p; a; q) we have the property:(p; a; q) is solid () lengthx(q) = lengthx(p) + 1:The function lengthx works as well for multi-letter transitions (transitions labeledby non-empty words), just replacing 1 in the above equivalence by the length ofthe label of the transition from p to q. This extends the notion of solid transitionsto multi-letter transitions:(p; �; q) is solid () lengthx(q) = lengthx(p) + j�j:In addition, we de�ne the su�x link function on states of DAWG(x) by thenext statement.De�nition 4. Let p be a state of DAWG(x), di�erent from the initial state, andlet u be a word of the equivalence class p. The su�x link of p, denoted bysx(p), is the state q which representative v is the longest su�x z of u such thatu 6�S(x) z.Note that, consequently to this de�nition, we have lengthx(q) < lengthx(p).Then, by iteration, su�x links induce su�x paths in DAWG(x), which is animportant notion used by the construction algorithm. Indeed, as a consequenceof the above inequality, the sequence (p; sx(p); s2x(p); :::) is �nite and ends at theinitial state of DAWG(x). This sequence is called the su�x path of p.

3 Compact Directed Acyclic Word Graphs3.1 De�nitionCompaction of DAWGs is based on the deletion of some states and their outgoingtransitions. This is possible by using multi-letter transitions and selecting strictclasses of factors de�ned in the previous section (De�nition 3).
minimizationSu�x Trie
compactionCompactDAWGSu�x Tree DAWGminimizationcompaction

Fig. 2. Consider a word that has an end-marker. Its su�x tree is the compact versionof the digital trie of its su�xes. Its DAWG is the minimized (in the sense of automatatheory) version of the trie. The compact DAWG can be obtained either by minimizingthe su�x tree of the word or by compacting its DAWG.The de�nition of CDAWGs parallels the de�nition of su�x trees obtainedfrom ordinary digital tries of all su�xes of a word. Indeed, disregarding how theend-marker required by su�x trees is managed, the CDAWG may be viewedas well as a compact version of the DAWG or as a minimized (in the sense ofautomata theory) version of the su�x tree (see Figure 2).The compact DAWG is de�ned as follows.De�nition 5. The Compact Directed Acyclic Word Graph of a word x,denoted by CDAWG(x), is the compaction of DAWG(x) obtained by keepingonly states that are either terminal states or strict classes of factors accordingto �S(x), and by labeling transitions accordingly.Consequently to De�nition 3, strict classes of factors correspond to states thathave an outdegree greater than one. So, we can delete every state having out-degree one exactly, except terminal states. Note that initial and �nal states areterminal states, so they are not deleted. An example of CDAWG is displayed inFigure 3.The construction of the DAWG of a word containing repetitions shows thatmany states have outdegree one only. For example, in Figure 1, the DAWG ofthe word gtagtaaac has 12 states, 7 of which have outdegree one; it has 18

I 23 4 Fc
a gtata gtaaacaaca gtaaacc accFig. 3. CDAWG(gtagtaaac).transitions. Figure 3 displays the compacted version, obtained after deletion ofthe 7 states, using multi-letter transitions. The resulting automaton has only 5states and 11 edges.According to experiments made on biological DNA sequences, consideringthem as words over the alphabet � = fa; c; g; tg, we got that more than 60% ofstates have outdegree one. So, the deletion of these states is worth, it providesan important saving. The average analysis of the number of states and edges indone in [5] in a Bernouilly model of probability.When a state p is deleted, the deletion of its outgoing edges is realized byconcatenating their label to the labels of incoming edges. For example, let r andp be states linked by a transition (r; b; p). The edges (r; b; p) and (p; a; q) arereplaced by the edge (r; ba; q) if p is deleted. By recursion, this extends to everymulti-letter transition (r; �; p).In the example of Figure 3, one can note that, inside the word gtagtaaac,occurrences of g are followed by ta, and those of t and gt by a. The word gta isthe representative of state 2, and there is no state corresponding to subwords g,gt, nor t. State I is directly connected to state 2 by edges (I,gta,2) and (I,ta,2).States 1 and 2 of Figure 1 no longer exist.The su�x links de�ned on states of DAWGs remain valid when we reducethem to CDAWGs due to the next lemma, which proof is straightforward.Lemma6. If p is a state of CDAWG(x), then sx(p) is a state of CDAWG(x).3.2 Size boundsBy Theorem 2 DAWG(x) is linear in jxj. As we shall see below (Section 3.3),labels of multi-letter transitions are implemented in constant space. So, the sizeof CDAWG(x) is also O(jxj). Meanwhile, as we delete many states and edges,we review the exact bounds on the number of states and edges of CDAWG(x).They are respectively denoted by States(x) and Edges(x).Lemma7. Given x 2 ��, if jxj = 0, then States(x) = 1; if jxj = 1, thenStates(x) = 2; otherwise jxj � 2 and 2 � States(x) � jxj+ 1.

The upper bound on the number of states is reached when x is in the formajxj, for a 2 �.Proof. For jxj � 1, this is a mere veri�cation. Assume now jxj � 2.
I FabcdebcdecdedeeFig. 4. A CDAWG with the minimum number of states, CDAWG(abcde).The lower bound is obvious and obtained when x is composed of pairwisedi�erent letters.Consider the su�x tree of x$, where $ is a marker. It has exactly jxj+1 leavesand at most jxj internal nodes. Its minimization into CDAWG(x) compacts allleaves into the �nal state F, and possibly put together other nodes. Removingthe marker does not change the number of states. So, we have States(x) � jxj+1.The word ajxj satis�es this property since each su�x aj0j, aj1j, . . . , ajxj rep-resents exactly one class. So, we have jxj+1 classes and the same number ofstates. I 2 3 4 5 Fa a a a aFig. 5. A CDAWG with the maximum number of states, CDAWG(aaaaa).Figures 4 and 5 display CDAWGs whose numbers of states are minimum andmaximum, respectively, for words of length 5.Lemma8. Given x 2 ��, if jxj = 0, Edges(x) = 0; if jxj = 1, Edges(x) = 1;otherwise jxj � 2 and Edges(x) � 2jxj � 2.The upper bound on the number of edges is reached when x is in the formajxj�1c, for a and c two di�erent letters of �.Proof. For jxj � 1, this is a mere veri�cation. Assume now jxj � 2.If x is in the form ajxj, the number of edges is exactly jxj. So, we have toprove the upper bound for a word x containing at least two di�erent letters.Consider the su�x tree of x$. It has exactly jxj+1 leaves. It has at most jxj � 1internal nodes in this situation (because the root has outdegree 3). The numberof edges in the tree is at most 2jxj � 1. After minimization into CDAWG(x) and

removing the marker, all edges may remain except the edge labeled by $. Thisgive the upper bound of 2jxj � 2.The automaton CDAWG(ajxj�1c), for a and c two di�erent letters of �, hasjxj states and exactly 2jxj�2 edges, distributed as jxj�1 solid edges and jxj�1non-solid edges.
I 2 3 4 5 Fa a a a acccccc

Fig. 6. A CDAWG with the maximum number of edges, CDAWG(aaaaac).Figure 6 displays a CDAWG having the maximum number of edges for aword of length 6.3.3 Implementation and experimentsTransition matrices and adjacency lists are two classical implementations of au-tomata. The �rst one gives a direct access to transitions, but the memory spacerequired is O(States(x)� card(�)). The second implementation stores only theexact number of transitions in memory, but needs O(log card(�)) time to ac-cess them with standard searching techniques. When the size of the alphabet isgreat and the transition matrix is sparse, adjacency lists are obviously preferable.Otherwise, like for genomic sequences, transition matrix is a better choice, asshown by the experiments below. So, we only consider here transition matricesto implement CDAWGs.We now describe the exact implementation of states and edges. We do thison a four-letter alphabet, so characters take 0:25 byte. We use integers encodedwith 4 bytes. For each state, to encode the target state of outgoing edges, tran-sitions matrices need a vector of 4 integers. Adjacency lists need, for each edge,2 integers, one for the target state and another one for the pointer to the nextedge.The basic information required to construct the DAWG is composed of atable to implement the function sx and one boolean value (0:125 byte) for eachedge to know if it is solid or not. For the CDAWG, in order to implement multi-letter transitions, we need one integer for the endposx value of each state, andanother integer for the label length of each edge. And that is all.Indeed, we can �nd the label of a transition by cutting o� the length ofthis transition from the endposx value of its target state. Then, we get both the

p -xixi+1 : : : xj q�etat pa `; q �etat qend-pos j a = xi` = j � i+ 1Fig. 7. Implementation of states and arcs in CDAWGs.position of the label in the source and its length. Figure 7 illustrates this imple-mentation. Keeping the source in memory is negligible considering the global sizeof the automaton (0:25 byte by character). This is quite a convenient solutionalso used for su�x trees.Then, respectively for transitions matrices and adjacency lists, each staterequires 20:5 and 17:13 bytes for the DAWG, and 40:5 and 41:21 bytes for theCDAWG. As a reference, su�x trees, as implemented by McCreight [18], need28:25 and 20:25 bytes per state. Moreover, for CDAWG and su�x trees thesource has to be stored in main memory. Theoretical average numbers of states,calculated by Blumer et al. ([5]), are 0:54n for CDAWG, 1:62n for DAWG, and1; 62n for su�x trees, when n is the length of x. This gives respective sizes inbytes per character of the source: 45:68 and 32:70 for su�x trees, 33:26 and 27:80for DAWGs, and 22:40 and 22:78 for CDAWGs.Considering the complete data structures required for applications, the func-tion endposx has to be added for the DAWG and the Su�x Tree. In addition,the occurrence number of each factor has to be stored in each state for all thestructures. Therefore, the respective sizes in bytes per character of the sourcebecome : 58:66 and 45:68 for su�x trees, 46:24 and 40:78 for DAWGs, and 24:26and 24:72 for CDAWGs.Table 1 compares the sizes of implementations of DAWGs and CDAWGsmeant for applications to DNA sequences. Sizes for random words of di�erentlengths on a four-letter alphabet are also given. DNA sequences are Saccha-romyces cerevisiae yeast chromosome II (chro II), a contig of Escherichia ColiDNA sequence (coli), and contigs 1 and 115 of Bacillus Subtilis DNA sequence(bs). Number of states and edges according to the length of the source and thememory space gain are displayed. Theoretical average ratios are given, computedfrom [5]. First, we observe there are 2=3 less states in the CDAWG, and nearof half edges. Second, the memory space saving is about 50%. Third, the num-

