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Abstract� Controllers for dynamically recon�gurable FPGAs that are
capable of supporting multiple independent tasks simultaneously need
to be able to place designs at run�time when the sequence or geometry
of designs is not known in advance	 As tasks arrive and depart the avail

able cells become fragmented� thereby reducing the controller�s ability to
place new tasks	 The response times of tasks and the utilization of the
FPGA consequently su�er	 In this paper� we describe and assess a task
compaction heuristic that alleviates the problems of external fragmenta

tion by exploiting partial recon�guration	 We identify a region of the chip
that can satisfy the next request after the designs occupying the region
have been moved	 The approach is simple and platform independent	 We
show by simulation that for a wide range of task sizes and con�guration
delays� the response of overloaded systems can be improved signi�cantly	

� Introduction

Recently� FPGA architectures have become partitionable and dynamically re�
con�gurable � chips have become capable of supporting several independent or
interdependent tasks�designs at a time� and parts of the chip can be recon�gured
relatively quickly while the remaining tasks continue to execute ��� 	
� These new
capabilities promise exciting new application areas and pose several challenging
engineering problems� including the design of suitable controllers ��
� When the
sequence of tasks to be performed by the chip is known in advance the designer
can optimize the use of resources o
�line and design an appropriate static con�
troller� However� when the sequence is not predictable� or the task designs are not
�xed� the controller needs to make allocation decisions on�line� Unfortunately�
on�line allocation schemes that allocate contiguous resources su
er from exter�
nal fragmentation as variously sized tasks are allocated and deallocated� Tasks
end up waiting in a queue despite there being su�cient� albeit non�contiguous
resources available to service them� The time to complete tasks is consequently
longer� and the utilization of resources is lower than it could be� thereby con�
tributing to the selection of larger� less utilized chips�

We are interested in alleviating this problem� Our aim is to satisfy the next
allocation request to a dynamically recon�gurable FPGA that is executing a set
of tasks when it is not possible to satisfy the request without compaction� Two
subproblems naturally arise�



	� how to identify a good allocation site� a sub�array of the requested size
e�ciently� and

�� how to schedule the compaction so as�
�a� to free the allocation site of other executing tasks as quickly as possible�
�b� to delay the tasks that are to be moved as little as possible� and
�c� to complete compacting the tasks as quickly as possible�

On a grid� it is NP�complete to decide whether or not a set of rectangular
tasks can be placed orthogonally without overlap ��
� E�cient heuristics are
therefore sought� Partial task compaction to reduce fragmentation on meshes
has been investigated by Youn et al ��
� However� e
ective heuristics needed
to carry out the arbitrary rearrangements generated by Youn�s approach with
minimumdelay to FPGA tasks are still being sought� In this paper we present a
more structured heuristic that is simple� e
ective� and platform independent� We
describe a method that has the e
ect of sliding the set of tasks to be compacted
in a single direction along a single dimension while preserving their relative
order� Without loss of generality� we describe compacting the tasks to the right
along the rows of the FPGA cells� Fig� 	 contains an example of such a one�way
one�dimensional order�preserving compaction ��
�

Allocation SiteTasks to be compacted

Fig� �� An example of a one�way one�dimensional order�preserving compaction	 The
initial arrangement on the left shows the tasks to be compacted so as to allocate a task
of size 
� �	 The �nal arrangement on the right indicates the allocation site	

In the following section we describe the assumptions leading to the FPGA
task allocation model� In Section � we describe and analyze the algorithms used
by the controller to compact FPGA tasks at run�time�We show that it is possible
to reduce the number of potential allocation sites fromO�H�W � to O�n��� which
is a considerable saving when the number of tasks is relatively small� Thereafter�
we describe the construction of a visibility graph over the executing tasks that
allows us to determine the feasibility and cost of freeing the executing tasks from
each candidate site in O�n� time� In the worst case� we therefore spend O�n��
time determining whether the incoming task can be allocated with compaction�
The site that can be freed of executing tasks in minimum time� and thus satis�es



the request quickest of all� can be identi�ed at the same time� In Section � we
demonstrate by simulation the improvement in performance achievable by use
of the compaction heuristic� Our conclusions appear in Section �� which also
mentions areas for future research�

