
Explaining Gentzen's Consisteny Proofwithin In�nitary Proof TheoryWilfried BuhholzMathematishes Institutder Ludwig-Maximilians-Universit�at M�unhenTheresienstr. 39, D-80333 M�unhen, Germanyemail: buhholz�rz.mathematik.uni-muenhen.deIntrodutionThere are two main approahes to ordinal analysis of formal theories: the �ni-tary Gentzen-Takeuti approah on one side, and the use of in�nitary derivationsinitiated by Sh�utte on the other. Up to now these approahes where thoughtof as separated and only vaguely related. But in the present paper we will showthat atually they are intrinsially onneted. Using the onept of notations forin�nitary derivations (introdued in [Bu91℄) a preise explanation of Gentzen'sredution steps on derivations in 1st order arithmeti Z (f. [Ge38℄) in terms of(ut-elimination for) in�nitary derivations in !-arithmeti will be given. Evenmore, Gentzen's redution steps and ordinal assignment will be derived from in-�nitary proof theory. In a forthoming paper we will extend the present work toimprediative subsystems of 2nd order arithmeti thereby explaining Takeuti'sonsisteny proof for �11-CA in terms of the in�nitary approah (with 
�+1-rules)from [BS88℄ (f. [Bu97℄).Our general idea is that suh investigations may perhaps be helpful for the un-derstanding and uni�ation of two of the most advaned ahievements in on-temporary proof theory, namely the methodially quite di�erent work of T. Arai([Ar96b℄, [Ar97a℄, [Ar97b℄) and M. Rathjen ([Ra91℄, [Ra94℄, [Ra95℄) on the ordi-nal analysis of very strong subsystems of 2nd order arithmeti and set theory.ContentIn x1 and x2 essential material from [Bu91℄ is repeated in a somewhat modi�edform, so that it �ts exatly for the present purpose. x1 ontains the de�nitionof operators RC and E whih make up a ut-elimination proedure for Z1 (thein�nitary Tait-style sequent alulus for !-arithmeti) due to Sh�utte [Sh51℄,Tait [Ta68℄ and Mints [Mi75℄. In x2 we introdue a �nitary Tait-style sequentalulus Z� for pure number theory Z whih di�ers from the usual version onlyby a ertain additional inferene rule (E) �� and the fat that uts �;C �;:C� arelabeled by the symbol RC (instead of CutC). Every Z�-derivation h with losedendsequent is onsidered as a notation for a ertain Z1-derivation h1 of the samesequent. In other words, we de�ne a translation h 7! h1 from Z� into Z1. Thede�nition of h1 runs as usual only that uts and E-inferenes are not translatedliterally but aording to the intended meaning of the symbols RC , E:



0B� h0�; C h1�;:C RC� 1CA1 := RC(h10 ; h11 ) , 0B�h0� E� 1CA1 := E(h10 ).From this interpretation and the properties of RC and E (established in x1) oneimmediately reads o� a de�nition of ordinals o(h) < "0 and deg(h) < ! suhthat depth(h1) � o(h) and supfrk(C)+1 : C is ut-formula in h1g � deg(h).Formally the de�nition of o(h) and deg(h) proeeds by (primitive) reursion onthe build-up of h and does not refer to h1. Further by looking on the de�nitionsof RC and E (given in x1) we derive (via h 7! h1) a de�nition whih assignsto eah Z�-derivation h a ertain inferene symbol tp(h) (orresponding to thelast inferene of h1) and, for eah i 2 jtp(h)j, a new Z�-derivation h[i℄ suh that(h[i℄)1 = h1(i), where �h1(i)�i2jtp(h)j is the family of immediate subderivationsof h1. The de�nition of tp(h) and h[i℄ also proeeds by reursion on the build-upof h.In x3 we desribe the (Tait-style adaption of) Gentzen's redution proedureand ordinal assignment (from [Ge38℄) in terms of the notions introdued in x2.Let Z denote the subsystem of Z� obtained by omitting the E-rule. So Z is justordinary 1st order arithmeti. We onsider a (hypothetial) Z-derivation d of theempty sequent. Let d0 be the Z�-derivation whih results from d0 by �lling inE-inferenes in suh a way that for eah node � of d0 (whih originates from anode of d) we have hgt�(d0; �) = H�ohe(d0; �), where hgt�(d0; �) is the number ofE's below �, and H�ohe is de�ned as in [Ge38℄. Then o(d0) is preisely the ordinalO(d) whih Gentzen assigns to d, and d0[0℄ (after deleting all E's) oinides withthe result of a Gentzen redution step applied to d.Remark. The E-rule is also present in [Ar96a℄ (under the name \height rule")but there no interpretation of E as ut-elimination operator is given.x1 Cut-elimination for the in�nitary system Z1PreliminariesWe assume a formal language of arithmeti whih has prediate symbols for prim-itive reursive relations, but no funtion symbols exept the onstant 0 and theunary funtion symbol S (suessor). Atomi formulas are of the form pt1:::tnwhere p is an n-ary prediate symbol and t1; :::; tn are terms. Literals are expres-sions of the shape A or :A where A is an atomi formula. Formulas are builtup from literals by means of ^;_;8x; 9x. The negation :C of a formula C isde�ned via de Morgan's laws. The rank rk(C) of a formula C is de�ned as usual:rk(C) := 0 if C is a literal, rk(A0^A1) := rk(A0_A1) := maxfrk(A0); rk(A1)g+1,rk(8xA) := rk(9xA) := rk(A)+1. By FV(�) we denote the set of all free vari-ables of the formula or term �. A formula or term � is alled losed i� FV(�) = ;.�x(t) (or �(x=t)) denotes the result of replaing every free ourrene of x in �by t (renaming bound variables of � if neessary). The only losed terms are the