Sourcex jxj Nb statesjxj Nb transitionsjxj Nb transitionsNb states memorygaindawg cdawg dawg cdawg dawg cdawgchro II 807188 1,64 0,54 2,54 1,44 1,55 2,66 50,36%coli 499951 1,64 0,54 2,54 1,44 1,53 2,66 51,95%bs 1 183313 1,66 0,50 2,50 1,34 1,50 2,66 54,78%bs 115 49951 1,64 0,54 2,54 1,44 1,55 2,66 50,16%random 500000 1,62 0,55 2,54 1,47 1,57 2,68 49,53%random 100000 1,62 0,55 2,55 1,47 1,57 2,68 49,35%random 50000 1,62 0,54 2,54 1,46 1,56 2,68 49,68%random 10000 1,62 0,54 2,54 1,46 1,56 2,68 49,47%theor. aver. ratios 1,63 0,54 2,54 1,46 1,56 2,67 50,55%Table 1. Statistics on the sizes of real DAWGs and CDAWGs.ber of edges per state is going up to 2:66 when considering CDAWGs. With afour-letter alphabet, this is interesting to note because the implementation bytransition matrix requires less space than an implementation by adjacency lists.At the same time, this keeps a direct access to transitions.3.4 Constructing CDAWGs from DAWGsThe DAWG construction is fully exposed and demonstrated in [3], [9] and [11].As we show in this section, the CDAWG is easily derived from the DAWG.Indeed, we just need to apply the de�nition of the CDAWG. The computationis done by the function Reduction below. Observe that, in this function, state(p; a]denotes the target state of the transition (p; a]. The computation is done duringa depth-�rst traversal of the automaton, and runs in time linear in the numberof transitions of DAWG(x). Then, by theorem 2, the computation runs in timelinear in the length of the text.The main drawback of this construction of CDAWGs is that it requires theprevious construction of DAWGs. Therefore, the overall construction takes timeand memory space proportional to DAWG(x), though CDAWG(x) is signi�-cantly smaller. So, it is better to construct the CDAWG directly.Reduction (state E) returns (ending state, length of redirected edge)1. If (E not marked) Then2. For all existing edge (E; a] Do3. (state(E; a] , jlabel((E; a])j) Reduction(�tastate(E; a]);4. mark(E) TRUE;5. If (E is of outdegree one) Then6. Let (E; a] this edge ;7. Return (state(E; a] , 1 + jlabel((E; a])j);8. Else9. Return (E,1);

4 Direct Construction of CDAWGIn this section, we give the direct construction of CDAWGs. The running timeof the algorithm is linear in the size of the input word x on a �xed alphabet. Thememory space is proportional to the size of the automaton, and consequently isalso linear by Lemmas 7 and 8.4.1 AlgorithmSince the CDAWG of x is a minimization of its su�x tree, it is rather natural tobase the direct construction on McCreight's algorithm [18]. Meanwhile, proper-ties of the DAWG construction are also used, especially the su�x link function(notion that is di�erent from the su�x links of McCreight's algorithm), lengthsof longest paths, and positions, as explained in the previous section.First, we introduce the notions used by the algorithm, some of them aretaken from [18]. The algorithm constructs the CDAWG of the word x of lengthn, noted x0::n�1. The automaton is de�ned by a set of states and transitions,where I and F denotes the initial and the �nal states respectively. A partial pathrepresents a connected sequence of edges between two states of the automaton.A path is a partial path that begins at I. The label of a path is the concatenationof the labels of corresponding edges.The locus, or exact locus, of a string is the end of the path labeled by thestring. The contracted locus of a string � is the locus of the longest pre�x of �whose locus is de�ned. -Preliminary Algorithm Basically, the algorithm that builds CDAWG(x) in-serts into the current automaton the paths corresponding to all the su�xes ofx, from the longest to the shortest su�x. We de�ne sufi as the su�x xi::n�1 ofx. We denote by Ai the automaton constructed after the insertion of all the sufjfor 0 � j � i.Figure 8 displays six steps during the construction of CDAWG(aabbabbc).In this �gure (and the following), the dashed edges represent su�x links, linksthat are de�ned on states and that are used in the next section.At the beginning of the algorithm the automaton is initialized with the twostates I and F only. At step i (i > 0), the algorithm inserts a path correspondingto sufi into Ai�1 and produces Ai. The main loop of the algorithm satis�es thefollowing invariant properties:P1: at the beginning of step i, all su�xes sufj , 0 � j < i, are paths in Ai�1.P2: at the beginning of step i, the states ofAi�1 are in one-to-one correspondencewith the longest common pre�xes of pairs of su�xes longer than sufj .We de�ne headi as the longest pre�x of sufi which is also a pre�x of sufj forsome j < i. Equivalently, headi is the longest pre�x of sufi that is also label ofa path in Ai�1. We de�ne taili as head�1i sufi.

i ii
iii iv
v vi

I F I 1 F
I 12 F I 12 3 F
I 12 3 F I 12 3 F

aabbabbc a abbabbcbbabbcbbabbcab abbabbcbbabbcbabbcabbc ab bb abbccabbabbcbabbcabbcab bbb abbccabbabbcabbc ab bbb abbccabbabbcabbcccFig. 8. Six steps during the construction of CDAWG(aabbabbc). The pictures displaythe situation after the insertion of suf0=aabbabbc (i), suf2=bbabbc (ii), suf3=babbc(iii), suf4=abbc (iv), and suf5=bbc (v). vi shows the �nal automaton.
tailiI Fheadi

Fig. 9. Scheme of the insertion of sufi in Ai�1: there already is a path labeled by thepre�x headi of sufi.

i iiI 32 1 F I 32 1 4 Fab b bcabbbcbcabbbcbbbbcabbbcbabbbcabbbcb
cabbbcbcabbbcb ab b bcabbbcbcabbbcbcabbbcbcabbbcb

bbbc abbbcabbbcbabbbcbb
Fig. 10. Example of the execution of SlowFind during the construction ofCDAWG(aabbbcabbbcb). For the insertion of suf6=abbbcb, we have head6=abbbc.Since the path labeled by abbbc ends in the middle of the edge (3,bbbcabbbcb,F),state 4 is created, splitting the edge into (3,bbbc,4) and (4,abbbcb,F). A new edge iscreated, (4,b,F).At step i, the preliminary algorithm has to insert taili from the locus of headiinto Ai�1 (see Figure 9). To do so, the contracted locus of headi in Ai�1 is foundwith the help of function SlowFind that compares letter-to-letter the right pathof Ai�1 to sufi. An example of execution of this function is shown in Figure 10.This part is similar to the corresponding McCreight's procedure, except on apoint discussed below (redirection of edges). If there is a state at the end of thepath, it is the locus of headi. Otherwise it is created at the middle of the lastencountered edge by splitting it. In any case, an edge labeled by taili is createdfrom the locus of headi to F. The preliminary algorithm is given below.Preliminary Algorithm1. For all sufi (i 2[0..n-1]) Do2. (q;
) SlowFind(I);3. If (
 = ") Then4. insert (q,taili,F);5. Else6. create v locus of headi splitting (q;
]and insert (v,taili,F);or redirect (q;
] onto v,the last created state;7. End For all;8. mark terminal states;The function SlowFind returns a pair (q;
) such that q is the last encounteredstate on the path headi, state that is the representative of headi
�1. This keepsaccessible the transition that may be split if the state q is not the exact locus ofheadi, i.e. if
 6= ".

i iiI 32 1 4 F I 32 1 4 5 Fab cb cbbbcbc c
abbbcabbbcbbcabbbcbbcbbc ab cb c bccbbbcabbbcabbbcbbcabbbcbbcbbcabbbcbbcbbcFig. 11. Example of a duplication in SlowFind during the construction ofCDAWG(aabbbcabbbcbbc). The insertion of suf11=bbc leads to state 4. As the lastedge (1,c,4) is non-solid (i), state 4 is cloned into state 5 (ii), and the edge (1,c,4)becomes (1,c,5).If a non-solid edge is encountered during the execution of SlowFind, its targetstate has to be duplicated in a clone and the non-solid edge is redirected to thisclone. The redirected transition becomes solid. An example of duplication isgiven in Figure 11.In some situation, an edge can be redirected. This happens when a state hasjust been created at the previous step. The edge is redirected to this state andits label is updated accordingly. Such a situation appears in Figure 8 (case v)for the construction of CDAWG(aabbabbc) : the insertion of suf5=bbc inducesthe redirection of the edge (2,babbc,F), which becomes (2,b,3). In the abovesituation, the su�x link of the last created state is unknown during the insertionof the current su�x. And the redirections go on until the su�x link is found.Finally, when taili = " at the end of the construction, terminal states aremarked along the su�x path of F.From the above discussion, a proof of the invariance of properties P1 and P2can be derived. Thus, at the end of the algorithm all subwords of x and onlythese words are labels of paths in the automaton (property P1). By property P2,states correspond to strict classes of factors (when the longest common pre�x ofa pair of su�xes is not equal to any of them) or to terminal states (when thecontrary holds). This gives a sketch of the correctness of the algorithm.The running time of the preliminary algorithm is O(jxj2) (with an imple-mentation by transition matrix), like is the sum of lengths of all su�xes of theword x.

Linear Algorithm To get a linear-time algorithm, we use together propertiesof DAWGs construction and of su�x trees construction. The main feature is thenotion of su�x links. They are de�ned as for DAWGs in Section 2, de�nitionthat remains valid by Lemma 6. They are the clue for the linear running timeof the algorithm.Three elements have to be pointed out about su�x links in the CDAWG.First, we do not need to initialize su�x links. Indeed, when suf0 is inserted, x0is obviously a new letter because no letter of x has been scanned so far, whichdirectly induces sx(F)=I. Note that sx(I) is never used, and so never de�ned.Second, traveling along the su�x path of a state p does not necessarily end atstate I. Indeed, with multi-letter transitions, if sx(p)=I we have to treat thesu�x a�1� (a 2 �) where � is the representative of p. And third, su�x linksinduce the following invariant property satis�ed at step i:P3: at the beginning of step i, the su�x links are de�ned for each state of Ai�1according to De�nition 4, except maybe for the lastly-created state.The next remark allows redirections without having to search with SlowFindfor existing states belonging to a same class of factors.Remark. Let �� have locus p and assume that q = sx(p) is the locus of �. Then,p is the locus of su�xes of �� whose lengths are greater than j�j.The algorithm has to deal with su�x links each time a state is created. Thishappens when a state is duplicated, as illustrated by Figure 11, and when a stateis created after the execution of SlowFind.During a duplication, su�x links are updated as follows. Let w be the cloneof q. In regard to strict classes of factors and De�nition 4, the class of w isinserted \between" the ones of q and sx(q). So, we update su�x links by settingsx(w) = sx(q) and then sx(q) = w.
I q vs r���
� s xFig. 12. Searching for sx(v) using a su�x link.After the execution of SlowFind, if state v is created, we have to compute itssu�x link, sx(v). Let
 be the label of the transition starting at q and ending atv. To compute the su�x link of v, the algorithm goes through the path havinglabel
 from the su�x link of q, s = sx(q). The operation is repeated if necessary.Figure 12 displays a scheme of this search. The thick dashed edges represent

paths in the automaton, and the thin dashed edge represents the su�x link fromq to s. The search, as for the duplication, realizes the insertion of a series ofsu�xes. To travel along the path, we use the function FastFind, similar to theone used in McCreight's algorithm [18], that goes through transitions comparingjust the �rst letters of their labels. This function returns the last encounteredstate and edge.
i ii iiiI F I 1 F I 12 Fbbbc bb bcc b b bcc cFig. 13. Example of execution of FastFind ending with a solid edge during the con-struction of CDAWG(bbbc). The insertion of suf1=bbc leads to create state 1. ThenFastFind works from I with path b. This leads to the middle of the edge (I,bb,1) (ii)that is solid. Since we cannot redirect this edge, state 2 is created, splitting (I,bb,1)into (I,b,2) and (2,b,1) (iii). The edge (2,c,F) is added, sx(1) is set to 2, and sx(2) isset to I.Let r and (r;] be the state and transition returned by FastFind. If r is theexact locus of
, it is the wanted state, and we set then sx(v) = r. Else, if (r;]is a solid edge, then a new node w is created. The edge (r;] is split, its initialpart becomes (r; ; w), and the transition (w,taili,F) is added. Such an exampleis displayed in Figure 13.The last situation to consider is when (r;] is non-solid. Then, the edge isreplaced by (r; ; v). Such an example is displayed in Figure 14.In the two last cases, since sx(v) is not found, we run FastFind again withsx(r) and , and this goes on until sx(v) is eventually found, that is, when = ".FastFind is used in the same manner when a state is created by duplicationduring the execution of SlowFind.The discussion shows how su�x links are updated to insure that propertyP3 is satis�ed. The operations do not in
uence the correctness of the algorithm,sketched in the last section, but yield the following linear-time algorithm. Itstime complexity is discussed in the next section.

