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1 I n t r o d u c t i o n  

Adjacency has a large interest in image processing and pattern recognition, since 
it qualifies an important relationship between image objects or regions. A crisp 
definition of adjacency between crisp objects often leads to a low robustness in 
case of noise or segmentation errors. Let us consider for instance a problem of 
model-based pattern recognition where spatial relationships are an important 
part of the recognition process. If two model objects are adjacent, we expect the 
corresponding image objects to be adjacent too, otherwise they will be difficult to 
recognize. However, if classical crisp adjacency is used, the fact that  two objects 
are adjacent or not may depend on one point only. 

In order to include possible errors or imprecision in the processing and in 
the recognition, we use the framework of fuzzy sets that  already proved to be 
useful for image processing under imprecision. Two ways can be considered for 
representing imprecision. In the first one, the satisfaction of the adjacency prop- 
erty between two objects is considered to be a matter of degree. The second one 
consists in introducing imprecision in the objects themselves, and to deal with 
fuzzy objects, i.e. with objects considered as fuzzy sets on the image space. For 
instance, spatial imprecision due to the limited quality of image information can 
be represented in an adequate way by considering fuzzy objects. Then obviously 
adjacency is also a matter  of degree. In both cases, a need exists to give proper 
definitions for fuzzy adjacency between image regions. Here the second way only 
will be considered (see [3] for an approach along the first track). 

Unfortunately, only a few works address the problem of fuzzy adjacency in the 
literature. Fuzzy topology was introduced in [7]. In this paper, Rosenfe]d defines 
a fuzzy connectivity between points but without reference to fuzzy neighbor- 
hood, or to fl~zzy adjacency. Similar approaches can be found in [8], [11], where 
degrees of connectivity in a fuzzy set are also introduced, but neither the con- 
nectivity nor the adjacency between two fuzzy sets are defined. Rosenfeld and 
Klette [9] define a degree of adjacency between two crisp or fuzzy sets, using a 
geometrical approach based on the notion of "visibility" of a set from another 
one. However, this definition is not symmetrical, and probably not easy to extend 
to higher dimensions. We propose in this paper a completely different approach. 
The closest to our work is probably the one decribed in [4], where a degree of 
adjacency between two fuzzy sets is defined by extending binary definitions of 
contours, frontiers, and neighborhood. Again, the proposed definition of [4] is 
not symmetrical, and presents some other drawbacks. 

In this paper we propose several definitions for degree of adjacency coping 
with spatial imprecision in image processing. Basic definitions for classical no- 
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tions of adjacency are given in Section 2, in the discrete domain. Then we account 
for imprecision in the representation of objects, consequently defined as spatial 
fuzzy sets, and we define a degree of adjacency between two fuzzy sets. This 
is detailed in Section 3, using fuzzy extensions of the notions of neighborhood 
and of boundary of a set. We finally show that fuzzy mathematical morphology 
provides a consistent framework for expressing the obtained definitions. 

2 C r i s p  a d j a c e n c y  

Here, we restrict ourselves to the discrete case, and use discrete topology as de- 
rived from discrete connectivity for defining adjacency between two image regions 
X and Y, subsets of the discrete space. Consider an n~dimensional discrete space 
(typically ZZ~), and any discrete connectivity defined on this space, denoted c- 
connectivity (for instance, for n = 3, we may consider 6-, 18- or 26-connectivity 
on a cubic grid). Since we would like to distinguish between connectedness and 
adjacency relationships, we use the following definition of crisp adjacency, where 
we denote by no(x, y) the Boolean variable stating that x and y are neighbors 
in the sense of the discrete c-connectivity: 
Def ini t ion 1 For any two subsets X and Y in ~n ,  X and Y are adjacent 
according to the e-connectivity if." X N Y = ~ and 3x E X, 3y C Y : nc(x, y). 

We consider for the discrete boundary of a set X its interior boundary defined 
as: OX = X -  E(X,  Bc) where E(X,  Be) denotes the morphological erosion of X 
by the structuring element B~ of size 1 defined according to the chosen discrete 
connectivity [10]. Using this definition, the discrete adjacency can be related to 
the boundary in the following way: 
P r o p e r t y  1 A consequence of definition 1 is that, if X and Y are adjacent, 
then any x E X and y C Y that satisfy no(x, y) belong to the boundary of X and 
Y respectively. 
Therefore the fuzzy extension of definition 1 can be obtained either by consider- 
ing only the constraint on the neighborhood, or by considering also the constraint 
on the boundary, as will be seen in Section 3.2. 
P r o p e r t y  2 Definition 1 can also be expressed equivalently in terms of morpho- 
logical dilation, as: X N Y  = ~ and D(X, Bc) AY ~ ~, D(Y, Be) N X  ~ ~, 
where D(X, B~) denotes the dilation of X by the structuring element Bc. 
This property provides a third way to extend the definition to fuzzy sets, either 
directly from fuzzy dilation, or by means of distance computation, which is 
closely related to dilation. 

3 E x t e n d i n g  a d j a c e n c y  t o  f u z z y  o b j e c t s  

In the rest of this text we consider fuzzy objects (i.e. fuzzy sets defined on 
the considered space by means of their membership function) and define fuzzy 
adjacency between such objects. In the discrete case, a fuzzy object is simply 
defined by its membership function, defined on 2Z ~ and taking values in [0, 1]. 

3.1 Me thods  

This Section presents shortly the possible principles that can be used for extend- 
ing adjacency to fuzzy sets and the requirements posed to this extension. We 
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consider the general problem of extending a relationship RB between two binary 
objects to its fuzzy equivalent R (fuzzy relationship between two fuzzy objects). 
Instantiations of the described methods to the case of adjacency are provided 
next. 

By  using the  a - cu t s  One way to define crisp sets from a fuzzy set consists 
in taking the a-cuts of this set. Therefore a first class of methods relies on the 
application of the relationship RB to each a-cut. This gives rise to two different 
"fuzzification" methods in the literature. 

The first one consists in "stacking" the results obtained with binary opera- 
tions on the a-cuts: let us denote by # and y the membership functions of two 
fuzzy objects defined on the considered space and taking values in [0,1], the fuzzy 
equivalent R of RB is then defined as (see e.g. [5]): R(#, v) = f l  RB(p~, ~)da, 
or similarly by a double integration (other fuzzification equations exist, but will 
not be examined here). Examples of this approach concern for instance connec- 
tivity [S], fuzzy mathematical morphology [2], distances [5], [1], etc. 

The second method is the extension principle [12], which leads, in the general 
case, to a fuzzy number: Vn E P(RB), R(/t , ,)(n) = supRs(,=,v~)=~ a, where 
Y(RB) denotes the image of RB, i.e. the set of values taken by RB. If the 
relationship to be extended only takes binary values (0/1, or true/false), then 
the extension principle reduces to: R(#, v) = supRB(,=,,~)=I a. This is typically 
the case for binary adjacency between binary sets. 

By  formal  t r ans l a t ion  of  equat ions  A second class of methods consists in 
translating binary equations into their fuzzy equivalent: intersection is replaced 
by a t-norm, union by a t-conorm, sets by membership functions, etc. This has 
been used e.g. for defining fuzzy morphology [2]. This translation is straightfor- 
ward if the binary relationship can be expressed in set theoretical and logical 
terms. It is obtained in a natural way from the definitions given in Section 
2. Moreover, this remark endows methods based on mathematical morphology 
with a particular interest, since mathematical morphology is mainly based on 
set theory. 

Since methods based on a-cuts appeared to have poorer properties than those 
based on a formal translation (see [3]), we restrict to this second kind of approach 
in the following. 

Min ima l  p roper t i es  requ i red  for a fuzzy ad jacency  The properties we 
require for fuzzy adjacency are the following: symmetry, consistency with binary 
definitions, decreasingness with respect to the distance between both sets. A last 
property, often desirable although not mandatory, is invariance with respect to 
geometrical transformations. 

3.2 Formal  t r ans l a t ion  of b ina ry  adjacency equat ions  in to  fuzzy 
ad jacency  

In this Section, we make use of the principle shortly described in Section 3.1 
in order to define a degree of adjacency between two fuzzy sets # and ~. Since 
binary definitions always involve constraints on the intersection of the two sets 



33 

and a notion of neighborhood, we first define fuzzy equivalents of these concepts. 
Then, we extend definition 1, using only neighborhood relationships, and then, 
we add boundary constraints, as introduced in property 1. We also consider fuzzy 
adjacency derived from fuzzy dilation and from fuzzy distance. 

D e g r e e  o f  i n t e r s e c t i o n  b e t w e e n  two  f u z z y  se ts  The degree of intersection 
between two fuzzy sets is obtained by translating the set equation XMY # 0 into 
fuzzy terms. This equation is equivalent to 3x E 2Z ~, x E X M Y. The simplest 
fuzzy translation provides: #i,~t(#, u) = sup~ tiP(x), u(x)], where t is any t-norm 
[6]. The supremum is taken over the whole space. A degree of empty intersection 
(or of disjunetness) is then derived as: #m~t (p ,u )  = c[#i~t(g,u)], where c is 
a fuzzy complementation (for instance defined as Va E [0, 1],c(a) = 1 - a). 
This tbrm is not always adequate for image processing purposes since it does 
not incorporate any spatial information. Degrees of intersection and of non- 
intersection can therefore be reformulated in order to better reflect the spatial 
overlapping by considering the fuzzy hypervolume of the intersection. This may 
also be interpreted as a translation process, in the sense that  we have: X M Y = 

~=~ V ~ ( X M Y )  = O. For defining the hypervolume of a fuzzy set, we simply use 
the classical fuzzy cardinality. This provides for a fuzzy set # (with a bounded 
support) in the discrete case: V~(#) = ~ e 2 Z "  #(x). From the hypervolume of 
t(#, u), a degree of intersection in [0, 1] is derived. It should be equal to 0 if # 
and u have completely disjoint supports, be high if one set is included in the 
other, and increasing with respect to the hypervolume of the intersection. The 
following definition satisfies these requirements: 
D e f i n i t i o n  2 The degree of intersection between two fuzzy sets # and u, de- 
pending on the hypervolume of their intersection, is defined by: 
#i~t(#, u) = v~[t(m,)] Here again a degree of non-intersection can be de- 

m i n [ V . ( # )  ,V. (u) ]  " 

rived from this expression using fuzzy complementation. 
P r o p e r t y  3 The intersection degrees defined by maximum of intersection and 
definition 2 are both consistent with the binary definition and invariant with 
respect to geometrical transformations. 

In the following definitions of fuzzy adjacency, we may use either expressions 
derived from the height of the intersection or expressions involving the fuzzy 
hypervolume of the intersection. We wilt see that this leads to different adjacency 
degrees in overlapping situations. 

F u z z y  n e i g h b o r h o o d  In this Section, we define a degree of neighborhood n~y 
between two points x and y in ~ endowed with a discrete connectivity. Let us 
first consider binary definitions of n~y: we set n~y = 1 if x and y are neighbors 
in the sense of the considered discrete connectivity, and n~y = 0 otherwise (i.e. 
n~y = no(x, y)). With this definition, the consistency with the binary case is 
guaranteed. In the fuzzy case, nxy can be defined as a decreasing function of the 
distance between z and y, as proposed in [4] and in [3]. 

Using neighborhood constraints We propose to fuzzily definition 1 by com- 
bining a degree of empty intersection (X N Y = 0) with a degree of existence 
of neighbors (3x E X,  3y E Y, n¢(x, y)) using a t-norm t (expressing the si- 
multaneous satisfaction of both conditions). For the first part,  a degree of non- 
intersection can be used, derived either from the height of the intersection of 
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from its fuzzy hypervolume, as suggested in Section 3.2. For the second part, 
existence is translated by means of a supremum (taken over the whole space), 
leading to: sup~ SUpy t[it(z), u(y), n~y], where n~ v represents the degree to which 
z and y are neighbors 1. It can be either crisp or fuzzy (as defined in Section 3.2). 
Finally, we obtain the following definition for fuzzy adjacency. 
De f in i t i on  3 The degree of adjacency between It and u involving only neighbor- 
hood constraints is defined as: Padj (it, u) = t[p~int (p, v ), sup~ supv t~u(~:), v(y), n~v]]. 

P r o p e r t y  4 The degree of adjacency obtained with this definition is symmetri- 
cal, consistent with the discrete binary definition (i.e. in the case where # and u 
are crisp and n~y = ne(x, y) ), and decreasing with respect to the distance between 
the two fuzzy sets. It is invariant with respect to geometrical transformations (for 
scaling, only if nxy is itself invariant). 

Figure 1 illustrates the results obtained with definition 3 with the t-norm 
minimum and both definitions of degree of intersection. Using the maximum of 
the intersection we obtain #adj (#, u) = 0.36 and #adj (t t, U') = 0.35, which are 
very similar values. On the contrary, using the fuzzy hypervolume, definition 3 
accounts for the differences in intersection and provides Itadj (it, u) = 0.67 and 
#adj (it, v') = 0.34, which are different and better fit the intuition. 

M ~ m b ~ b i p  vn tuex  

1 

~2 

0 .......... 
S ~  ¢ ~ i n a t e s  

Fig. 1. Illustration of definition 3 
when using different defmitions for 
the degree of intersection. Using 
the maximum of intersection we 
obtmn , o , ( p , v )  = al(= 0.36) 
and Uo,(U,v') = a~(= 0.35), 
and using the fuzzy hypervolume 
. o . ( . , v )  = a~(= 0.67) and 
. o . ( . ,  ~') = a , (=  0.34). 

Let us consider now a 2D example. Figure 2 shows a slice of a magnetic 
resonance (MR) image of the human brain, where several structures have been 
segmented and serve as a model (or atlas), and a slice (at approximately the 
same level) of another MR image where the same structures have to be rec- 
ognized. A rough fuzzy segmentation of this second image is also shown. The 
adjacency degrees between some of the obtained fuzzy objects are given in Ta- 
ble 1. They are obtained using definition 3 with the maximum of intersection 
as intersection degree and the t-norm minimum. 4-connectivity was used. The 
results are in agreement with what can be expected from the model. In this case, 
crisp adjacency would provide completely different results in the model and in 
the image, preventing its use for recognition. This suggests that  fuzzy adjacency 
degree can indeed be used for pattern recognition purposes, of course combined 
with other spatial relationships. 

Adding b o u n d a r y  c o n s t r a i n t s  Another way to extend fuzzy adjazency from 
definition 1 consists in introducing a constraint on the boundary of the considered 

1 In such expressions t(a, b, c) stands for t[t(a, b), c]. This notation is adopted for sake 
of simplicity and justified since any t-norm is commutative and associative. 
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nc2 v2 v I nc 1 

Fig. 2. MR image of a brain with a few segmented structures (left). MR image of an- 
other brain (middle). Right: 5 fuzzy objects resulting from a rough fuzzy segmentation 
of the middle image (membership values rank between 0 and 1, from white to black, 
the maximum membership value is displayed at each point) and labels (used in Table 
1). 

Fuzzy object llFuzzy object 2 degree of adjacency 
vl v2 0.368 
vl ncl 0.463 
vl  t l  0.000 
vl nc2 0.035 
v2 nc2 0.427 

ncl t l  0.035 

adjacency in the model (crisp) 

Table 1. Results obtained using definition 3 with the maximum of intersection as 
intersection degree, the t-norm minimum, and 4-connectivity. Labels of structures are 
given in Figure 2. High degrees are obtained between structures where adjacency is 
expected, while very low degrees are obtained in the opposite case. 

sets, as given by property 1, i.e. the neighbor points involved in definition 1 are 
on the boundary of the sets. 

A similar work has already be done in [4], but al though the approach is very 
attractive,  the proposed definitions suffer from several drawbacks, with respect 
to the requirements we imposed in this paper (not symmetrical ,  not consistent 
with the binary case, etc., see [3] for more details). 

We propose a new definition that  overcomes these drawbacks and bet ter  
matches our requirements. Our approach consists in defining only the fuzzy 
boundaries of the fuzzy sets, which are then combined with neighborhood rela- 
tionship. 
D e f i n i t i o n  4 The fuzzy boundary of a fuzzy set # is defined by the membership 
function b u as: Vx E Z~, bu(x) = t[#(x), supzez~,- t[c(#)(z), nxz]]. 

P r o p e r t y  5 In the binary case (# and n~z binary), this definition is consistent 
with the classical definition of the boundary of a crisp set X (set of points of 
X that have a neighbor in Xc ) .  It is also invariant with respect to geometrical 
transformations (for scaling, only if n~y is itself invariant). 

The translation of definition 1 along with the property on boundary  leads 
now to the following definition: 
D e f i n i t i o n  5 The degree of adjacency between # and u involving neighborhood 
and boundary constraints is defined by: 
[.tadj(#, lJ) : t[#-,int(#, •), sup~ SUpy t[bg(x), bu(y), n~zy]], where the supremum is 
taken over k~ n, 
This definition is illustrated in Figure 3. 
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~ r s h l p  v a l u ~  

~DODO n u  

b o ~ d a r y ( m u )  
ooooo b o u n d a ~ ( n u )  

• ~L  ~ ~ , 
~ y S p ~ e  coocdin~ 

~dk~crete) 

Fig. 3. Fuzzy boundary b, and by of 
two fuzzy sets p and v. Fuzzy adja- 
cency is then equal to adj according 
to definition 5, which is less than a2 
provided by definition 3. The neigh- 
bor points for which the adjacency 
value is attained are again x and y. 

Again, as in the previous Subsection, if we assume that  the considered fuzzy 
sets constitute a fuzzy partition, we can ignore the first term corresponding to 
the degree of empty intersection. 
P r o p e r t y  6 The degree of adjacency in this definition is symmetrical, consis- 
tent with the binary definition if p, , and n~:y are binary, and decreases if the 
distance between p and L, increases. It is invariant with respect to geometrical 
transformations (for scaling, only if nxy is itself invariant). 
P r o p e r t y  7 This definition is equivalent to definition 3 in the binary case. In 
the fuzzy case, it is more severe, i.e. leads to a lower degree of adjacency. 

Usi ng  f u z z y  m o r p h o l o g i c a l  o p e r a t o r s  In a morphological context, it may 
also be interesting to define adjacency from fuzzy dilation, by translating prop- 
erty 2 into fuzzy terms. A direct translation of this property leads to the following 
definition. 
D e f i n i t i o n  6 The degree of adjacency between p and u involving fuzzy dilation 
is defined as: Padj(P, 9) = t[p,int(p, "), pint[D(p, Be), "], pint[D(", Be), p]]. 
This definition represents a conjunctive combination of a degree of non-intersection 
between p a n d ,  and a degree of intersection between one fuzzy set and the dila- 
tion of the other. Bc can be taken as the elementary structuring element related 
to the considered connectivity, or as a fuzzy structuring element, representing 
for instance spatial imprecision (i.e. the possibility distribution of the location 
of each point). 
P r o p e r t y  8 This definition is symmetrical, consistent with the binary definition 
if p , ,  and Be are binary, and decreases if the distance between p and ,  increases. 

Fuzzy dilation can also serve for defining the fuzzy boundary of a fuzzy set, 
as follows. 
D e f i n i t i o n  7 The fuzzy boundary b. of a fuzzy set p is defined from fuzzy dila- 
tion as: b . (x )  = t ip(x) ,  D(c(p) ,  
P r o p e r t y  9 This definition is equivalent to definition ~ if the structuring ele- 
ment is consistent with the choice of the fuzzy neighborhood (typically if we take 
the elementary structuring element defined from the discrete connectivity used 
in a binary definition of n,y). 
P r o p e r t y  10 The degree of adjacency obtained from this boundary definition 
(with any structuring element) is still symmetrical, consistent with the binary 
case and decreasing when the distance between both fuzzy sets increases. 
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Finally, since in the discrete binary case the equation using dilation means 
that  the min imum (nearest point) distance between X and Y is equal to 1, we 
can also exploit this fact in the fuzzy case, by using the fuzzy min imum distance, 
defined from fuzzy dilation as in [1]. We do not go into further details for this 
approach, since it leads to similar definitions, sharing the same properties as the 
previous ones. 

4 C o n c l u s i o n  

The aim of this research was to investigate notions of fuzzy adjacency that  could 
serve for model-based pat tern recognition in image processing under imprecision. 
We proposed several definitions for extending adjacency to fuzzy objects, tha t  
show good properties with respect to binary definitions and to the requirements 
we imposed, and that  provide for a consistent representation and management  
of imprecision, which is directly represented in the considered objects. 
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