numerals 0; S0; SS0; :::. We identify numerals and natural numbers. By TRUE0we denote the set of all true losed literals. Finite sets of formulas are alledsequents.We use the following syntati variables: s; t for terms, A;B;C;D; F for formulas,�;� for sequents, �; �;  for ordinals, i; j; k; l;m; n for natural numbers (andnumerals).As far as sequents are onerned we usually write A1; :::; An for fA1; :::; Ang, andA;�;� for fAg [ � [�, et.Proof systemsA proof system S is given by{ a set of formal expressions alled inferene symbols (syntati variable I){ for eah inferene symbol I a set jIj, a sequent �(I) and a family of sequents(��(I))�2jIj.NOTATIONBy writing (I) : : :�� : : : (�2I)�we delare I as an inferene symbol with jIj = I , �(I) = �, ��(I) = ��.If jIj = f0; :::; n�1g we write �0 �1 : : : �n�1� instead of : : :�� : : : (�2I)� .Up to a few exeptions the sequents �(I);��(I) are singletons or empty.De�nitionThe �gure :::��:::(�2I)� I is alled a (orret) S-inferene i�I 2 S and jIj = I and �(I) � � and 8�2I(�� � �;��(I)).The in�nitary proof system Z1 (!-arithmeti)(AxA) A if A 2 TRUE0.(VA0^A1) A0 A1A0^A1 (WkA0_A1) AkA0_A1 (k 2 f0; 1g)(V8xA) : : : Ax(i) : : : (i2IN)8xA (Wk9xA) Ax(k)9xA (k 2 IN)(CutC) C :C; (Rep) ;;Note:To avoid a possible misunderstanding we stress that jRepj = f0g while jAxAj = ;.Indutive de�nition of Z1-derivationsIf � is a sequent, � an ordinal, I 2 Z1, and (di)i2I a family of Z1-derivationssuh that :::�(di):::(i2I)� I is a orret Z1-inferene and 8i2I(o(di) < �)



then the tree d := � :::di:::(i2I)I : � : � is a Z1-derivation with�(d) := �, last(d) := I, o(d) := �, d(i) := diand deg(d) := �maxfrk(C)+1; deg(d0); deg(d1)g if I = CutCsupfdeg(di) : i 2 Ig otherwise�(d) is alled the endsequent of d, o(d) the ordinal of d, last(d) the last inferene(symbol) of d, and d(i) the i-th immediate subderivation of d.We use d; d0; ::: as syntati variables for Z1-derivations.Abbreviation d `�m � :() �(d) � � & deg(d) � m & o(d) = �.Cut-elimination for Z1Theorem 1 and De�nitionLet C be given. We de�ne an operator RC suh that:d0 `�m �; C & d1 `�m �;:C & rk(C) � m =) RC(d0; d1) `�#�m �.Proof by indution on �#�:W.l.o.g. we may assume that � = (�(d0) n fCg) [ (�(d1) n f:Cg).Case 1. C 62 �(I) where I := last(d0):Then �(I) � �, and d0(i) `�im �; C;�i(I) with �i < �, for all i 2 jIj.By IH we get RC(d0(i); d1) `�i#�m �;�i(I) for all i 2 jIj.Hene RC(d0; d1) := � : : :RC(d0(i); d1) : : : (i 2 jIj)I : � : �#� is a derivation as required.Case 1'. :C 62 �(last(d1)): symmetri to Case 1.Case 2. C 2 �(last(d0)) and :C 2 �(last(d1)):Then rk(C) 6= 0, sine C and :C annot both be true literals.Case 2.1. C = 8xA(x): Then :C = 9x:A(x), last(d1) = Wk:C , andd0(i) `�im �; C;A(i) with �i < �, for all i 2 IN,d1(0) `�0m �; C;:A(k) with �0 < �.By IH we get RC(d0(k); d1) `�k#�m �; A(k) and RC(d0; d1(0)) `�#�0m �;:A(k).Further rk(A(k)) < rk(C) � m.Hene RC(d0; d1) := �RC(d0(k); d1) RC(d0; d1(0))CutA(k) : � : �#� .Case 2.2.{2.4. C = 9xA or A0^A1 or A0_A1: analogous to Case 2.1.Theorem 2 and De�nitionWe de�ne an operator E suh that: d `�m+1 � =) E(d) `!�m �.Proof by indution on �:W.l.o.g. we may assume that � = �(d).Case 1. last(d) = CutC :Then rk(C) � m and d(0) `�0m+1 �; C , d(1) `�1m+1 �;:C with �0; �1 < �.By IH we get E(d(0)) `!�0m �; C and E(d(1)) `!�1m �;:C.



Hene by Theorem 1 RC(E(d(0)); E(d(1))) `!�0#!�1m �, andE(d) := �RC(E(d(0)); E(d(1)))Rep : � : !� is a derivation as required.Case 2. otherwise: E(d) := � : : : E(d(i)) : : : (i2jIj)I : � : !� where I := last(d).Remark In the whole paper ��:!� ould be replaed by any ordinal funtion fsuh that 8�0; �1; �(�0; �1 < �) f(�0)#f(�1) < f(�)).x2 The �nitary system Z�Let Z be the formal system of pure number theory (Peano arithmeti). Themathematial axioms of Z are the sheme of omplete indution and �nitelymany axioms of the shape 8~x(A0 _ :::_Am) where A0; :::; Am are literals. In oursequent alulus the latter axioms are represented by a (prim. re.) set Ax(Z) ofsequents suh that(i) � 2 Ax(Z) & A 2 � ) A is a literal,(ii) � 2 Ax(Z) ) �~x(~t) 2 Ax(Z),(iii) � 2 Ax(Z) & FV(�) = ; ) � \ TRUE0 6= ;.De�nition of the �nitary proof system Z�The inferene symbols of Z� are(Ax�) � if � 2 Ax(Z) , (Vy8xA) Ax(y)8xA , (Wt9xA) Ax(t)9xA ,(Indy;tF ) :F; Fy(Sy):Fy(0); Fy(t) , (RC) C :C; , (E) ;; ,and VA0^A1 , WkA0_A1 as in Z1.Z�-derivationsZ�-derivations are de�ned in a somewhat di�erent style than Z1-derivations. Thedi�erene is that the nodes of a Z�-derivation h are labeled with inferene symbolsonly, while the endsequent �(h) and the ordinal o(h) of h will be omputed fromh by strutural reursion. Atually Z�-derivations will be introdued as terms (inpre�x notation) built up from inferene symbols I whih we onsider as n-aryfuntion symbols, where jIj = f0; :::; n�1g.Indutive De�nition of Z�-quasi-derivationsIf I is an n-ary Z�-inferene symbol and h0; :::; hn�1 are Z�-quasi-derivations thenh := Ih0:::hn�1 is a Z�-quasi-derivation and�(h) := �(I) [Si<n(�(hi) n�i(I)) ,o(h) := 8>><>>: o(h0)#o(h1) if I = RCo(h0) � ! if I = Indy;tF!o(h0) if I = E(supi<n o(hi)) + 1 otherwise ,



deg(h) =8><>:maxfrk(C); deg(h0); deg(h1)g if I = RCmaxfrk(F ); deg(h0)g if I = Indy;tFdeg(h0)�� 1 if I = Esupi<n deg(hi) otherwiseRemark: The de�nitions of o(h) and deg(h) are motivated by the interpretationh 7! h1 (introdued below) and Theorems 1,2.Indutive De�nition of Z�-derivationsIf I is an n-ary Z�-inferene symbol and h0; :::; hn�1 are Z�-derivations thenh := Ih0:::hn�1 is a Z�-derivation if the following onditions are satis�ed{ I = Vy8xA ) y 62 FV(�(h)),{ I = Indy;tF ) y 62 FV(�(h)),{ I = Wt9xA ) FV(t) � FV(�(h)),{ I = RC ) FV(C) � FV(�(h)).A Z�-derivation h is alled losed i� FV(�(h)) = ;.Remark: As one easily veri�es the last two onditions in the above de�nition donot restrit the set of provable sequents. They imply the following proposition:If h = Ih0:::hn�1 is a losed Z�-derivation with I 6= Vy8xA; Indy;tF then h0;:::; hn�1are losed too. If h = Vy8xAh0 or h = Indy;tF h0 is losed then FV(�(h0)) � fyg.De�nitionLet Z denote the subsystem of Z� whih arises by omitting the symbol E. Obvi-ously Z is nothing else than the Tait-style version of pure number theory Z.We use d; di (h; hi) as syntati variables for Z(Z�)-derivations.De�nitionIn the usual way we de�ne h(z=i), i.e. the result of substituting i for z in h:Ax�(z=i) := Ax�z(i),(WtCh0)(z=i) := Wtz(i)Cz(i)h0(z=i), (VCh0h1)(z=i) := VCz(i)h0(z=i)h1(z=i),(VzCh0)(z=i) := VzCh0, (VyCh0)(z=i) := VyCz(i)h0(z=i) if y 6= z,(Indz;tF h0)(z=i) := Indz;tF h0, (Indy;tF h0)(z=i) := Indy;tz(i)Fz(i) h0(z=i) if y 6= z,(RCh0h1)(z=i) := RCz(i)h0(z=i)h1(z=i), (Eh0)(z=i) := Eh0(z=i).Proposition If h is a Z�-derivation then also h(z=i) is a Z�-derivation and�(h(z=i)) � �(h)z(i), deg(h(z=i)) = deg(h), o(h(z=i)) = o(h).Interpretation of Z� in Z1For eah losed Z�-derivation h we de�ne its interpretation h1 2 Z1 as follows:Let h = Ih0:::hn�1, � = �(h), � = o(h):0. (Ax�)1 := �AxA : � : � , where A is the \least" element of � \ TRUE0,1. (Vy8xAh0)1 := � : : : h0(y=i)1 : : : (i2IN)V8xA : � : � ,



2. (RCh0h1)1 := RC(h10 ; h11 ) ,3. (Eh0)1 := E(h10 ) ,4. (Indy;nF h0)1 := � enRep : � : � withe1 := h0(y=0)1, ei+1 := RF (i)(ei; h0(y=i)1) for i > 0, and e0 is the anonialZ1-derivation with �(e0) = f:F (0); F (0)g, deg(e0) = 0, o(e0) = 2rk(F ).5. Otherwise: (Ih0:::hn�1)1 := �h10 : : : h1n�1I : � : �Remark With the help of Theorems 1,2 one easily veri�es that h1 is a Z1-derivation with h1 `o(h)deg(h) �(h).De�nition of tp(h) and h[i℄ for losed Z�-derivations h and i 2 jtp(h)jBy (prim.) reursion on the build-up of h we de�ne an inferene symbol tp(h) 2Z1 and losed Z�-derivation(s) h[i℄ in suh a way that tp(h) = last(h1) and(h[i℄)1 = h1(i). The de�nition lauses for h = RCh0h1 and h = Eh0 an beread o� from the orresponding lauses in the de�nitions of RC and E .1.1. h = Ax�: tp(Ax�) := AxA where A is the \least" element of � \ TRUE0.1.2. h = VCh0h1: tp(h) := VC , h[i℄ := hi.1.3. h = VyCh0: tp(h) := VC , h[i℄ := h0(y=i).1.4. h = WkCh0: tp(h) := WkC , h[0℄ := h0.2. h = Indy;nF h0: tp(h) := Rep, h[0℄ := en withe1 := h0(y=0), ei+1 := RF (i)eih0(y=i) for i > 0, and e0 is the anonialZ-derivation with �(e0) = f:F (0); F (0)g, deg(e0) = 0, o(e0) = 1+2rk(F ).3. h = Eh0:3.1. tp(h0) = CutC : tp(h) := Rep, h[0℄ := RCEh0[0℄Eh0[1℄,3.2. otherwise: tp(h) := tp(h0), h[i℄ := Eh0[i℄.4. h = RCh0h1:4.1. C 62 �(tp(h0)): tp(h) := tp(h0), h[i℄ := RCh0[i℄h1.4.2. :C 62 �(tp(h1)): tp(h) := tp(h1), h[i℄ := RCh0h1[i℄.4.3. C 2 �(tp(h0)) and :C 2 �(tp(h1)):Then rk(C) 6= 0, sine C and :C annot both be true literals.4.3.1. C = 8xA: Then tp(h1) = Wk:C for some k 2 IN .tp(h) := CutAx(k), h[0℄ := RCh0[k℄h1, h[1℄ := RCh0h1[0℄.4.3.2. C = 9xA or A0^A1 or A0_A1: analogous to 4.3.1.Theorem 3For eah losed Z�-derivation h the following holds:a) : : :�(h[i℄) : : : (i2jtp(h)j)�(h) tp(h) is a orret Z1-inferene,b) tp(h) = CutC ) rk(C) < deg(h),