i iiI 32 1 4 F I 32 1 4 Fab b bcabbbcbcabbbcbbbbc abbbcbbabbbcabbbcb
cabbbcbcabbbcb ab b bc cabbbcbcabbbcbcabbbcb

bbbc abbbcabbbcbabbbcbb
Fig. 14. Example of execution of FastFind ending with a non-solid edge during theconstruction of CDAWG(aabbbcabbbcb). When suf6=abbbcb is inserted and state 4created, we have to look for sx(4). As sx(3)=I, we travel along edges from I to �nd theend of the path labeled by bbbc with FastFind. As this path ends in the middle of thenon-solid edge (1,bcabbbcb,F), this one is replaced by (1,bc,4). Then, FastFind runsagain from state 2 with the word bc, in order to eventually �nd sx(4).Linear Algorithm1. p I; i 0;2. While not end of x Do3. (q;
) SlowFind(p);4. If (
 = ") Then5. insert (q,taili,F);6. sx(F) q;7. If (q 6= I) Then p sx(q) Else p I;8. Else9. create v locus of headi splitting (q;
];10. insert (v,taili,F);11. sx(F) v;12. �nd r = sx(v) with FastFind;13. p r;14. update i;15. End While;16. mark terminal states;4.2 ComplexityTheorem9. The algorithm that builds the CDAWG of a word x of �� can beimplemented in time O(jxj) and space O(jxj�card(�)) with a transition matrix,or in time O(jxj � log card(�)) and space O(jxj) with adjacency lists.Proof. As recalled in section 3.1, the size of CDAWG(x) is linear in the lengthof x, both in term of number of states and number of edges. Tables endposx,

lengthx and sx take O(States(x)) space. So, an implementation by transitionmatrix takes O(jxj � card(�)) space. By adjacency lists, it takes O(jxj) space.

I I v
x �� � taili
 sufiheadii j kqs rFig. 15. Positions of labels when sufi is inserted. States I,q,v represent the scheme ofSlowFind and states I,s,r represent the scheme of searching for sx(q), as in Figure 12.The complexity of the algorithm essentially depends on the number of branch-ings made on states of the automaton. We prove that this number is linear, whichimplies the running times of the statement: O(jxj) with a transition matrix andO(jxj � log card(�)) with adjacency lists.Branchings during the execution of the algorithm are done during calls toSlowFind and FastFind. The generic situation is displayed in Figure 15. WhenSlowFind operates, the current letter of x, pointed by k, is compared with aletter of the label of an edge. Doing so, k is strictly incremented, and never afterdecremented. During calls to FastFind, each letter comparison increases strictlythe value of j, value that never decreases hereafter. This shows that the numberof branchings is linear.This ends the sketch of the proof.5 ConclusionWe have considered the Compact Direct Acyclic Word Graph, which is an ef-�cient compact data structure to represent all subwords, or factors, of a word.There are several data structures used to store this set. The present structureprovides an interesting space gain compared to the standard DAWG, and alsowhen compared with su�x trees. From the theoretical point of view, the upperbounds are of jxj + 1 states and 2jxj � 2 transitions. This saves jxj states andjxj transitions of the DAWG and at the same time leads to a faster use. From