� Model

For the remainder of this paper we use the terms �task� and �design� synony�
mously� At the cost of possibly introducing internal fragmentation� we assume
that a task and the used routing resources surrounding its perimeter� which may
or may not be associated with the task� can be modeled as a rectangular sub�
array of arbitrary yet speci�ed dimensions� We assume that the time needed to
con�gure a sub�array �place a design� is proportional to the size �area� of the
sub�array since at worst� cells are con�gured sequentially� Since the delay prop�
erties of commercially available chips are isotropic and homogeneous� we assume
that the time needed to con�gure a task and route I�O to it is independent of
the task�s location�

Moving a task involves� suspending input to the task and waiting for the
results of the last input to appear� or waiting for the task to reach a checkpoint�
storing register states if necessary� recon�guring the portion of the FPGA at the
task�s destination� loading stored register states if necessary� and resuming the
supply of input to the task for execution� We do not consider tasks with deadlines�
and therefore assume that any task may be suspended� with its inputs being
bu
ered and necessary internal states being latched until the task is resumed�
The time needed to wait for the results of an input to appear� or for the task
to reach a checkpoint� is considered to be proportional to the size of the task�
which� in the absence of feedback circuits� is the worst case� However� since the
time to con�gure a cell and associated routing resources is typically at least one
order of magnitude greater than the signal delay of a cell or the latency of a
wire� the latency of the design is considered negligible compared with the time
needed to con�gure the task� We investigate the e
ectiveness of recon�guring
the destination region of a task by reloading the con�guration stream with a
new o
set� This approach naturally re�incurs the cost of placing the task� but is
applicable to any device� In this paper we do not address the problem of rerouting
I�O to a task that is moved� If I�O to tasks is performed using direct addressing�
then tasks not being movedmay be delayed by reloading the con�guration stream
of tasks being moved� We ignore this phenomenon here�

Overall management of tasks is accomplished in the following way� Tasks are
queued by a sequential controller as they arrive� A task allocator� executing on
the controller� attempts to �nd a location for the next pending task� If some
executing tasks need to be compacted to accommodate the task� then a schedule
for suspending and moving them is computed by the allocator� The allocator
coordinates the partial recon�guration of the FPGA according to the compaction
schedule� and associates a control process with the new task and its placement�
If a location for the next pending task cannot be found� the task waits until



one becomes available following one or more deallocations as tasks complete
processing�

We use the following notation in this paper� The FPGA of size F �H�W �
consists of H rows and W columns of con�gurable cells arranged in a grid� A
task Ti�si� bi� of size si � �ri� ci� and base bi � Ayi�xi is allocated to a submesh
of ri rows and ci columns of cells with bottom�leftmost cell Ayi�xi � 	 � yi� 	 � xi
and top�rightmost cell Ayi�ri���xi�ci�� with yi�ri�	 � H and xi�ci�	 � W �
The task Ti is said to be based at bi� We denote the ith row of cells Ri and the
jth column of cells Cj� The intersection of Ri and Cj is the cell Ai�j� The interval
of cells Ai�k� Ai�k��� � � � � Ai�k�m in the ith row is denoted Ri�k� k�m
� A similar
de�nition applies to Cj�l� l�n
� The intervals Ri�k� k�m
 and Cj�l� l�n
 intersect
at cell Ai�j i
 l � i � l � n and k � j � k �m�

� Algorithms

��� Identifying Potential Allocation Sites

De�nition�� For the request of size sn�� � �rn��� cn��� we de�ne a top cell

interval for each executing task Ti��ri� ci�� Ayi�xi�� 	 � i � n� that consists of
the set of possible base locations for Tn�� were the bottom edge of Tn�� to
abut the top edge of Ti� The existence and extent of the top cell interval for Ti is
constrained by the boundaries of the chip but disregards the intersection of Tn��
with other executing tasks� A top cell interval is also de�ned with respect to the
bottom edge of the chip� We thus de�ne the set of top cell intervals for sn�� to
be the set T � fRri�yi �max�	� ci � cn�� � 	��min�ci � xi � 	�W � cn�� � 	�
 �
	 � i � n� ri � yi � H � rn�� � 	g �R��	�W � cn�� � 	
�

We similarly de�ne for each executing task Ti a right cell interval � consisting
of the the set of possible base locations for Tn�� were the left edge of Tn�� to
abut the right edge of Ti� A right cell interval is also de�ned with respect to the
left edge of the chip� The set of right cell intervals for sn�� is thus de�ned to be
the set R � fCci�xi �max�	� ri� rn�� � 	��min�ri � yi � 	�H � rn�� � 	�
 � 	 �
i � n� ci � xi � W � cn�� � 	g �C��	�H � rn�� � 	
�

The set of cells at the intersection of the set of top and right cell intervals is
denoted B � T �R�

These intervals� which de�ne the minimumcost locations for placing the base
of the incoming task Tn�� if it is to be allocated in the neighbourhood of Ti� are
illustrated in Fig� ��

Theorem�� If Tn�� can be allocated by means of compaction� then the cost of

freeing the executing tasks is minimized for an allocation site based at some cell

in B�

Proof� The proof considers the time needed to free the space for the incoming
task for all of its possible base positions as it is shifted along a row from the
left edge of the FPGA to the right� Our assumption is that the cost to free an
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Fig� �� De�nition of top and right cell intervals for four executing tasks and an incoming
task T� of size � � �	

allocation site is at least proportional to the area of tasks that need to be moved
out of the allocation site�

Let us consider the allocation site based at Ar��� 	 � r � H � rn�� � 	�
Executing tasks lying within the allocation site are to be compacted to the
right� Assume the leftmost allocated cell�s� within the allocation site are in
column Cc� As the base of the allocation site is shifted to the right from Ar��

to Ar�c� additional allocated tasks potentially become covered by the right edge
of the allocation site� thereby increasing the time to free the site of occupying
tasks� However� it is not until the �rst task occupying the allocation site� Tl
say� is completely uncovered by the left edge of the allocation site that the time
needed to free the site of occupying tasks potentially decreases� since while any
cells of Tl remain within the allocation site Tl must be moved to the right of it�
Thus it is only necessary to check allocation sites based in the columns of cells
Cxi�ci immediately to the right of executing tasks Ti� The base is constrained
from moving to either side with the potential of reducing the cost to free the
allocation site by the presence of Ti to the left� and the possibility of covering
additional tasks to the right� However� the columns Cxi�ci need only be checked
over the interval in which the task Ti potentially intersects the allocation site�
namely Cxi�ci �max�	� ri � rn�� � 	��min�ri � yi � 	�H � rn�� � 	�
�

By a similar argument it follows that it is only necessary to check sites in the
rows of cells Ryi�ri immediately above executing tasks Ti� These rows Ryi�ri

need only be checked in the interval in which the task Ti intersects the allocation
site� Ryi�ri �max�	� ci � cn�� � 	��min�ci � xi � 	�W � cn�� � 	�
�

Consider the top cell interval associated with a task Ti� The allocation site



is constrained from moving below or above it without potentially increasing the
cost to free the site� Allocation sites based to the right or left of the interval are
potentially more costly than sites based within a column that intersects other
top cell intervals� A similar argument applies to a right cell interval� Therefore if
we consider potential bases within the top interval� the cost to free the allocation
site is least where it intersects right intervals� These intersections are guaranteed
to exist due to the fact that Tn�� cannot be allocated without compaction� ut

Constructing the set B of potential bases for the incoming task requires
O�n�� time if each member of the set of right cell intervals is used to check for
intersections against each member of the set of top cell intervals� Since O�n��
potential base locations have to be identi�ed� this is optimal in the worst case�

��� Assessing Allocation Site Feasibility

Allocation sites based at cells in B are not guaranteed to be feasible since it
may not be possible to compact the executing tasks within the allocation site to
the right due to a lack of free cells� An e�cient way of answering this question
for the O�n�� possible sites is to build a visibility graph of the executing tasks
thereby allowing the feasibility of a site to be determined in O�n� time�

De�nition�� �After ��
� Task V dominates a task T if� for some cell ArV �cV of
V and some cell ArT �cT of T � rV � rT and cV � cT � Where V dominates T � we
say that V directly dominates T if there is no task U such that V dominates U
and U dominates T � A visibility graph is the directed graph having the collection
of executing tasks as vertex set� for each pair of tasks T and V it contains an
edge from T to V i
 V directly dominates T �

We build the visibility graph in O�n�� time from its roots to its leaves in the
following way� The list of executing tasks is sorted into increasing base column
order� where if two or more tasks share a column� they are sorted into increasing
row order� For each task we create a graph vertex and insert it in sorted order�
A vertex already in the graph has associated with it the bottom� and topmost
rows covered by tasks in its subgraph� Vertex insertion can therefore be done
in linear time by a depth �rst search of vertices not visited before to determine
whether the task is to the right of the subgraph or not� For each edge inserted� we
associate the distance from the parent to the newly added child� After the graph
has been built� we compute and store at each vertex the maximum distance the
task can be moved to the right by summing the edge distances in a bottom�up
fashion� Note that the distance the terminal nodes can be moved is given by
their base columns and their widths� This �nal step� which takes O�n� time�
saves time during searching by eliminating the need to determine the cost of
compaction for allocation sites that cannot be freed of executing tasks� Fig �
depicts the visibility graph for our example�

For each potential base b � B� those subgraphs whose covered rows intersect
the allocation site based at b are searched depth �rst down to the leftmost task�s�
that intersect the allocation site� The possibility of moving each of these out of
the way of the incoming task is then checked in O�n� time per base b�
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Fig� �� Visibility graph for arrangement of tasks on the right� with cost to free feasible
allocation sites for an incoming task of size 
� �	

��� Selecting the Best Allocation Site

We can identify the set of tasks to be compacted and the distance each is to be
moved by traversing each subgraph rooted in the potential allocation site� This
traversal is needed to accumulate the cost of freeing the site as well since it is
assumed to be proportional to the sum of the areas of the tasks that have to
be moved� These traversals� which take O�n� time� are required for each feasible
allocation site� The cost of freeing each of the potential allocation sites for our
example is illustrated in Fig� ��

��� Scheduling the Compaction

Given a set of tasks that are to be compacted� the scheduling policy we inves�
tigate moves tasks according to the visibility graph� a task is not moved until
all tasks in its subgraph that must move have moved� The policy attempts to
minimize delays to executing tasks by suspending each task that is to be moved
for the period needed to reload the con�guration� and by moving a task onto
a region of the FPGA that does not overlap any other executing tasks� Note
that the scheduling policy moves the tasks occupying the allocation site last of
all� and therefore does not minimize the time needed to free the allocation site�
Scheduling the compaction is straightforward and requires time linear in the
number of tasks to be compacted�

� Experimental Evaluation

We evaluated the performance of a simulated FPGA chip operating with and
without compaction� The simulator queued and then allocated a set of random



requests for service using two allocation methods�

	� With Compaction � attempted to satisfy the next pending request by com�
paction whenever the task could not be allocated by the Bottom�left method�
and

�� Bottom�left Allocation � allocated the next pending task to the bottom�
leftmost free subarray whenever possible�

Experiments were conducted to measure the performance under varying load�
varying con�guration delays� and varying task sizes� All experiments involved
generating 	����� requests for service to an F ���� ��� chip� The service period
generated for each task ranged uniformly between 	 and 	���� time units� The
task size per side and the intertask arrival period were independently generated
random variables� Each experiment involved �xing two of the maximum task
size� maximum intertask arrival period� and con�guration delay per cell� and
varying the third� The amount of time a task spent waiting at the head of the
queue to begin entering the chip� the elapsed time between a task arriving and
completing processing� and the chip utilization were measured�

E�ect of System Load on Allocation Performance Task sizes were allowed
to range up to �� cells per side and the con�guration delay per cell was set to
	�	���� of a time unit� giving a mean con�guration delay per task of about ���
time units� See Fig� ��a�� At maximum inter�task arrival periods below �� time
units the FPGA was saturated with work as tasks arrived more frequently than
they could be allocated� Compaction resulted in a reduction in mean allocation
delay of approximately 	�� at saturation� which caused a reduction in mean
response time� The reduction in mean response time due to compaction increased
from approximately ��� in the saturated region to over ��� at loads where
the chip was coming out of saturation before falling to zero in the unsaturated
region� Fig� ��b� illustrates that the utilization was roughly ��� higher in the
saturated region due to compaction� This bene�t rapidly decreased to zero as
the chip came out of saturation because compaction cannot in uence the inter�
task arrival period� Signi�cantly� when compaction is used� the system has a
higher load�bearing capacity� as evidenced by decreases in response times and
utilization at greater task arrival frequencies�

E�ect of Con�guration Delay on Allocation Performance The perfor�
mance bene�ts due to compaction� though signi�cant in saturated systems� are
greatest when the system is coming out of saturation� We investigated the re�
sponse times in this operating range as the con�guration delay per cell was
increased from 	�	���� time unit to 	���� time units� Task sizes were again al�
lowed to range up to �� cells per side and the maximum intertask arrival period
was set to 	�� time units� Fig ��c� indicates that at con�guration delays of less
than ��� of the mean service period� the performance bene�t due to compaction
was signi�cant�
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Fig� �� �a� Mean response time and �b� chip utilization for ������ tasks of size U������
� U������� service period U�������� time units �tus�� and uniform intertask arrival
periods on F�������	 �c� Dependency of response time on con�guration delay for above
tasks with intertask arrival period of U������� tus	 �d� Dependency of mean allocation
delay on task size for above tasks arriving with intertask arrival period of � tu	

E�ect of Task Size on Allocation Performance To give some indication of
the relative performance bene�ts as the maximum task size changes� Fig� ��d�
plots the mean allocation delay at saturation as the maximum task size was
increased from ! to �� cells per side� The con�guration delay per cell was set to
	�	���� time unit� and tasks arrived at intervals of 	 time unit� The �gure indi�
cates that the performance bene�t due to compaction increased as the maximum
task size was increased from ! since small tasks are more easily accommodated
without compaction� The bene�t decreased again as the maximum task size
approached the chip size� suggesting that less opportunities for free fragment
combination by one�dimensional ordered compaction presented themselves�

� Concluding Remarks

In this paper we described an e
ective heuristic for alleviating fragmentation
by task migration in partially recon�gurable FPGAs� The one�dimensional or�



dered partial task compaction method is generally applicable because it operates
independently of the task scheduling and allocation method� It is platform in�
dependent since task are moved by reloading their con�gurations� Simulations
indicate that signi�cant performance bene�ts can be gained as the FPGA be�
comes saturated with work even when con�guration delays are large� Further
evaluation under real run�time conditions is desired�

Many research problems remain to be solved� These include� examining the
possibility of improving the time complexity of compaction algorithms� devel�
oping methods to relocate the tasks occupying an allocation site to arbitrary
locations on the FPGA� which has the potential of improving the performance
of compaction� taking into account tasks with deadlines� and� determining prac�
tical means of rerouting I�O to migrated tasks�
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