) deg(h[i℄) � deg(h) for all i 2 jtp(h)j,d) o(h[i℄) < o(h) for all i 2 jtp(h)j.Proof by straightforward indution on the build-up of h:We only onsider two ases.Abbreviation: h `�m � :, �(h) � � & deg(h) � m & o(h) = �.1. h = RCh0h1 with C = 8xA, tp(h0) = VC , tp(h1) = Wk:C , tp(h) = CutA(k):Let � := �(h), � := o(h0), � := o(h1), and m := deg(h).Then h0 `�m �; C and h1 `�m �;:C and rk(A(k)) < rk(C) � deg(h).By IH we obtain h0[k℄ `�km �; C;A(k) with �k < �,and h1[0℄ `�0 �;:C;:A(k) with �0 < �.Hene h[0℄ = RCh0[k℄h1 `�k#�m �; A(k) and h[1℄ = RCh0h1[0℄ `�#�0m �;:A(k)with �k#� ; �#�0 < �#� = o(h).2. h = Eh0 with tp(h0) = CutC : Then tp(h) = Rep and h[0℄ = RCEh0[0℄Eh0[1℄.Let � := �(h0) = �(h), � := o(h0) and m := deg(h0)�� 1 = deg(h).By IH we have rk(C) < deg(h0) � m+1 and h0[0℄ `�0m+1 �; C , h0[1℄ `�1m+1 �;:Cwith �0; �1 < �. Hene Eh0[0℄ `!�0m �; C and Eh0[1℄ `!�1m �;:C.From this together with rk(C) � m we get h[0℄ = RCEh0[0℄Eh0[1℄ `!�1#!�1m �and !�0#!�1 < !� = o(h).CorollaryLet Z�? be the set of all Z�-derivations h with �(h) = ; & deg(h) = 0.a) h 2 Z�? ) h[0℄ 2 Z�? & o(h[0℄) < o(h),b) There is no Z-derivation d with �(d) = ;.Proof:a) h 2 Z�? Th:3) h 2 Z�? & tp(d) = Rep Th:3) h[0℄ 2 Z�? & o(h[0℄) < o(h).b) By trans�nite indution up to "0 from a) we get Z�? = ;. Now assume thatd is a Z-derivation with �(d) = ;. Let m := deg(d). Then Emd = E:::Ed 2 Z�?.Contradition.ConlusionIn this setion we have proved the onsisteny of Z in a Gentzen style manner(i.e., by de�ning redution steps on �nite derivations in suh a way that theassigned ordinals derease), but we have not yet ahieved a literal reonstrutionof Gentzen's original onsisteny proof in [Ge38℄. This is ontained in x3.x3 Connetion to Gentzen's onsisteny proofNotation:If d is a Z-derivation and � a node (position) in d then :(i) dj� denotes the subderivation of d determined by �. (Espeially djhi = d.)(ii) hgt(d; �) is Gentzen's height (H�ohe) of � in d.(iii) O(d; �) is the ordinal whih Gentzen assigns to � in d.(The de�nition of hgt(d; �) and O(d; �) an be found in the proof of Lemma 1.)



De�nitionFor eah Z�-derivation h let �(h) denote the Z-derivation whih results from hby deleting all E's.De�nition of a Z�-derivation  n(d) for eah Z-derivation d1.  n(RCd0d1) := El�nRC l(d0) l(d1), where l := maxfn; rk(C)g,2.  n(Indy;tF d0) := El�nIndy;tF  l(d0), where l := maxfn; rk(F )g,3. Otherwise:  n(Id0 : : : dm�1) := I n(d0) : : :  n(dm�1).Proposition�( n(d)) = �(d), deg( n(d)) � n, �( n(d)) = d.RemarkAs we will see below (f. Lemma 5)  n(d) has the following minimality property:8h(deg(h) � n & �(h) = d) o( n(d)) � o(h)).The rest of this setion is oupied with the proof of the following Theorem.Theorem 4For eah Z-derivation d we havea) o( 0(d)) = O(d; hi).b) If �(d) = ; then red(d) := �( 0(d)[0℄) results from d by a Gentzen redutionstep, and O(red(d); hi) < O(d; hi).Lemma 1If n = hgt(d; �) then o( n(dj�)) = O(d; �).Proof by indution on dj� :1. dj� = RCd0d1: Then di = dj��hii and hgt(d; ��hii) = l := maxfn; rk(C)g.Hene by IH o( l(di)) = O(d; ��hii), and thus o( n(dj�)) =!l�n(o( l(d0))#o( l(d1))) = !l�n(O(d; ��h0i)#O(d; ��h1i)) = O(d; �).2. dj� = Indy;tF d0: Then d0 = dj��h0i and hgt(d; ��h0i) = l := maxfn; rk(F )g.Hene o( n(dj�)) = !l�n(o( l(d0)) � !) IH= !l�n(O(d; ��h0i) � !) = O(d; �).3. dj� = Id0:::dk�1 otherwise: Then di = dj��hii and hgt(d; ��hii) = n. Heneby IH o( n(di)) = O(d; ��hii) and thus o( n(dj�)) = (supi<k o( n(di))) + 1 =(supi<k O(d; ��hii)) + 1 = O(d; �).From Lemma 1 we get o( 0(djhi)) = O(d; hi), and thus Theorem 4a is proved.Abbreviation: Emh := E:::E|{z}m h.De�nition (Nominal forms for derivations)1. � is a nominal form. Cut(�) := ;, hgt�(�) := 0.2. If a is a nominal form, m 2 IN, and h a Z�-derivation then EmRCah andEmRCha are nominal forms.Cut(EmRCah) := Cut(a) [ fCg , Cut(EmRCha) := Cut(a) [ f:Cg,hgt�(EmRCah) := hgt�(EmRCha) := m+ hgt�(a).