the practical point of view, experiments on genomic DNA sequences and on ran-dom strings display a memory space gain of 50% with respect to the DAWG.Moreover, when the size of the alphabet is small, transition matrices do not takemore space than adjacency lists, keeping direct access to transitions. Thus, wecan construct the data structure of twice larger strings, keeping them in mainmemory, which is actually important to get e�cient treatments.This work shows that the CDAWG can be constructed directly. The algorithmis linear in the length of the text (on a �xed alphabet). Of course, it is simpler tocompute, by reduction, the CDAWG from the DAWG. But the present algorithmsaves time and space simultaneously.References1. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico & Z. Galil,editor, Combinatorial Algorithms on Words., pages 85{95. Springer-Verlag, 1985.2. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnel. Linear size�nite automata for the set of all subwords of a word: an outline of results. Bull.European Assoc. Theoret. Comput. Sci., 21:12{20, 1983.3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.The smallest automaton recognizing the subwords of a text. Theoret. Comput.Sci., 40:31{55, 1985.4. A. Blumer, J. Blumer, D. Haussler, and R. McConnell. Complete inverted �lesfor e�cient text retrieval and analysis. Journal of the Association for ComputingMachinery, 34(3):578{595, July 1987.5. A. Blumer, D. Haussler, and A. Ehrenfeucht. Average sizes of su�x trees anddawgs. Discrete Applied Mathematics, 24:37{45, 1989.6. B. Clift, D. Haussler, R. McDonnell, T.D. Schneider, and G.D. Stormo. Sequencelandscapes. Nucleic Acids Research, 4(1):141{158, 1986.7. M. Crochemore. Recherche lin�eaire d'un carr�e dans un mot. C. R. Acad. Sci.Paris S�er. I Math., 296:781{784, 1983.8. M. Crochemore. Optimal factor tranducers. In A. Apostolico and Z. Galil, edi-tors, Combinatorial Algorithms on Words, volume 12 of NATO Advanced ScienceInstitutes, Series F, pages 31{44. Springer-Verlag, Berlin, 1985.9. M. Crochemore. Transducers and repetitions. Theoret. Comput. Sci., 45(1):63{86,1986.10. M. Crochemore. Longest common factor of two words. In H. Ehrig, R. Kowalski,G. Levi, and U. Montanari, editors, TAPSOFT, number 249 in Lecture Notes inComputer Science, pages 26{36. Springer-Verlag, Berlin, 1987.11. M. Crochemore and C. Hancart. Automata for matching patterns. InG. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages. Springer-Verlag, 1997. to appear.12. M. Crochemore and W. Rytter. Text Algorithms, chapter 5-6, pages 73{130. Ox-ford University Press, New York, 1994.13. M. Farach. Optimal su�x tree construction with large alphabets. manuscript,October 1996.14. R. W. Irving. Su�x binary search trees. Technical report TR-1995-7, ComputingScience Department, University of Glasgow, April 1995.15. J. Karkkainen. Su�x cactus : a cross between su�x tree and su�x array. Combi-natorial Pattern Matching, 937:191{204, July 1995.

16. C. Lefevre and J-E. Ikeda. The position end-set tree: A small automaton for wordrecognition in biological sequences. CABIOS, 9(3):343{348, 1993.17. U. Manber and G. Myers. Su�x arrays: A new method for on-line string searches.SIAM J. Comput., 22(5):935{948, Oct. 1993.18. E. McCreight. A space-economical su�x tree construction algorithm. Journal ofthe ACM, 23(2):262{272, Apr. 1976.19. G. A. Stephen. String searching algorithms. World Scienti�c Press, 1994.20. E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14:249{260, 1995.21. E. Ukkonen and D. Wood. Approximate string matching with su�x automata.Algorithmica, 10(5):353{364, 1993.22. P. Weiner. Linear pattern matching algorithm. In 14th Annual IEEE Symposiumon Switching and Automata Theory, pages 1{11, Washington, DC, 1973.

This article was processed using the LATEX macro package with LLNCS style

