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Abstract. With a raster Digital Elevation Model, it is usual to associate a di- 
rected graph. Firstly, the problem of defining cost functions for such digraphs 
is discussed in a general and formal framework, and a particularly simple and 
natural way to tackle this problem is proposed. Secondly, the notion of profit- 
ability, which is commonly linked with the notion of cost, is put forward. 
Thus, profitability measures are introduced. In particular, the profitability of a 
point according to a region is defined. Finally, it is shown that profitability 
measures and cost functions provide complementary information. 
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1 Introduction 

With a raster DEM, it is usual to associate a digraph. To each path of this digraph a 
cost may be attached. Typically, a DEM represents a part of the surface of the earth. 
A path of the associated digraph then corresponds to a path on the surface. And the 
cost of the digraph path may correspond to the (euclidean) length of the surface path. 
It may also correspond to a time or a gasoline consumption. In this paper, only 
digraphs associated with raster DEMs are considered. Firstly, the problem of defi- 
ning cost functions for these graphs is discussed in a general and formal framework. 
A particularly simple and natural way to tackle this problem is proposed in section 
§2. The presented approach develops from euclidean to discrete geometry. Thus, cost 
functions defined on paths of the affine euclidean space are introduced. As shown in 
§4, cost functions of graphs are to space cost functions, as a raster DEM is to the 
represented surface. Secondly, the notion of profitability is put forward. It is in the 
habit of saying that such a place is near and of easy access, or near but inaccessible, 
distant but quite accessible, etc. Distance and accessibility can thereby be comple- 
mentary criteria for the research of particular spots, for instance within the frame- 
work of regional development. Profitability is to cost as accessibility is to distance. 
Profitability measures on paths of the affine euclidean space are introduced in §3. As 
shown in §4, they enable to define on a DEM the profitability of a point according to 
a region. By way of conclusion, §5, experimental results illustrate how profitability 
measures and cost functions provide complementary information. Note that N is the 
set of natural numbers, Z is the one of relative numbers and II the real numbers one. 
a..b, where a and b are relative numbers, is { n ~ l  / a<n<b} and R is Ru{-oo,+oo}. 
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Fig. 1. Linear paths of C. 
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Fig. 2. Generating a hill-climbing energetic function. 
The hill-climber feels mostly at ease on a 15 ° slope. 

He refuses slopes up over 60 ° and slopes down over 45 ° . 

2 Space Cost Functions 

2.1 Terminology and Notations 

The space is a directed affine euclidean space referred to the direct orthonormal 
frame (O,-~ ,~ , -~) .  The plane is the affine subspace referred to the direct frame 

---) -7 (O, i , j ). In this section §2, a path is an oriented geometrical arc of space. The 
length of a path is its euclidean length. A linear path is a path of space without 
double point and whose support is a segment. PIP2 ,  where P1 and P2 are two points 
of space, denotes the linear path joining P1 to Pz. Let n be an integer such that n>3, 
(Pi ) ie  l..n a sequence of n points of space. P~ ie l..n denotes the path obtained by juxtapo- 
sition of the arcs P~ ie l..n-1 and Pn_lPn . Its length is Zie l..n-I PiPi+l. Now consider the 
set of the paths which benefit by the recurrent notation that has been introduced. C 
will represent the part of this set including following paths only: ~i i~ l.., such that for 
any element i of 1..n-1 the orthogonal projections of Pi and Pi+l onto the plane are 
distinct. From now on, the term path will be applied to the elements of C only. Let 
PQ be a path of C (more precisely, "let P and Q be two points of space such that: 
b"Q~ C"). Let f f  be the orthogonal projection of-V~ onto the plane ( ~ ,  ~ )  and let f f  
be the unit vectorS/ lu~l .  Defined relatively to the direct vector plane ( f f  ,-~): Z ~  
is the measure of the oriented angle betweenff and--~,  x ~  and y ~  are the 
coordinates of PQ (Fig.l). Z~s]-rd2,___~2[ and x ~ e  I!+ and y ~ / x ~  = t a n ( Z ~ ) .  
ZVQ measures the angle between the PQ and the plane. It is the slope of the path. 