We use a; b;  as syntati variables for nominal forms.De�nitionhgt(a) := supfrk(C) : C 2 Cut(a)g,afqg := the result of substituting q for � in a (q a nominal form or Z�-derivation).Lemma 2 n(d) = afh0g ) n+ hgt�(a) = maxfn; hgt(a)g.Proof by indution on a:1. a = �: n+ hgt�(a) = n = maxfn; hgt(a)g.2. a = EmRCa0h1:Then d = RCd0d1 and  n(d) = El�nRC l(d0) l(d1) with l := maxfrk(C); ng.This yields EmRCa0fh0gh1 = afh0g = El�nRC l(d0) l(d1) and then m = l�nand a0fh0g =  l(d0). Hene n+ hgt�(a) = l + hgt�(a0) IH= maxfl; hgt(a0)g =maxfn; rk(C); hgt(a0)g = maxfn; hgt(a)g.Corollary 0(d) = afbfh0gg ) hgt(afbg) = hgt(a) + hgt�(b).Proof: hgt(afbg) L:2= hgt�(afbg) = hgt�(a) + hgt�(b) L:2= hgt(a) + hgt�(b)De�nitionA Z�-derivation h is alled regular i� for every subterm Eh0 of h we have last(h0) 2fE;RC ; Indy;tF g. { Obviously eah  n(d) is regular.C[k℄ := �Ax(k) if C = QxA with Q 2 f8; 9gAk if C = A0 ÆA1 with Æ 2 f^;_g and k 2 f0; 1gLemma 3Let h be a losed Z�-derivation.a) If tp(h) = Rep then there are a; h0 suh that h = afh0g, h[0℄ = afh0[0℄g andeither h0 = EmIndy;tF h00 or h0 = Em+1h00 & tp(h00) = CutB .b) If tp(h) = CutB then there are b; C; h0; h1 suh that hgt�(b) = 0,h = bfRCh0h1g, h[i℄ = bf(RCh0h1)[i℄g, and either(1) tp(h0) = VC & tp(h1) = Wk:C & B = C[k℄ or(2) tp(h0) = WkC & tp(h1) = V:C & B = C[k℄.) If h is regular and tp(h) = VC or WkC then there are ; h0[; h1℄ suh thatC 62 Cut() and[h = fVyCh0g & h[i℄ = fh0(y=i)g℄ or [h = fVCh0h1g & h[i℄ = fhig℄ or[h = fWkCh0g & h[0℄ = fh0g℄.Proof:a) By de�nition of tp(h) one of the following ases holds:1. h = EmIndy;tF ~h: Then a := �, h0 := h.2. h = En~h with last(~h) 6= E; Ind:



2.1. tp(~h) = CutB & n > 0 : Then a := �, h0 := h.2.2. tp(~h) = Rep: Then ~h = RCh0h1 and (w.l.o.g) tp(h0) = Rep. By IH h0 =a0fh0g with h0[0℄ = a0fh0[0℄g and h0 = EmIndy;tF h00 or h0 = Em+1h00 & tp(h00) =CutB . Now for a := EnRCa0h1 we have h = afh0g and h[0℄ = EnRCh0[0℄h1 =EnRCa0fh0[0℄gh1 = afh0[0℄g.b) Assume that tp(h) = CutB . Then one of the following ases holds:1. h = RCh0h1 and [(tp(h0) = VC & tp(h1) = Wk:C & B = C[k℄) or (tp(h0) =WkC & tp(h1) = V:C & B = C[k℄)℄: The laim holds for b := �.2. h = RDh00h01 and (w.l.o.g.) tp(h00) = tp(h) & h[i℄ = RDh00[i℄h01:By IH there are b0; C; h0; h1 suh that hgt�(b0) = 0, h00 = b0fRCh0h1g, h00[i℄ =b0f(RCh0h1)[i℄g and one of the subases (1),(2) holds. Let b := RDb0h01. Thenh = bfRCh0h1g , h[i℄ = RDh00[i℄h01 = RDb0f(RCh0h1)[i℄gh01 = bf(RCh0h1)[i℄g,and hgt�(b) = hgt�(b0) = 0.) Assume that h is regular, and tp(h) = VC with C = 8xA.Then one of the following ases holds:1. h = Vy8xAh0: Then the laim holds for  := �.2. h = EmRDh00h01 with (w.l.o.g.) tp(h) = tp(h00) and D 6= C: By IH h00 =0fVyCh0g and h00[i℄ = 0fh0(y=i)g with C 62 Cut(0). Let  := EmRD0h01. Thenh = fVy8xAh0g , h[i℄ = EmRDh00[i℄h01 = EmRD0fh0(y=i)gh01 = fh0(y=i)g andC 62 fDg [ Cut(0) = Cut().Theorem 5Assume that �(d) = ; and let h :=  0(d).Then tp(h) = Rep and one of the following two ases holds:(I) h = afEmIndy;tF h0g, h[0℄ = afEm(Indy;tF h0)[0℄g,(II) h = afEm+1bfRCh0h1gg , h[0℄ = afEmRC[k℄EbfRCh�0 h1gEbfRCh0h�1 ggand either(1) tp(h0) = VC & tp(h1) = Wk:C & h�0 = h0[k℄ & h�1 = h1[0℄ or(2) tp(h0) = WkC & tp(h1) = V:C & h�0 = h0[0℄ & h�1 = h1[k℄.Moreover hgt�(b) = 0 and hgt(a)+m+1 = rk( ~C) = maxfhgt(b); rk(C)gwith ~C := �C if b = �D if last(b) = RD .Proof:We have �(h) = ; & deg(h) = 0 and therefore (by Theorem 3) tp(h) = Rep.Further h is regular. Now let us assume that (I) does not hold.Then aording to L.3a) h = afEm+1h00g with tp(h00) = CutB andh[0℄ = af(Em+1h00)[0℄g = afEm(Eh00)[0℄g = afEmRBEh00[0℄Eh00[1℄g.By L.3b) we get h00 = bfRCh0h1g, h00[i℄ = bf(RCh0h1)[i℄g with hgt�(b) = 0, and| in subase (1) | tp(h0) = VC & tp(h1) = Wk:C & B = C[k℄.Putting things together yields



h[0℄ = afEmRBEh00[0℄Eh00[1℄g = afEmRC[k℄EbfRCh0[k℄h1gEbfRCh0h1[0℄gg.It remains to prove that hgt(a)+m+1 = rk( ~C) = maxfhgt(b); rk(C)g.Let b0 := bfRC � h1g. Then last(b0) = R ~C and maxfhgt(a); hgt(b0)g =hgt(afEm+1b0g) Cor:L:2= hgt(a) + hgt�(Em+1b0) = hgt(a)+m+1.Hene hgt(a)+m+1 = hgt(b0) = maxfhgt(b); rk(C)g.Similarly we obtain rk( ~C) = hgt(a)+m+1.RemarkWith the above Theorem at hand the reader may now go through the relevantparts of [Ge38℄ and onvine him/herself that indeed red(d) := �( 0(d)[0℄) resultsfrom d by a redution step in the sense of [Ge38℄. To failitate this task let ustake a loser look at ase (II)(1) with C = 8xA. In doing so we use the followingabbreviation: d � h :, d = �(h). Then by ombining Lemma 3 with Theorem5 and writing derivations as trees we obtain the following presentation of d andred(d) whih (apart from weakenings, ontrations and permutations) is exatlyas in [Ge38℄ (pp. 34,35):
d � h00Vy8xA� � �� �0 h10Wk9x:A� � �� �1R8xA� � �� �b� � �� �a red(d) � h00(y=k)� � �� �0 h10Wk9x:A� � �� �1R8xA� � �� �b

h00Vy8xA� � �� �0 h10� � �� �1R8xA� � �� �b H�ohenlinieRA(k)� � �� �aIn traditional notation with sequents displayed this is:h00�0;A(y)�0;8xA� � �� �0�;8xA h10�1;:A(k)�1;9x:A� � �� �1�;9x:A�� � �� �b�� � �� �a;
h00(y=k)�0;A(k)� � �� �0�;8xA;A(k) h10�1;:A(k)�1;9x:A� � �� �1�;9x:A�;A(k)� � �� �b�;A(k)

h00�0;A(y)�0;8xA� � �� �0�;8xA h10�1;:A(k)� � �� �1�;9x:A;:A(k)�;:A(k)� � �� �b�;:A(k) H�ohenlinie�� � �� �a;The relation hgt(a) < rk( ~C) = maxfhgt(b); rk(C)g (proved above) implies thatour \H�ohenlinie" oinides with Gentzen's.



