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Abs t rac t .  In the paper a topological approach to approximation of pla- 
nar Jordan curves and arcs is described. The approximation is based on 
the basic notions of intrinsic geometry of metric spaces: on the notion 
of a shortest path in a polygonaly bounded compact set and on the no- 
tion of a geodesic diameter of a polygon. Furthermore, a new linear time 
algorithm for the shortest path problem solution is described, and the ap- 
proximation of the most important characteristic set in image processing 
is shown. 

1 Introduction 

Analysis situs, i.e. topology, is a part of geometry related to investigation of 
invariants of connected compact sets. In two-dimensional case the boundaries of 
connected compact sets represent planar curves. The notion of a curve belongs 
to the hardest problems in the history of mathematics. The modern history is 
related to C. Jordan. A planar Jordan curve is a simple closed curve, that  is 
a curve which belongs to a parametrized path ¢ : [a,b] --~ R 2 with a ¢ b, 
¢(a) = ¢(b), ¢(s) ¢ ¢(t) for all a < s < t < b. Though the class of planar curves 
which possess parametric forms is large, not all planar curves can be expressed 
in this form. Therefore there was an interest to find a more general definition of a 
curve. The first topological definition of a planar curve was given by G. Cantor : 
a planar curve is a connected compact set of points, which does not possess 
internal points [11]. The most general topological definition was introduced by 
P. Urysohn and K. Menger : a curve is an one-dimensional connected compact set, 
whereby a connected compact set S C R n is one-dimensional, if Vs E S 3 ~ = 
~(s)>0:V~<_(~: 

M(s,6) = {x E Rr'ldist(x,s) = ~} MS (1) 

does not possess a connected compact component, which consists of more than 
one point [9, 11, 17]. It has been shown that in the case of planar curves both 
topological definitions are equivalent [11]. A connected compact set S C R 2 is a 
simple closed Urysohn curve if Vs E S 36 = ~(s) > 0 : ga _< a : m(s ,  6) defined 
by (t) possesses exactly two connected compact components, which consist of 
one point. A connected compact set S C R 2 is a simple Urysohn arc, ifVs E S \  
{sl, s2} 3a = 6(s) > 0 : V• < a : M(s,  6) defined by (1) possesses exactly two con- 
nected compact components, which consist of one point, and Vs E {Sl, s2} E S 
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35 = 5(s) > 0 : V5 < 5 : M(s,5) defined by (1) possesses exactly one con- 
nected compact  component, which consists of one point. Not all planar Cantor  
(Urysohn) curves possess a parametric form. A planar Cantor (Urysohn) curve is 
a continuous image of a linear segment iff it is locally connected [9, 11]. The no- 
tion of local connectedness was introduced by S. Mazurkiewicz [8] and H. Hahn 
[5]. A set is locally connected if each point of the set possesses an arbi t rary 
small connected neighborhood. A simple planar Urysohn curve (a simple planar 
Urysohn arc) is locally connected, so that  it is parametrizable [9, 11]. But if a 
curve is parametrizable it does not imply that  the parametr ic  form itself will 
be ever found. W. Sierpinski has shown an example of a planar curve, so called 
Sierpinski carpet,  which has a unique property: it contains all planar curves. To 
each planar Cantor (Urysohn) curve C there exists a subset C '  of the Sierpinski 
carpet which is homeomorph with C [11]. 

The trace of one-dimensional continua which do not possess a parametr ic  
form or if this form is not available is "untouchable".  Untouchable in the sense, 
that  it is not possible to generate points which lie on the trace of such continua. 
How to measure the length of untouchable one-dimensional continua? How to 
represent such continua? These questions are related to the basic problems of 
set theoretical topology, but they are related also to the basic problems of image 
processing. 

2 I n n e r  a n d  O u t e r  J o r d a n  C o n t e n t  

In order to answer above mentioned questions let us consider a regular grid in 
R 2. The grid itself represents a theoretical tool of set--theoretical topology and 
was introduced by C. Jordan and G. Peano by the end of last century in order 
to define measurable sets. More formally, for p = 0, 1,2,...  and for each couple 
(Wl, w~) of integer numbers let 

N~w,,w2)= { x E R  2 Iwi 2 -p < xi <_ ( w i + l ) 2  -p,  i :  1,2}. (2) 

N ~  1,~) represents the topological unit of an orthogonal grid. 

Let M C R 2 be a simply connected compact  set, and let us define 

where I denotes the content of (.), and the sum defining It+ is taken over all 
squares for which N p Cl M ¢ 0 and I~- corresponds to squares for which 

N p M °" ( . . . .  ~) C M is measurable if 

I(M) = i n f  I+(M)=sup  I ~ ( M ) =  lim I~(M),  (4) 
p P - + ~  

where I(M) is the Jordan content of M. M is measurable iff the boundary  of M,  
OM, has measure zero. A set which has measure zero does not possess internal 
points, i.e., it does not possess a square N~w ~,w~) internal to this set. 
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Squares with N e M ° (~1,~) C will be called inner elements of M and squares 

with N~ol,w2 ) rh M ¢ 0 boundary elements of M. Let 

N p p 

where +Me,-Mp, corresponds to those Ngw,,wa ) which belong to I + , / ~ ,  respec- 

tively. Note that  there exists p such that  +Me and -Me are simply connected. 
Further, +Me ( -M e) will be called edge connected if each element of + M e (-  M e) 
shares a common edge with some other element of + M p ( - M p ) .  

The approximation of a smooth planar Jordan curves and arcs is given by 
the following [12, 13] 

T h e o r e m  1: Let 7 : [0, d(7)] --+ R 2 be a smooth Jordan curve with bounded 
length d(7). Let Gp = +Mp \ -M~ be edge connected, p = 0, 1 , . . . .  Let Pp : 
[0,d(pe) ] -+ R 2 denote the shortest Jordan curve in Gp containing -Mp, p = 
0, 1 . . . . .  Then 

lim d(pk) = d(7). 
k 

T h e o r e m  2" Let 7 : [0, d(7)] -+ R 2 be a smooth Jordan arc with bounded length 
d(7). Let 

Gp N p = U (w,,~,2)' 

where Gp corresponds to squares fbr which N p A M -7/= O. Let Gp be edge 

connected, p = 0, 1 , . . . ,  and let gp : [0, d(ge) ] -+ R 2 be a geodesic diameter 
corresponding to Ge, p = O, 1, . . . .  Then 

lim d(ge) = d(z).  
p 

According to these theorems the length of a planar Jordan curve and the 
length of a planar Jordan arc is defined on basis of the basic notions of intrinsic 
geometry of metric spaces [1]: on the notion of the shortest Jordan curve in 
a polygonally bounded compact set and on the notion of a geodesic diameter 
in a polygon. The approximating curves are represented by grid points, i.e., 
by points whose coordinates are integer numbers. The achievements in high 
technology have allowed to produce high resolution monitors, plotters, scanners 
and CCD cameras. All of them are built on the basis of an orthogonal grid. The 
resolution has been increased up to 2 microns at the present linear scanners. The 
achievements in high technology have set up new demands on algorithms and 
their complexity. They have created new scientific directions, such as computer  
aided geometric design, computer graphics and image processing. 
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3 I m p l i c i t  F o r m s  a n d  C h a r a c t e r i s t i c  S e t s  

In the previous section theoretical gridding technique was considered. The prac- 
tical gridding is related to the approximation of planar Jordan curves and ares 
in implicit forms [15]: 

T h e o r e m  3: Let D C R ~ be connected and compact ,  and let f : D C R 2 -+ R 1 
be acontinuously differentiable function: 3x* e D o :Vx ¢ x* e D : f ( x )  < f(x*), 
where f(x*) is the only local max imum of f in D. Let 

L(z) = {x C D If(x) - z = 0} 

be a simple planar Urysohn curve. Let pp : [0, d(pp)] -+ R 2 be the noncon- 
tractible shortest Jordan curve in 

G'p=UN~w,,w2), 

where N~l,w~)are squares, which have the property that  not all of their vertices 

have the same value of sign If(x)  - z = 0], and OG'p f(v), ,r(p) LIp) I(L~p)) = ~ 1  ~'F~2 , C . 

Then 
limd(pp) = d(L), 

where d(L) is the length of n(z). 

Proof. According to the assumption 

L(z) = {x C 1) lf(x') - z = 0} (5) 

is a simple planar Urysohn curve. Any simple planar Urysohn curve is locally 
connected, so that  it is parametrizable, and it is homeomorph with the unit 
circle. Because f is continuously differentiable L(z) is rectifiable. 

Let us consider the orthogonal grid defined by (2). Because f : R ~ --+ R 1 is 
continuously differentiable, there exists p such that  Gp consists of squares, which 
have the property that  L(z) enters and leaves a square exactly once. According 
to the definition G'p consists of squares, which have the property that  not all 
of their vertices have the same value of sign [f(x) - z -- 0]. But  for any grid 
points resolution there might exist squares, which were entered and left by the 

G' trace of L(z) through the same edge. These squares do not belong to p and 
can not be identified. Let pp : [0, dp] --+ R 2 denote the shortest Jordan curve in 

Gp, encircling L~ p) Because f : R 2 --+ R ~ is continuously differentiable, there 
exists p such that  the squares which were entered and left by the trace of L(z) 
through the same edge, share exactly one edge with a square belonging to Gp. 

t 

In this situation the shortest polygonal path in Gp can not pass through such 
squares, otherwise it can be shortened. According to this the shortest polygonal 
path  in G'p is identical to the shortest polygonal path  in Gp, so that  Theorem 1 
applies. 

A similar theorem holds for length approximation of smooth planar Jordan 
arcs in implicit forms [15]. 



194 

Comment: The consequence of Theorem 3 is, that  if the inner content elements 
are given, for the approximation of the boundary it is sufficient to border the 
inner content elements by elements which share one edge or one vertex with an 
inner content element, and in this set to find the shortest Jordan curve. 

Let f : D C R 2 -+ R 1 be twice continuously differentiable. Surface analysis 
of f is related to approximation and representation of the following planar curves 
and arcs in implicit forms 

L(z) = {x E D I f(x) - z = 0}, (6) 

det H = 0, for (g, g) # 0, (7) 

where H is the Hessian matr ix  of f and g is the gradient vector of f .  
(6) represents equiconstant level sets of f ,  and enables to visualize f .  (7) repre- 

sents the boundary of convexity (pseudoconvexity), or concavity (pseudoconcav- 
ity). Let y e R 2 be a vector such that  ][YH -- 1. Then cOf/Oy = (g,y), where 
g is the gradient vector of f and cg~f/Oy2 - (Hy, y), where H is the Hessian 
mat r ix  of f [10]. If  y = gN, where gN is the normalized gradient vector, then 
(g, Y) = [[gl[][Y[[ cos(g, y) = [[g[[. Suppose that  for a given f :  D C R 2 -+ R 1 there 
is e > 0, such that  the set 

L* = { x E D t  max (g(x+ay) ,y )=(g(x) ,y )}  
-c<c~<e 

is nonempty. The first directional derivative possesses its max imum where the 
second directional derivative vanishes, which corresponds to the set 

L* = { x e  D C R 2] (Hy, y)=O}. 

Because liYlt = 1, (gy,  y) = 0 if and only i f d e t H  = 0. f : R 2 -+ R 1 is 
convex on a convex set D C R 2 if and only if the Hessian mat r ix  is positive 
semidefinite. Moreover, f is strictly convex on D if H is positive definite [10]. 
A 2x2 Hessian matr ix  is positive definite if 02f/Ox~ > 0 and det H > 0 and is 
negative definite if c92f/Ox~ < 0 and det H > 0. It means that  the boundary 
of a characteristic set on which f is convex or concave, respectively, is related 
to the set L* = {x E D C R 2 ] det H = 0}. In the case, the boundary of a 
compact  set, where det H = 0 is not convex, we speak about  pseudoconvexity, 
pseudoconcavity, respectively. 

Comment: In image processing, the set where the norm of the gradient of f : 
R 2 --~ R 1 is locally maximal,  is related to the set where the Laplace operator 
vanishes [7]. The Laplace operator is the trace of the Hessian matr ix  of f ,  and 
is by no way related to the set where the norm of the gradient vector is locally 
maximal.  The  set where the norm of the gradient vector is locally maximal  is 
related to the set where detH = 0, which is well known in the theory of convexity, 
and this set is the most important  set according to which a segmentation of 
f : R 2 --~ R 1 can be performed [4, 10, 18, 19]. In some cases this set represents 
an equiconstant level set of f .  
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4 Algorithm 
Let G = PL~ \ P~I, where PLI, PL~ are polygons, PL, C P~.  The vertices of 
the shortest polygonal path in G have the following property [14]: 

T h e o r e m  4: Let PL,, PLy, be polygons: PL1 C P~,  C~PL1 -=- L1, C~PL~ = L~. A 
vertex of L1, L~., is a vertex of the shortest polygonal curve in G : PL~ \ P~, 
encircling L1 iff there exists a linear segment S passing through this vertex, 
endpoints of which belong to L2, L1, respectively. 

The linear segments related to Theorem 4 are called relative support lines, 
and represent a generalization of the notion of a support line introduced by G. 
Minkowski. The shortest polygonal path itself has the property [14]: 

T h e o r e m  5: Let po,pl,...p,~-~, Po =- P,~-~ be a polygonal curve in G = 
PLy\ P~I, PLI C P~,  OPL~ = L~, OPL~ = L2, encircling L~ in the positive sense. 
Let P0 be a vertex of the shortest polygonal curve in G. Then Po,P~,... ,Pr~-~ is 
a shortest polygonal curve in G encircling L~ iff P,-~+~(moa ,~) points on L~, L~ 
ifPi+~(mod n) G Ll,Pi+l(mod n) G L~, respectively. 

Almost all algorithms for the shortest path problem solution are based on 
partition of G [3, 6]. The most popular partition of G is the triangulation of 
G [2]. According to Theorem 4 the pseudomonotone polygon partition of G is 
related only to extremat vertices of L~  L~, respectively, which is the smallest 
subset of all vertices of G according to which a partition of G can be performed. 

The algorithm for the shortest path problem solution in G, related to image 
processing problems, is shown on Fig. 1 and described as follows [14]: 

A l g o r i t h m  

S tep  (1): :Find all extremal convex vertices of PLI and all extremal concave 
vertices of PLy. 
Step  (2): Find all x-axis parallel pseudodiagonals of G related to extremal con- 
vex vertices of PL, and extremal concave vertices of PLy. 
Step  (3): Eliminate M1 monotone polygons whose boundaries contain only ver- 
tices of LI, L2, respectively; and denote the resulting polygonally bounded set 
byG'. 
Step  (4): Find a shortest path in each pseudomonotone polygon between two 
extremal vertices of G'. 

I I I  I ~ 
I I I I P.~L¢',i I 

I I I I F,-'X~'-'Ag.%¢I".4 

I Y~I:~Z':'I"*4/*"J I I I I [r:'[*~'}:'Z4~'~Y~Z~J i 

I~:. ~,I ! 
I I ~:'~':~'~"~'~>:~':~:'~" "~'~ ~ 

l.IJ_l 

Fig. 1. 
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Triangulation and pseudomonotone polygon partition of G are based on 
trapezoidation, which can be performed in linear time [2]. In view of Theorem 5, 
Step (4) has linear time complexity which implies that Algorithm has also linear 
time complexity. 

Comment: In image processing trapezoidation does not require a special proce- 
dure, because it is a part of the connectivity analysis. In this case implicit forms 
are related to f : R ~ --4 R ~ which is given by discrete function values. 

Geodesic diameter calculation has O(n log n) time complexity, where n is 
the number of the polygon [16]. 

5 Examples 

Let us consider the following (see Fig. 2) 

1 1 E x a m p l e :  f(x, y) = exp ( -gg(~  - 2) ~ - ~d(x - 2)(y - 2) - 5g(Y ~ - 2) 2) - 
1 1 - ~ ( y +  ( - ~ ( x ÷ 4 )  ~ - - 

~ ~ .;. ~ ~ i ~ i i ~  ~i~.....i~ x::.%'...,~.~: ======================== 
::~::::'~ s:'::'~ x~:~ ~'N ~ ! l N i ~ ~ i  ii!!!ii ! :ff~'::::::::::':'!il 

.......................................... i .......................................................... 
\ 

Fig. 2. 
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Fig. 2 shows in the first rows the function values of  f and the corresponding 
equiconstant  level sets of  f .  In the second rows are shown sets where Luplacian 
opera tor  vanishes and det H _~ 0, and in the third rows are shown sets where 
the second partial derivative cgf/Ox 2 is positive or negative, and sets where f is 
concave (pseudoconcave) or convex (pseudoeonvex). 
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