2.2 Slope-Dependent Cost Functions 

Definition 1. A space cost function is a map C from C into R+ satisfying [A1]: 
[A1] Let Pi i~l"'n be a path of C: C(~-i iel' 'n) -- Y'i~l..n-I C(PiPi+l ). 
Given tx a path of C. C(g) is the cost of g. If C(g) is finite, I.t is potentially profitable. 

Any path of C hence admits a cost (C is a map) and may absolutely not be profitable 
(a cost may be infinite). Moreover, travelling is always costly (a cost is a strictly 
positive value). Note that certain problems of optimal paths call for replacing the 
sum calculation in [A1] by the calculation of the minimum [Gon84] or of the average 
[Ahu93], or even of the product [Pri94]. And the matter may be then to research max- 
cost paths and no more min-cost paths. The previous definition is however adapted to 
the majority of the practically encountered problems. 
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Definition 2. A space cost function C is said to be slope-dependent iff it satisfies [A2]: 
[A2] Let P---Q and R"--S be two paths of C: [PQ=RS and Z ~  =ZR-S] ~ C(P'-Q)=C(R-S). 

The slope and length of a linear path then determine its cost. In other words, the 
exact localization of the path in space is not important: space is considered homoge- 
neous. In practice, it is far from being always the case. For instance, a 4x4 vehicle 
can travel on road or on uneven ground, on dry or sodden soil, through a thick or scat- 
tered vegetation, along or against the wind direction, etc. ([Mit91], [Zha93], [Kre94], 
[Dub95]...). Slope-dependent cost functions are then not adapted to cost modelization 
(supposing that the available data do not only consist in topographical ones!). However 
that may be, these are fundamental functions because the cost function associated with 
a non-homogeneous space can be defined from a parametrized family of slope- 
dependent functions (one corresponding for instance to the travel on tarred road, the 
other on stony path, etc.). Moreover, the profitability measures (see §3) need to be 
based on such cost functions, representing ideal spaces. Proposition 1 expresses that 
the cost of a linear path of given slope is proportional to the length of this path. 

Proposition 1. Let C be a slope-dependent cost function, P-Q and R-"S two paths of C 
and k a strictly positive real number: [PQ=k.RS and Z - ~ = Z ~ ]  ~ C(P"Q)=k.C(R-S) 

2.3 Generator of a Space Cost Function 

Definition 3. Let 0 be an clement of ] - ~ 2 , ~ 2 [  and let C be a slope-dependent space 
cost function. C is said to be minimal at 0 iff it satisfies the following properties: 
[A3] Let P--Q and R--S be two paths of C: (PQ = RS and Z ~  = 0) ~ C(P-Q) > C(R-S) 
[A4] Let R-'-S be apath of C: [RS = 1 and Z ~  =0]  ~ C(R-S)= 1 

From [A3], it derives that among all linear paths with length 1, those with slope 0 
have the lowest cost. [A4] sets this minimal cost to 1. The only real contribution of 
[A4] is to guarantee the existence of potentially profitable paths. Remark that the 
map from C into ~ which associates each path with its length is minimal at any 
element of ]-rd2,~2[. 

Proposition 2. ~ Let 0 be an element of ]-~2,rd2[ and let C be a slope-dependent 
space cost function. If C is minimal at 0, there exists a map ~ from ]-rr/2,rd2[ into 
[0,1] such that for any p'--Q of C: C(P-'Q) = x ~  / [ c o s ( Z ~ ) . 8 ( Z ~ ) ] .  This map ~5 is 
unique and takes the value 1 at 0. ~ Let 0 be an element of ]-rd2,~2[ and let 5 be a 
map from ]-rd2,rd2[ into [0,1] taking the value 1 at 0. There exists a space cost 
function C such that for any path p---Q of e: C(P-Q) = x ~  / [ c o s ( Z ~ ) . ~ ( Z ~ ) ] .  This 
cost function is unique, slope-dependent and minimal at 0. 

