Skip to main content

Upper bounds for standardizations and an application

  • Contributed Papers
  • Conference paper
  • First Online:
Computational Logic and Proof Theory (KGC 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1289))

Included in the following conference series:

  • 230 Accesses

Abstract

We first present a new proof for the standardization theorem, a fundamental theorem in λ-calculus. Since our proof is largely built upon structural induction on lambda terms, we can extract some bounds for the number of β-reduction steps in the standard β-reduction sequences obtained from transforming a given β-reduction sequences. This result sharpens the standardization theorem. As an application, we establish a super-exponential bound for the lengths of β-reduction sequences from any given simply typed λ-terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.P. Barendregt et al. (1976), Some notes on lambda reduction, Preprint No. 22, University of Utrecht, Department of mathematics, pp. 13–53.

    Google Scholar 

  2. H.P. Barendregt (1984), The Lambda Calculus: Its Syntax And Semantics, North-Holland publishing company, Amsterdam.

    Google Scholar 

  3. G. Berry (1978), Séquentialité de l'évaluation formelle des λ-expressions, Proc. 3-e Colloque International sur la Programmation, Paris.

    Google Scholar 

  4. A. Church, (1941), The calculi of lambda conversion, Princeton University Press, Princeton.

    Google Scholar 

  5. H.B. Curry and R. Feys (1958), Combinatory Logic, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  6. R. de Vrijer (1985), A direct proof of the finite developments theorem, Journal of Symbolic Logic, 50:339–343.

    Google Scholar 

  7. R.O. Gandy (1980), An early proof of normalization by A.M. Turing, To: H.B. Curry: Essays on combinatory logic, lambda calculus and formalism, edited by J.P. Seldin and J.R. Hindley, Academic press, pp. 453–456.

    Google Scholar 

  8. R.O. Gandy (1980), Proofs of Strong Normalization, To: H.B. Curry: Essays on Combinatory logic, lambda calculus and formalism, edited by J.P. Seldin and J.R. Hindley, Academic press, pp. 457–478.

    Google Scholar 

  9. G. Gonthier, J.J. Lévy and P.-A. Melliès (1992), An abstract standardization theorem, in Proceedings of Logic in Computer Science, pp. 72–81.

    Google Scholar 

  10. J.-Y. Girard et al. (1989), Proofs and types, Cambridge Press, 176 pp.

    Google Scholar 

  11. Gérard Huet (1994), Residual Theory in λ-Calculus: A Formal Development, Journal of Functional Programming Vol. 4, pp. 371–394.

    Google Scholar 

  12. J.R. Hindley (1978), Reductions of residuals are finite, Trans. Amer. Math. Soc. 210, pp. 345–361.

    Google Scholar 

  13. W. Howard (1980), Ordinal analysis of terms of finite type, Journal of Symbolic Logic, 45(3):493–504.

    Google Scholar 

  14. J.M.E. Hyland (1973), A simple proof of the Church-Rosser theorem, Typescript, Oxford University, 7 pp.

    Google Scholar 

  15. Stefan Kahrs (1995), Towards a Domain Theory for Termination Proofs, Laboratory for Foundation of Computer Science, 95-314, Department of Computer Science, The University of Edinburgh.

    Google Scholar 

  16. J.W. Klop (1980), Combinatory reduction systems, Ph.D. thesis, CWI, Amsterdam, Mathematical center tracts, No. 127.

    Google Scholar 

  17. J.-J. Lévy (1978), Réductions correctes et optimales dans le lambda calcul, Thèse de doctorat d'état, Université Paris VII.

    Google Scholar 

  18. G.E. Mints (1979), A primitive recursive bound of strong normalization for predicate calculus (in Russian with English abstract), Zapiski Naucnyh Seminarov Leningradskogo Otdelenija Matematiceskogo Instituta im V.A. Steklova Akademii Nauk SSSR (LOMI) 88, pp. 131–135.

    Google Scholar 

  19. G. Mitschke (1979), The standardization theorem for the λ-calculus, Z. Math. Logik Grundlag. Math. 25, pp. 29–31.

    Google Scholar 

  20. J. van de Pol (1994), Strict functionals for termination proofs, Lecture Notes in Computer Science 902, edited by J. Heering, pp. 350–364.

    Google Scholar 

  21. Richard Statman (1979), The typed A-calculus is not elementary, Theoretical Computer Science 9, pp. 73–81.

    Google Scholar 

  22. H. Schwichtenberg (1982), Complexity of normalization in the pure typed lambda-calculus, The L.E.J. Brouwer Centenary Symposium, edited by A.S. Troelstra and D. van Dalen, North-Holland publishing company, pp. 453–457.

    Google Scholar 

  23. H. Schwichtenberg (1991), An upper bound for reduction sequences in the typed lambda-calculus, Archive for Mathematical Logic, 30:405–408.

    Google Scholar 

  24. Masako Takahashi (1995), Parallel Reductions in λ-Calculus, Information and Computation 118, pp. 120–127.

    Google Scholar 

  25. C.P. Wadsworth (1976), The relation between computational and denotationa J properties for Scott's D -models of λ-calculus, SIAM Journal of Computing, 5(3):488–521.

    Google Scholar 

  26. H. Xi (1996), An induction measure on λ-terms and its applications, Technical report 96-192, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh.

    Google Scholar 

  27. H. Xi (1996), Separating developments in λ-calculus, Manuscripts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Georg Gottlob Alexander Leitsch Daniele Mundici

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xi, H. (1997). Upper bounds for standardizations and an application. In: Gottlob, G., Leitsch, A., Mundici, D. (eds) Computational Logic and Proof Theory. KGC 1997. Lecture Notes in Computer Science, vol 1289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63385-5_54

Download citation

  • DOI: https://doi.org/10.1007/3-540-63385-5_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63385-3

  • Online ISBN: 978-3-540-69806-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics