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A b s t r a c t .  A partitioning of an nD image is defined as the watersheds 
of some locally computable inhomogeneity measure. Dependent on the 
scale of the inhomogeneity measure a coarse or fine partitioning is de- 
fined. By analysis of the structural changes (catastrophes) in the measure 
introduced when scale is increased, a multi-scale linking of segments can 
be defined. This paper describes the multi-scale linking based on recent 
results of the deep structure of the squared gradient field[l]. An interac- 
tive semi-automatic segmentation tool, and results on synthetic and real 
3D medical images are presented. 

1 I n t r o d u c t i o n  

The goal of an image segmentation is a description of the shape of some image 
structure of predefined semantics. However, addressing the shape of an object is 
not simple since the shape is not intrinsically defined[2]; shape is defined through 
an interpretation of measurements. This introduces the measurements apparatus 
and its intrinsic resolution as an important  part  of a shape definition. This is 
well-known from the definition of coast-lines. 

In this paper, we use a Gaussian probe as a linear measurement apparatus 
(i.e. Gaussian convolution) and thereby introduce the Gaussian scale-space for- 
malism [3, 4]. We base the shape definition on the local scale-space n-jet. In 
general, the definition of shapes cannot be based solely on local information; 
global information may constrain local decisions. Following this line, segmenta- 
tions have been defined as the minimum of a energy functional [5, 6]. This is 
computationally expensive and difficult to tune to prior information unless ex- 
tensive statistical material is available [7, 8]. Also split and merge techniques[9] 
have been introduced. However, this strategy is captured more elegantly in multi- 
scale linking approaches [4, 10, 11, 12, 13]. 

Locally we compute a measure of dissimilarity of the image, at a certain scale. 
The watersheds of this measure defines the segmentation. Watershed cannot be 
identified locally, i.e. they capture global properties of the image. 

A segment boundary is defined as a watershed of a dissimilarity measure in 
turn defined using a certain width (scale) of the Gaussian aperture function. 
When varying the scale parameter,  the watersheds deform continuously until a 
transition point where a watershed appears/disappears.  Analysis of such tran- 
sitions in the multi-scale structure has been carried out for a number of local 



image functionals (i.e. feature detectors) which may be used as dissimilarity mea- 
sure. Damon established the catastrophe theory for diffused images [14] and also 
analysed ridge measures [15], Lindeberg analysed btob detectors [16], and Rieger 
analysed edge and corner detectors [17]. We analysed the gradient magnitude[I]. 

Multi-scale watershed segmentation has been carried out based on the in- 
tensity and ridges: Gauch[12] used the image intensity function directly as local 
measure of homogeneity. Eberly [13] defined a homogeneity measure based upon 
local "ridgeness'. Griffin [18] used the image intensity or the image intensity 
gradient and based the segmentation on a multi-grid method. We use the recent 
results on the multi-scale structure of the gradient magnitude [1] to establish 
the multi-scale linking. The watersheds in the gradient magnitude intuitively 
partition the image where the gradient is large. 

An object is defined through a root segment and its linking to a localization 
scale. To interactively select roots and scales, an interactive tool (serving same 
task as Pizer et al.'s [11]) has been constructed. Since the multi-scale structure 
can be pre-computed and hashed, interaction is fast. 

The following section defines the scale space and the local dissimilarity mea- 
sures. Then, watersheds, catchment basins, segments and multi-scale linking are 
defined in Section 3. Section 4 describes the interactive segmentation toot. Sec- 
tion 5 presents experimental results. Finally, in Section 6, we summarise. 

2 S c a l e - s p a c e  a n d  l o c a l  d i s s i m i l a r i t y  m e a s u r e s  

Def in i t i on  I Scale-space.  The scale-space L(-, t) is generated from an image 
I(-) -- L(-, 0) by Gaussian blurring L(x ,  t) - f I ( x ' )g (x  - x' ,  t )dx'  where g(., t) 
is a Gaussian and t = a2/2  it's spread. 

Derivatives of the scale-space can be obtained robustly by differentiation of the 
Gaussian prior to convolution. 

For images where segments are assumed to have homogeneous intensity we 
use the gradient magnitude IVL] 2 = L~ + L~ + L~ as dissimilarity measure. In 
images where only the texture differs from segment to segment a local texture 
measure is used: the local frequency contents of an image can be measured with 
a Fourier transform under a Gaussian window function: 

L(x, k, t) = / I ( x ' )g (x  - x ' ,  t )e- lk~ 'dx  ' 

where k is the wave-vector and the total filter is an oriented Gabor function. 
When spatially differentiating this the local phase shift is taken into account 
so that  O~L(x, k, t) - (0~ - i k .  e~)L(x,  k , t )  is assumed to be small in regions 
of same texture, e~ denotes a unit vector in the x direction. We define a local 
dissimilarity measure for texture segmentation (K is a subset of frequencies 
chosen to discriminate textures) as 

m(., t) = ~ 10~,L(., k, t)l ~ (1) 



3 S e g m e n t s  a n d  l i n k i n g  

This section defines segments based on watersheds of an arbitrary local dissim- 
ilarity measure. The notion of watersheds and catchment basins arises when a 
function is viewed as a topographic relief with height identified with the im- 
age intensity. The watersheds are the boundaries between areas, the so~called 
catchment basins, which drain to one local minimum. 

