Skip to main content

Linear-time reconstruction of Delaunay triangulations with applications

  • Conference paper
  • First Online:
Book cover Algorithms — ESA '97 (ESA 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1284))

Included in the following conference series:

Abstract

Many of the computational geometers' favorite data structures are planar graphs, canonically determined by a set of geometric data, that take Θ(n log n) time to compute. Examples include 2-d Delaunay triangulation, trapezoidations of segments, and constrained Voronoi diagrams, and 3-d convex hulls. Given such a structure, one can determine a permutation of the data in O(n) time such that the data structure can be reconstructed from the permuted data in O(n) time by a simple incremental algorithm.

As a consequence, one can permute a data file to “hide” a geometric structure, such as a terrian model based on the Delaunay triangulation of a set of sampled points, without disrupting other applications. One can even include “importance” in the ordering so the incremental reconstruction produces approximate terrain models as the data is read or received. For the Delaunay triangulation, we can also handle input in degenerate position, even though the data structures may no longer be canonically defined.

Supported in part by grants from NSERC and Facet Decision Systems

Supported in part by ESPRIT IV LTR project 21957 (CGAL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franz Aurenhammer. Voronoi diagrams-A survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3):345–405, 1991.

    Google Scholar 

  2. Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In F. K. Hwang and D.-Z. Du, editors, Computing in Euclidean Geometry. World Scientific, March 1992.

    Google Scholar 

  3. Norishige Chiba, Takao Nishizeki, and Nobuji Saito. A linear 5-coloring algorithm of planar graphs. Journal of Algorithms, 2:317–327, 1981.

    Google Scholar 

  4. M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmans. Simple traversal of a subdivision without extra storage. Int. J. of GIS, 11, 1997.

    Google Scholar 

  5. M. Deering. Geometry compression. Computer Graphics, pages 13–20, 1995. Proceedings of SIGGRAPH `95.

    Google Scholar 

  6. H. Djidjev and A. Lingas. On computing the Voronoi diagram for restricted planar figures. In WADS '91: Second Workshop on Data Structures and Algorithms, number 519 in Lecture Notes in Computer Science, pages 54–64. Springer-Verlag, 1991.

    Google Scholar 

  7. Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  8. Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104, 1990.

    Google Scholar 

  9. Michael T. Goodrich and Roberto Tamassia. Dynamic trees and dynamic point location. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 523–533, 1991. To appear in SIAM Journal on Computing, 1997.

    Google Scholar 

  10. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

    Google Scholar 

  11. Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123, 1985.

    Google Scholar 

  12. H. Hoppe. Progressive meshes. Computer Graphics, pages 99–108, 1996. Proceedings of SIGGRAPH `96.

    Google Scholar 

  13. D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12:28–35, 1983.

    Google Scholar 

  14. D. T. Lee and F. P. Preparata. Computational geometry: a survey. IEEE Trans. Comput., C-33:1072–1101, 1984.

    Google Scholar 

  15. Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Englewood Cliffs, N.J., 1993.

    Google Scholar 

  16. Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, 1992.

    Google Scholar 

  17. Joseph O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.

    Google Scholar 

  18. T. K. Peucker, R. J. Fowler, J. J. Little, and D. M. Mark. The triangulated irregular network. In Amer. Soc. Photogrammetry Proc. Digital Terrain Models Symposium, pages 516–532, 1978.

    Google Scholar 

  19. Franco P. Preparata and Michael I. Shamos. Computational Geometry-An Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  20. Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. Efficiently four-coloring planar graphs. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 571–575, 1996.

    Google Scholar 

  21. R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics, pages 37–68. Springer-Verlag, 1993.

    Google Scholar 

  22. Raimund Seidel. A method for proving lower bounds for certain geometric problems. In Godfried T. Toussaint, editor, Computational Geometry, pages 319–334. North Holland, Amsterdam, 1985.

    Google Scholar 

  23. Cao An Wang and Francis Chin. Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear time. In Paul Spirakis, editor, Algorithms-ESA'95, number 979 in Lecture Notes in Computer Science, pages 280–294. Springer-Verlag, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rainer Burkard Gerhard Woeginger

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Snoeyink, J., van Kreveld, M. (1997). Linear-time reconstruction of Delaunay triangulations with applications. In: Burkard, R., Woeginger, G. (eds) Algorithms — ESA '97. ESA 1997. Lecture Notes in Computer Science, vol 1284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63397-9_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-63397-9_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63397-6

  • Online ISBN: 978-3-540-69536-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics