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Abs t rac t .  Our main contributions in this paper are twofold. In the 
first instance, we demonstrate how H - K surface labelling can be re- 
atised using dictionary-based probabilistic relaxation. To facilitate this 
implementation we have developed a dictionary of feasible surface-label 
configurations. These configurations observe certain constraints on the 
contiguity of elliptic and hyperbolic regions, and, on the continuity and 
thinness of parabolic lines. The second contribution is to develop a statis- 
tical model which allows scheme to be initialised using the probabilities 
of the different H - K labels to be estimated from surface normal infor- 
mation. 

1 I n t r o d u c t i o n  

Curvature labels provide a natural way of describing the intrinsic differential 
structure of surfaces. Mean and Gaussian curvature labels derived from the 
eigen-structure of the Hessian matrix allow surfaces to be segmented into mean- 
ingful structures such as ridges or valleys, saddle points or lines, and, domes 
or cups. These structures can be further organised into simply connected ellip- 
tical or hyperbolic regions which are separated from one-another by parabolic 
lines. Unfortunately, because the Hessian matrix is based on second-derivatives 
the reliable estimation of surface curvature has proved to be a task of notorious 
difficulty in the analysis and range or volumetric imagery [8,9]. Some of the lim- 
itations of the alternative strategies for curvature estimation were unearthed in 
the comparative study of Flynn and Jain [3]. 

It is for these reasons that  strategies aimed at circumventing the direct es- 
t imation of second-derivatives have been developed. One of the most popular 
approaches is to approximate the surface by a low-order piecewise continuous 
surface [5,2]. For instance, Besl and Jain adopt  a hierarchical fitting technique 
[1]. Firstly, a local tangent plane is extracted by identifying the principal compo- 
nent axes for the surface point distribution over a support  neighbourhood, Next, 
the plane-fit is refined using a cubic patch. Hilton, Illingworth and Windeat  [6] 
have addressed the issue of analysis of variance to improve the statistical fidelity 
of the fitting process. 

Despite these efforts at improving the reliability of curvature estimation the 
problem of how to refine inconsistent curvature estimates has received less atten- 
tion. In essence, surface-fitting does not guarantee that  the extracted estimates 
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of the Hessian are consistent when viewed from the requirements that  elliptic and 
hyperbolic regions should be simply connected, or, that  parabolic lines should be 
thin and continuous. Interrogation of the literature reveals that  it is only Sander 
and Zucker [10] who have made any serious a t tempt  at exploiting the idea of 
curvature consistency to improve the recovery of a consistent surface description. 
Their idea has been to iteratively update Darboux frames by imposing the con- 
straint that  the principal curvature directions should vary smoothly across the 
surface. The initial estimates of the Hessian required in this analysis are derived 
from the least squares fitting of bi-quadric patches. However, there is no a t tempt  
to reconcile the quality of the recovered surface description with the underlying 
statistical uncertainties in the raw surface data. Neither is there any at tempt  to 
exploit the structured nature of the H - K surface-labels in improving curvature 
consistency. 

Our overall aim in this paper is to present a statistical framework for surface 
curvatur labelling. We commence by showing how the Hessian matr ix can be 
directly estimated using statistics derived from surface normals. Our motivation 
in embarking on this statistical analysis is to realise the process of consistent 
curvature-label refinement using probabilistic relaxation labelling. The frame- 
work adopted in this study is the dictionary-based relaxation scheme of Hancock 
and Kittler [4]. The critical ingredient is a dictionary which represents the valid 
configurations of HK curvature labels that  can be consistently assigned to neigh- 
bouring sites on the surface. In this way we tap the rich source of constraints 
provided by the highly structured nature of surface curvature labels. 

2 Represent ing Differential Surface Structure 

In this paper we are interested in estimating the local differential structure of 
surfaces using computed estimates of the surface normal directions. This is to be 
contrasted with the fitting of a local surface patch and estimating curvature from 
the computed parameters of the patch We commence by providing some of the 
formal ingredients of our surface representation. The local surface orientation is 
determined by the direction of the surface normal n -- (nz,ny, 1) T. When the 
surface is represented by a twice differentiable function z = f(x, y), then the com- 
ponents of the normal are related to the surface gradient, i.e. n = ( ~  0_/ I ~ T  (~y, J • 

In this continuous case, tile differential s tructure of the surface is captured by 
the Hessian matrix 

o oy (1) 
025 -~y 

OxOy 

The eigen-structure of the Hessian matrix can be used to gauge the curvature of 
the surface. The two eigen-values of 7-/are the maximum and minimum curva- 
tures. The orthogonal eigen-vectors of ~/ are known as the principal curvature 
directions. The mean-curvature of the surface is found by averaging the maxi- 
mum and minimum curvatures. The Gaussian curvature is equal to the product 
of the two eigenvalues. 
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In the case when surface normal information is being used to characterise 
the surface, then the Hessian matrix takes on the following form 

The diagonal elements of the Hessian are related to the rate-of change of the 
- -  ( : g n ~  surface normal components, i.e., c~ = ~ and ~/ - W~-~" Treatment of the off- 

diagonal elements is more subtle. However, under the assumption that  the surface 
is locally developable then we can write ~ = a ~  _ a ~  ay - ~-~" In the next Section we 
will describe how the elements of the Hessian, i.e. a, ~ and V, can be estimated 
from raw surface normal data  using the method of least-squares. 

With estimates of the elements of the Hessian to-hand, we can compute the 
mean(K) and Gaussian(H) curvatures of the surface. According to the definitions 
given above K = ½ (a + ~/) and H = a ~ / -  ~2. The signs and zeros of these two 
quantities can be used to label the surface according to curvature class. The 
different classes are defined in Table 1. It is important to stress that  there are 
adjacency constraints applying to the curvature labels. In particular, the the cup 
(C) and dome (D) surface types may not appear adjacent to each other on a 
surface. Moreover, elliptic regions on the surface (those for which H is positive) 
must be separated from hyperbolic regions (those for which H is negative) by 
a parabolic line (where H=O). In other words, domes and cups are enclosed 
by ridge or valley-lines. Moreover, domes or cups can not be adjacent to saddle- 
structures. In Section 5 we will exploit these constraints to construct a dictionary 
for the H - K curvature labels. 

Class Symbol K H 
Dome D - + 
Ridge R - 0 

Saddle ridge SR - - 
Plane P 0 0 

Saddle-point S 0 - 
Cup C + + 

Valley V + 0 
Saddle-valley SV + - 

Table 1. Curvature 

Region-type 
Elliptic 

Parabolic 
Hyperbolic 
Hyperbolic 
Hyperbolic 

Elliptic 
Parabolic 

Hyperbolic 
classes 

3 Computing the Hessian using Sampled Normals 

In this section we describe how to make a statistical estimate of the Hessian 
matrix from a sample of surface normals. Specifically, we use the method of least 
squares to estimate the elements of 7-/and to compute the errors associated with 
these estimates. 

We commence by assuming that  we have a set of surface normal measure- 
ments associated with a tentative surface. Moreover, we assume that  the variance 
in the surface normal components is known. For instance, in the case of volu- 
metric intensity images with the surface normals estimated using directional 
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edge-detection operators,  then Sharp and Hancock [11] have shown how the 
variance-covariance matr ix  for the surface normals is determined by the inten- 
sity noise-variance together with the autocorrelations of the filter kernels. Let no 
represent the surface normal at the position (x0, y0, z0). and let nm be a neigh- 
bouring surface normal with position (xm, Ym, zm). If the normals are close to 
each other, then we can approximate  the change in the components of the surface 

on~ ~ x  + o ~  A normal using a first-order Taylor expansion. Accordingly, Anx = ~ -  ~ y 
On~ A and Any = 2 ~ - A x  + ~ y, where the measured change in the components  of 

the surface normal is given by n m -  no = (A'mn~, A m n y ,  O) T. The displacements 
in point co-ordinates are A ' ~ x  = x,,~ -- xo and A'~y  = Ym - Yo. With these re- 
lationships to hand we can rewrite the Taylor expansion in terms of elements of 
the Hessian matrix,  i.e. A m n ~  = c~A'~x + [3Amy and A m n v  = / 3 A ' ~ x  + 7 A m y .  
These equations govern the parallel t ranspor t  of the vector across the curved 
geometry of the surface. So, to first-order, the change in the normal is linear 
in the elements of the Hessian matrix.  Unfortunately, for the single neighbour- 
ing normal  these equations are under-constrained and we can not recover the 
Hessian. However, if we have a sample of N neighboring surface normals, then 
there are 2N linear homogenous equations in the elements of 7 / a n d  the problem 
of recovering differential structure is no-longer under-constrained. We make the 
homogeneous nature of the equations more explicit by writing 

An(x m) = A x  (m) • a + A y  (m) .[3 + 0 . 7  

An~  "~) = O- a + A x  ('~) ./3 + A y ( " O .  7 
(3) 

In order to simplify notation, we can write the full system of 2N equations in 
matr ix  form as N = X P ,  where N is an aggregated column-vector of normal 

, , (1) A (1) An(x2))T. The design matr ix  X represents components,  i.e. N = t J n x  , ~ n y  , 

the co-ordinate displacements 

X = 
A x  (1) AYo0) lax(2) Ay(2) ) 

and the parameter  vector P = (ct,/3, ~/)T. When the system of equations is over- 
specified in this way, then we can extract  the set of parameters  tha t  minimises 
the vector of error-residuals N - X P .  We pose this parameter  recovery process 
as a least-squares estimation problem. In other words we seek the set of esti- 
mated  parameters  P = (&,/3, ~)T which satisfy the condition P = arg m i n p ( N  - 
X P )  w ( N -  X P ) .  The solution-vector is given by 15 = ( x T x ) - I x T N .  The  least- 
squares est imates of the parameters  can then be used to compute  the set of 
surface labels. 
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4 L a b e l l i n g  t h e  s u r f a c e  

In order exploit the highly structured nature of the surface labelling constraints, 
we have chosen to employ the technique of dictionary,based,probabilistic relax- 
ation. Our reasons for this are twofold. In the first instance, the method draws on 
labelling constraints using an exhaustive list or compilation of valid neighbour- 
hood label configurations. This list is referred to as a dictionary. The second 
reason is that the framework~is Bayesian and combines evidence for label as- 
signments. Rather than commencing from hard and potentially erroneous label 
assignments, the initial characterisation is in terms of a posteriori label probabil- 
ities. These initial probabilities are computed from distribution functions which 
characterise uncertainties in the unary attributes from which label decisions are 
to be derived. In other words, dictionary-based relaxation allows us to exploit 
both consistent surface label structure and the covariance structure of the H-K 
curvatures. 

According to the original formulation of Hancock and Kittler [4], the local 
labelling is described by a set of probabilities. Specifically, p(n)(Si = w) is the 
weight of evidence assigned to the label assignment w at site Si for the iterative 
epoch n of the algorithm. These weights are initialised with the probability 
that label w takes on one of the eight possibilities from Table 1. Initially, these 
probabilities are calculated using the computed values of H and K,  together 
with their known covariance structure. 

These label-probabilities are iteratively updated using the non-linear relax- 
ation rule 

p(n+l) (Si = ~) = p(n) (Si = w)q (~) (Si = w) (4) 
E ~ , ~  P(~)(& = w')Q(~)(& = w') 

The critical ingredient in the update formula is the support function Q(n)(Si = 
a~) which combines evidence from the context-conveying neighbourhood Ki of the 
surface-site Si for the label assignment w E Y2. Here f2 = {D, R, SR, S, SV, V, C} 
denotes the complete set of curvature labels. According to Hancock and Kittler 
[4], the support function takes on the following product-form 

{~eK P(n ) (Sk=Ak)}P(S I=AIV1EKi )  (5) 

In the above formula the dictionary O(w) contains a set of legitimate labellings 
over this neighbourhood Ki. The dictionary item A -= (Ak; k E Ki) is a config- 
uration of valid curvature labels on the neighbourhood Ki. 

5 Dictionary 

As mentioned above, there are strong adjacency constraints on the valid label 
configurations appearing on the neighbourhoods of some classes of surface. One 
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of the goals of the work reported in this paper is to describe a methodology for 
enumerating and encoding these constraints in a dictionary for H - K labels. Of 
course, the construction of a dictionary depends critically on the choice of neigh- 
bourhood topology. In the experimental section later we will be demonstrating 
the utility of the method on triangular surface meshes. In this case the natural 
neighbourhood consists of a triangle and it's three directly adjoining elements. 
We will therefore confine our attention exclusively to this arrangement of objects 
in constructing the dictionary. 

We commence by considering the dome-class (D) for which H > 0 and K > 0. 
This is an example of an elliptic region. It can therefore be connected to other 
dome labels. It can not co-occur with any class other than the ridge for which 
H = 0 and K > 0. The configurations satisfying these two constraints are 
shown in Figure 1. It should be noted that  all sections of the dictionary are 
rotation invariant. The  cup-class (C) is symmetric with the dome under reversal 
of the sign of the mean curvature (K). Under this transformation, the ridge-label 
is replaced with the valley label. The dictionary for the cup class is therefore 
constructed by peribrming the mappings D -+ C and R --+ V in Figure 1. 

Fig. 1. Elements of the dictionary for the D-label 

The two hyperbolic region labels have a more complicated neighbourhood 
structure. The saddle-valley and the saddle-ridge labels can again form contigu- 
ous patches. However, they can be bounded by both the saddle-point and the 
parabolic line of appropriate mean-curvature. For instance the saddle-ridge can 
be adjacent to the ridge and the saddle-point. The ridge and valley labels fall into 
the category of parabolic lines. In other words, they must form the boundaries 
between hyperbolic regions and elliptical regions. Specifically, they are effectively 
zero crossings of Gaussian curvature. In consequence the ridge label intercedes 
between elliptical domes and hyperbolic saddle-ridges. The dictionaries for these 
hyperbolic and parabolic label classes can be compiled in an analogous manner 
to Figure 1, but  are omitted here due to space limitations. 

6 E x p e r i m e n t a l  e v a l u a t i o n  

In this section we offer some experimental validation of our surface-labelling 
algorithm. In order to evaluate the method under controlled conditions, the ex- 
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periments are conducted using synthetic surfaces. There surfaces are subjected 
to controlled levels additive Gaussian noise. The surfaces simulate range images. 
The additive Gaussian noise models sensing errors in the surface height distribu- 
tion. The raw height data is triangulated using sample points from the surface. 
These triangles then provide surface normal information. 

Figure 2a shows the initial labelling of a damped-cosine surface. The sur- 
face labels are shaded according to a convention in which cups, domes, saddle 
valleys and saddle ridges apear as progressively light regions. Notice that the 
initial labelling contains no parabolic line-structure. In other words, the abut- 
ting boundaries of the different regions are intrinsically inconsistent when viewed 
from the perspective of the H-K label-set. Figure 2b shows the labelling of the 
surface after 6 iterations of the dictionary-based relaxa.tion scheme. The green 
triangles appearing in the updated labelling are parabolic lines (i.e. either ridges 
or valleys). Although there are sampling artifacts due to the triangular elements 
used in our labelling scheme, the parabolic lines are thin and continuous. More 
significantly, they delineate elliptic and hyperbolic regions. Finally, Figure 3 
shows the labelling of two noisy damped-cosine surfaces (a = 0.5 and a = 1.0 
respectively). 

Fig. 2. Initial (left) and final (right) labellings of damped-cosine surface 

7 C o n c l u s i o n s  

Our main contributions in this paper are twofold. In the first instance, we have 
demonstrated how H - K  surface labelling can be realised using dictionary-based 
probabilistic relaxation. To facilitate this implementation we have developed a 
dictionary of feasible surface-label configurations. These configurations observe 
certain constraints on the contiguity of elliptic and hyperbolic regions, and, on 
the continuity and thinness of parabolic lines. The second contribution has been 
to develop a statistical model which allows curvature lables to be estimated using 
surface normal statistics. 
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lint 
Fig. 3. Initial and final labelling two noisy damped-cosine surfaces 
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