D e f i n i t i o n  2 C a t c h m e n t  bas in .  A catchment basin of a local minimum is the 
inner points of the closure of the union of all steepest descent lines ending in the 
minimum. 

D e f i n i t i o n  3 W a t e r s h e d s .  The watersheds are the boundaries of the catch- 
ment basins. 

A property especially interesting for segmentation is the fact that  watersheds 
form closed hyper-sur]aces for Morse functions. Hence, the watersheds of a func- 
tion give a full partitioning of the multi-dimensional image domain; there is no 
need for closing or connecting edges to get a partition. This parti t ion has a very 
flexible topology. As an example in 2D, any number of segments may generically 
meet in a point. On the contrary, a parti t ion based upon zero-crossings of a 
feature detector will generically only exhibit 2- and 4-junctions. 

Each catchment basin contains exactly one local minimum, the seed of the 
basin. Instead of directly analysing the multi-scale structure of the watersheds, 
we can analyse the dual : the local minima. This makes analysis feasible in terms 
of catastrophes[19]. We suggest: 

D e f i n i t i o n  4 S e g m e n t .  A segment is the catchment basin for a local minimum 
of a dissimilarity measure. 

Often the image structure is probed on a much finer scale than the scale of 
the structures of interest, giving rise to over-segmentation. A common solution 
[20] is to "flood" the image. Maes et al.[21] post-processed the segmentation by 
merging neighbouring regions using a MDL Principle. Griffin et al. [18] simplified 
the image stepwise by treating districts (bounded by maximum gradient paths) 
as one point and recalculating the slopelines. We suggest to detect objects at 
coarse scale and localise them at finer scale. In order to do this, the structures 
must be linked across scale. 

Single scale watershed segmentation on the gradient is well known [22, 23]. 
The singularities of the gradient magnitude and with them the seeds of segments 
occur in the critical points of the image but also in the points where the second 
order structure of the image vanishes in one direction. These points evolve when 
scale is changed, and at certain catastrophe points in scale-space, they interact: 
appear or annihilates. 

The only generic events in scale-space of the gradient magnitude image is 
a fold catastrophe and a cusp catastrophe involving a minimum[l]. The duality 
between segments and the minima of the gradient magnitude suggests the linking 
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Fig. 1. Multi-scale linking of generic events in watersheds of the gradient magnitude. 
The events (annihilation, merging, creation, splitting) are named after the interaction 
between the saddle and the minimum (or minima). Minima and saddles are symbolised 
with triangles and circles, respectively. A line from a segment to a segment indicates 
the linking. 

scheme. A cusp is the interaction between three singularities, in the present case 
two minima and a saddle. The two minima and the saddle either meet and 
become one minimum or the reverse event. A fold is the interaction between two 
singularities, in the present case one minimum and a saddle. The two singularities 
meet and annihilate or the reverse creation event. 

Figure 1 illustrates the idea in 2D with scale increasing upwards. In the 
cases of annihilation (b) and merging (c) two minima and a saddle are reduced 
to one minimum, corresponding to the disappearing of a border between the 
two segments. The cases of splitting (d) and creation (e) are the reverse events 
where the emerging saddle corresponds to the appearing of a border between 
the segments (dual to the two minima).  Hence, the linking is in all cases given 
by the saddle connecting the involved minima. 

The implementat ion of the linking exploits the fact that  image structure 
changes smoothly with scale, therefore a spatial max imum correlation between 
segments at neighbouring scales can be used as linking criterion. Lindeberg [16] 
used a similar idea for blob linking. 

4 T h e  i n t e r a c t i v e  s e g m e n t a t i o n  i n t e r f a c e  

A user-interface has been constructed for accessing the multi-scale segment struc- 
ture (Figure 2). Raising the detection scale gives generally fewer segments and 
vice versa. Raising the localisation scale results in more smooth boundaries and 
vice versa. The user gets interactive 3D feedback on the selections limited in 
speed mainly by the computers rendering capabilities. 
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Fig. 2. User interface windows. In window (a), the localization and detection scale 
is selected as well as a slice in one of the three Cartesian directions. This gives a 
partition of the domain. Window (b) displays the image slice (top left), the partition 
superimposed on the image slice (bottom left), the union of the selected segments 
(top right) and the selected segments superimposed on the image slice (bottom right). 
The object is defined by selecting/deselecting volume segments in one of images in 
window (b). The third window (c) continuously renders the union of the selected volume 
segments. 

5 R e s u l t s  a n d  v e r i f i c a t i o n  

This section presents results on three types of images using the gradient mag- 
nitude squared as the dissimilarity measure. The images are a software simu- 
lated liver phantom (Figure 3), a CT head scan of a patient with abnormal 
growth (Subfigures 5.c,d) and digital photos (red channel) from the visible hu- 
man project (Subfigures 5.a,b). The tasks are to segment the phantom, jaw 
muscles and the liver, respectively. Furthermore results of texture  segmentation 
on a toy image is shown in Figure 6. 

Figure 3 (a) displays a rendering of the true phantom. Different levels of noise 
has been added: respectively 0, 25, 50 and 75 percent of the voxels have been 
modified with Gaussian additive noise with zero mean and standard deviation of 
8070 of the phantom to background contrast. We shall refer to the different noise 
level as the 0, 25, 50 and 75 percent case. Segmentation has been performed using 
an appropriate high detection scale in order to define the object as one single 
segment, which has automatically been tracked to a lower tocalisation scale (see 
Figure 3). 

Segmentation has been performed using an appropriate high detection scale 
in order to define the object as one single segment, which has automatically been 
tracked to a lower localisation scale (see figure 3). 

The errors in localisation of the boundary are due to two different sources. 
The noise pixels influences the multi-scale linking so that  a noisy boundary is 
created at low scales. By increasing the localization scale, a smooth boundary can 
be constructed. However, at this scale, the Gaussian blurring has deformed the 
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Fig. 3. The true object is presented in (a) as a bright surface rendering. In (b), (c) 
and (d) is a bright surface rendering of the segmentation for noise level 25, 50 and 75, 
resp. .  The true object (a) is for comparison superimposed as the dark surface in (b), 
(c), (d). The phantom consists of 57708 voxels in a 643 volume. 

Noise level: 0% 25 % 50% 75% 
• " o o • ° Best localization scale (a) 0.605 1.18 1.73 2.78 

~,,,..::'°°...~.. ,,,~- . . ' ~  Number  of wrong voxels 79 1342 2830 7121 
. . . . . . . . . . / - -  Wrong voxels / size of phantom 0.0014 0.0233 0.0490 0.1234 

(a) (b) 

Fig. 4. Number of erroneous voxels as a function of localization scale for noise levels 
25. Bold crosses indicate total number of voxels, circles indicate missing voxels on 
surface, crosses indicate missing interior voxels, and pluses indicate additional voxels. 
The qualitative shape of the curves are similar for the other noise levels. The statistics 
of phantom segmentation is summarised in (b) 

object deterministically so that  sharp corners (convex or concave) are rounded. 
An optimal scale may be established from prior information on noise level, object 
size, etc. This in done empirically in Figure 4. In Figure 3 (d) the phan tom is 
generally exposed in convex patches while the segmentation is exposed in concave 
patches due to the deterministic shape distortion at higher scales. 

6 S u m m a r y  

A framework for multi-scale segmentat ion has been presented. The part i t ion by 
the watersheds of the gradient magni tude has been analysed and implemented 
in the case of Gaussian scale space. The multi-scale linking has been defined on 
the basis of results from catastrophe theory. 

The selection mechanism of interactively picking objects at an appropr ia te  
scale and combining the result at  localization scale provides a fast way of doing 
semi-au tomat ic  segmentation. 
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Fig. 5. Liver segmenta t ion  (a) and (b) from a cube of size 128x128x112 voxels each 
1.758 mm 3. In (a), the liver boundary is superimposed on three orthogonal slices of 
the subject cube. The same liver segment is visualised in (b) as a surface rendering. 
The view from the spine (b) clearly reveals the imprint from other internal organs. 
The segmentation is difficult for mainly two reasons: The high similarity between liver 
tissue and the neighbouring muscle tissue; and the inhomogeneity of the liver tissue 
itself. Jaw muscles. The segmentation was verified by Professor Sven Kreiborg. The 
subject is a 256x256x64 cube of size lxlx2 mm 3. The muscular structures are located 
next to bone (high value), skin (low value) and salivary glands (approximately same 
value) which makes the task difficult for standard techniques. A fine detection scale 
must be used because the muscles are flat structures, that is fine scale structure in one 
direction. The coarse structures of a muscle was selected with a few (< 5) mouse clicks 
using a coarse detection scale (a ~ 3.06 pixels) , and the segmentation was then refined 
with a few (< 10) clicks using a finer detection scale ( a m  0.805 pixels). Localisation 
scale is 0.5 pixels. 

Fig. 6. Multi-scale texture segmentation based on local frequency differences defined 
by Gabor functions. Two distinctive textures with Gaussian noise added is segmented 
using the dissimilarity measure defined in Eq. 1. These are preliminary results serving 
only as indication of the generality of the multi-scale watershed segmentation approach. 

The definition of segments can be changed by using another measure of dis- 
similarity instead of the gradient magnitude. This is possible within the same 
general framework although different structural changes might occur generically 
for other measures and diffusion schemes. 
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