Now the last part of Theorem 4, i.e. the relation O(red(d); hi) < O(d; hi), im-mediately follows from [Ge38℄. But we think it may be useful to inlude anindependent proof here.Lemma 4 n � k ) o( n(d)) � !k�no( k(d)).Proof:Abbreviation: on(d) := o( n(d)).1. d = RCd0d1 and l := maxfn; rk(C)g:1.1. l � k: on(d) = !l�n(ol(d0)#ol(d1)) IH� !l�n(!k�lok(d0)#!k�lok(d1)) �!l�n(!k�l(ok(d0)#ok(d1))) = !k�nok(d).1.2. n � k < l:on(d) = !l�n(ol(d0)#ol(d1)) = !k�n!l�k(ol(d0)#ol(d1)) = !k�nok(d).2. d = Indy;tF : analogous to 1.3. d = Id0:::dm�1 otherwise: on(d) = (supi<m on(di)) + 1 IH�(supi<m !k�nok(di)) + 1 � !k�n((supi<m ok(di)) + 1) = !k�n(ok(d)).Lemma 5deg(h) � n ) o( n�(h)) � o(h).Proof:1. h = Eh0 with deg(h0) � n+1: o( n�(h)) = o( n�(h0)) L:4�!1o( n+1�(h0)) IH� !1o(h0) = o(h).2. h = RCh0h1 with maxfrk(C); deg(h0); deg(h1)g � n:o( n�(h)) = o( nRC�(h0)�(h1)) rk(C)�n= o(RC n�(h0) n�(h1)) =o( n�(h0))#o( n�(h1)) IH� o(h0)#o(h1) = o(h).3. h = Indy;tF h0: analogous to 2.4. h = Ih0:::hm�1 otherwise: immediately by IH.Proof of O(red(d); hi) < O(d; hi): Let h :=  0(d)[0℄.From deg( 0(d)) = 0 it follows by Theorem 3 that deg(h) = 0. HeneO(red(d); hi) L:1= o( 0red(d)) = o( 0�(h)) L:5� o(h) Th:3< o( 0(d)) L:1= O(d; hi).Referenes[Ar96a℄ Arai, T.: Consisteny Proof via Pointwise Indution. Preprint (1996)[Ar96b℄ Arai, T.: Proof Theory for Theories of Ordinals I: Reeting Ordinals.Preprint (1996)[Ar97a℄ Arai, T.: Proof Theory for Theories of Ordinals II: �1-stability.Preprint (1997)



[Ar97b℄ Arai, T.: Proof Theory for Theories of Ordinals III: �1-olletion.Preprint (1997)[BS88℄ Buhholz, W. and Sh�utte, K.: Proof Theory of Imprediative Sub-systems of Analysis. Studies in Proof Theory, Monographs 2. Napoli:Bibliopolis 1988[Bu91℄ Buhholz, W.: Notation systems for in�nitary derivations. Arh. Math.Logi 30, pp. 277-296 (1991)[Bu97℄ Buhholz, W.: Explaining the Gentzen-Takeuti redution steps.Preprint (1997)[Ge38℄ Gentzen, G.: Neue Fassung des Widerspruhsfreiheitsbeweises f�ur diereine Zahlentheorie. Forshungen zur Logik und zur Grundlegung derexakten Wissenshaften. Neue Folge 4, pp. 19-44 (1938)[Mi75℄ Mints, G.: Finite Investigations of Trans�nite Derivations. In: Mints,G.,Seleted Papers in Proof Theory. Studies in Proof Theory, Monographs3. Napoli: Bibliopolis 1992. Russian original: Zapiski nauhnykh semi-narov, LOMI 49 (1975) pp. 67-122[Ra91℄ Rathjen, M.: Proof Theoreti Analysis of KPM. Arh. Math. Logi 30(1991) pp. 377-403[Ra94℄ Rathjen, M.: Proof Theory of Reetion. APAL 68 (1994) pp. 181-224[Ra95℄ Rathjen, M.: Reent Advanes in Ordinal Analysis: �12-CA and relatedsystems. The Bulletin of Symboli Logi 1/4 (1995) pp. 468-485[Sh51℄ Sh�utte, K.: Beweistheoretishe Erfassung der unendlihen Induktion inder Zahlentheorie. Math. Ann. 122, pp. 369-389 (1951)[Ta68℄ Tait, W.W.: Normal Derivability in Classial Logi. In: Barwise, J.(ed.) The syntax and semantis of in�nitary languages. (Let. NotesMath., vol.72, pp. 204-236) Berlin Heidelberg New York: Springer 1968