Definition 4. Let 0 be an element of ]-rd2,rd2[. According to proposition 2, the datum of a 
space cost function, slope-dependent and minimal at 0, is equivalent to the one of a 
map 8 from ]-rd2,/t/2[ into [0,1] taking the value 1 at 0:5 is the cost function generator. 

5(c~), for any element ct of ]-rd2,rd2[, is the distance a cost unit enables to cover on a 
linear path of slope ct. The interest of expressing C in terms of 8 lies in this simple 
interpretation. From a practical point of view, defining a cost function by means of 
its generator is particularly convenient and natural (Fig.2). 
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2.4 A Typical Family of Space Cost Functions 

Definition 5. Let 0 be an element of ] -~2,~2[  and C a space cost function, slope-depen- 
dent and minimal at 0. C is called a hill-climbing energetic function iff it satisfies [A5]: 
[A5] Let P--Q and RS be two paths of C: 

[ P Q = R S  and ( Z ~  <Z~-g <0  or 0 _ < X ~  </b-~)]  ~ C(P--Q)>C(RS) 

A hill-climber gets less tired on a linear path of slope 0. The further from 0 the slope 
is (i.e. the more abrupt the slope up or the steeper the slope down), the more energy 
is consumed. The idea is to penalize abrupt ways (Fig.2). The map from C into fi~_ 
which associates each path with its length is a hill-climbing energetic function. 

3 Space Profitability Measures 

In this section, profitability measures on paths of the space are introduced. The 
calculation of the profitability of a path joining P to Q is based on the estimate, 
drawn from a priori knowledge, of the travel cost from P to Q. The knowledge at 
stake are voluntarily limited: for instance to the position of the orthogonal projec- 
tions of P and Q onto the plane, or to the position of P and Q in space, the length of 
the min-cost path from P to Q, etc. Each case leads to a particular profitability 
measure. As illustrations, two measures are briefly described here. C denotes a space 
cost function, Dp and DQ the lines directed by-~and running through P and Q, P@Q 
the set of paths belonging to C and joining P to Q, De @ DQ the set of paths belonging 
to C and joining one point of Dp to one point of OQ: Dp@DQ = U P'@Q' 

(P',Q') e Dp XDQ 

3.1 The 2D-Profitability Measure 

Definition 6. The 2D-profitability measure is a function A zD from C into [0,1]. Let ~t 
be a path of C joining a point P to a point Q. A 2D is defined at IX iff infve I)~ @ I)Q C(v) 
is finite (it is especially the case when ~t is potentially profitable). It is then set that: 
AZD(l -t) = [infw Dp @ 9Q C(V)] / C(IX). A2D(IX) is the 2D-profitability of tx (relatively to C). 

Forecasting to spend infve Dp @ 1~ C(v) to join Q from P, means at the same time to be 
economical, pragmatic, very optimistic and (really) misinformed. As if a hill-climber, in 
order to assess the distance he still has to cover, would draw a segment on a rudi- 
mentary touristic map and consider the relief to be certainly as he hopes to be. So is 
A 2D. And its judgement gets more severe: if somebody is advised to follow ~ to get 
from P to Q, the measure will probably assess that, comparing C(~t) with the cost initially 
forecast, the suggestion was not the best (and even dishonest). In the case where C is 
the map from C into ~ .  which associates each path with its length, the forecast cost 
is the distance between lines De and DQ, i.e. x ~ .  Consequently, measure A 2D is a map 
and value A2D(~t) is simply x~/9~ - -  where 3. denotes the length of IX. The following 
proposition gives a practical means to characterize A 2D in a more general case. 

Proposition 3. If the cost function C is generated by a continuous map 6, the profitability 
measure A 2D is an everywhere defined measure. Moreover, for any couple (P,Q) of points: 
[P-Q ~ C ~ inf C(v) = ] max (~(oO.cos(oO) ] and [P-Q ~ C ==> irlf C(v)=O] 

v ~Dp@DQ X ~  t~]-~2,rd2[ v~[}p@0Q 
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3.2 The 3D-Profitability Measure 

Definition 7. The 3D-profitability measure is a function A 3D from C into [0,1]. Let Ix 
be a path of C joining a point P to a point Q. A 3D is defined at kt iff infvep@Q C(v) 
is finite (it is especially the case when Ix is potentially profitable). It is then set that: 
A3D(I.t)=[infve p@Q C(v)] / C(Ix). A3D(Ix) is the 3D-profitability of Ix (relatively to C). 

Forecasting to spend infwp@Q C(v) to join Q from P, means at the same time to be 
economical, pragmatic, very optimistic and (rather) misinformed. As if a motorist, in 
order to assess the distance he still has to cover, would scan an ordnance map and 
consider that tunnels have certainly been excavated and bridges erected. A 3D sticks 
more to realities than A 2D. Its judgement gets less severe. If C associates each path 
with its length, then the forecast cost is PQ. In the general case, infvePeQ C(v) may 
be difficult to calculate. This point will not be tackled here. 

4 Back to the Discrete Space  

After a quick reminder about cost functions of graphs and optimal paths, in §4.1, it 
is shown in §4.2 how to associate a weighted digraph with a raster DEM and a space 
cost function. Moreover, in §4.3, profitability measures are defined on the graph vertices. 

4.1 Cost Functions of Graphs and Optimal Paths 

Let (X,U,V) be any weighted and directed graph. Assume that V is a map from U 
into R~. The function from the set of graph paths into R~-, which associates each 
path (Ui)ie 1..n with the value Zic l..nV(ui), is the cost function of (X,U,V). Y.ie 1..nV(ui) 
is the cost of (Ui)ie l..n. NOW, let p and q be two vertices and let IX be a path from p to 
q. If the cost of any path from p to q is greater than or equal to the cost of tx then Ix is 
an optimal path ~ or a rain-cost path - -  from p to q. The cost of ~ is the min-cost to 
reach q from p. Finally, let A be the function from X 2 into R~- which associates each 
couple (p,q) with the min-cost to reach q from p, let Y be a non-empty subset of X 
and let Av be the function from X into R+ defined by: VpeX, Av(p) = rain qeV A(q,p). 
A(q,p) is the rain-cost to reach p from q. A path from q to p is optimal iff its cost is A(q,p). 
Av(p) is the min-cost to reach p from Y. Av is the min-costfunction according to Y. 

4.2 Weighted Digraphs, Raster DEMs and Space Cost Functions 

With a numerical image, it is usual to associate the directed graph whose vertices are 
the image pixels and the arcs are, generally, the couples of 8-adjacent vertices. Let 
hence I be a raster DEM and let (X,U) be the digraph associated with I. The pixels of 
I are assimilated to points of the discrete space Z 2. This space itself is embedded into 
the affine euclidean xy-plane. The choice of U incites to provide Z 2 with a discrete 
distance, and more precisely with a ponderate distance d defined by a 3x3 mask. In 
practice, in order to approach the euclidean distance, the chamfer distance 3-4 is 
generally recommended [Bor86]. Now, it is considered that I is a raster model of a 
surface of the affine euclidean space. To any pixel of I consequently corresponds a 
point of this surface. Pixel and associated point will be named by the same letter: 
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small for the first and capital for the second. To pixel p of I thus corresponds a point 
P of the affine space: p is the orthogonal projection of P onto the xy-plane and the z- 
coordinate of P is the gray-level of p in I (up to a scale factor). Finally, let C be a 
space cost function, as defined in §2. C enables to weight the digraph (X,U) by 
means of the map V from U into R~- which associates each arc (p,q) with C(PQ) (we 
will hark back to this point in §4.3). Consider a path kt of the weighted digraph 
(X,U,V). It can be represented by a sequence (Pi)iel..n of vertices such that: 
Vie l . .n -1 ,  (pi,Pi+l)EU. The cost of g is the value Y'.iel..n-lV(pi,Pi+l), or also 
2i~ 1 . . n - l C ( ~ ) ,  i.e. C(~'i iel"n). It then appears natural that the cost function of 
the graph, as well as the space cost function, should be denoted C. 

4.3 Profitability of  a Point According to a Region 

Let I be a raster DEM, C a space cost function and (X,U,V) the graph associated 
with (I,C). Consider a non-empty subset Y of X. Here will be defined a function from 
X into [0,1] called profitability measure according to Y. The notion of space profit- 
ability measure, developed in §3, will of course contribute to this end. Within the 
framework of this paper, it will exclusively be referred to measure A 2D . Moreover, it 
will from now on be supposed that C is generated by a continuous map & Consider, 
for a given vertex p of X-Y,  the expression: min qeY [infveDQ @ Dp C(v)]. As a direct 
extension of §3.1, it appears natural to interpret this value as the cost forecasted by 
A~, D to reach p from Y - -  where A~ D denotes the profitability measure we want to 
define. It also appears natural to welcome p in the definition domain of A~c D iff this 
cost is finite. In this case: A~,D(p) = (minqey [infwDo@ DpC(v)]) / Av(p). The path 
that will be "really taken" is indeed the optimal path, whose cost is Av(p). Now, 
according to proposition 3: infve D~ @ Dp C(v) = qp / max c~e]_~/2,~/2[ (8((~).cos(o0). 
Where qp is obviously the euclidean distance between q and p. Consequently: 

min qe v [ in fve DQ @ I)p C(v ) ]  = (min qe v qP) / max (ze ]-rff2,rt/2[ (8((z).cos(oO) 

The discrete transcription of the numerator is rain qev d(q,p) or also dr(p) - -  by 
denoting dv the distance image according to Y (remember that d is a chamfer 
distance, see §4.2). For obvious practical reasons, it is tempting to adopt it. But, to 
this end, the discrete transcription of the cost calculation must be operated. In §4.2, 
we had weighted each arc (p,q) by C(PQ), i.e., according to proposition 2, by: 
C(P'-Q) = x ~  / [ c o s ( Z ~ ) . ~ ( . / ~ ) ] .  Coming back to the definition of V, we set: 

V (p,q) e U, V(p,q) = d(p,q) I [ c o s ( Z ~ ) . 5 ( Z ~ ) ]  

Remark that C(p,q) - -  where C denotes the cost function of the digraph - -  is not 
exactly equal to C(PQ ) any more - -  where C now denotes the space cost function. 

Definition 8. The 2D-profitability measure A 9 ° according to Y - -  or 2D-profitability 
image according to Y - -  is the map from X into [0,1] which takes the value 
(dv(p) / Ay(p)) / maxcte]-rc/2,rc/2[ (5(c0.cos(~)) at each vertex p of X - Y  and takes 
the value 1 at each vertex of Y. A ~,D (p) is the 2D-profitability ofp  according to Y. 

If  C is the hill-climbing energetic function which associates each path of C with its 
euclidean length, then A ~D is defined on X by: Vpe X, A ~D (p) = dv(p) / Av(p). 
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Gaussian Hill. Costs and profitabilities are according to the upper-left corner. 
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Mont Ventoux (France). Covered surface: 100 km 2. Maximal difference in level: 600 m. 
Costs and profitabilities are according to a point situated amid the upper part of the image. 
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over-view side-view side-view over-view over-view side-view 

Fig. 3, 2D-profitability measures. Some characteristics. 

The represented paths are the optimal paths from P to Q. In the first case (on the left), point Q 
may be assessed totally profitable according to {P}. Depending on 5, Q may be assessed more 
profitable in the second case than in the third one, even if the PQ distances are identical and 

also the lengths of the optimal paths. 

5 Experimental Results and Conclusion 

In this paper, the problem of defining cost functions for digraphs associated with 
raster DEMs has been discussed in a general and formal framework. A particularly 
simple and natural way to tackle this problem has been proposed. Moreover, the 
notion of profitability has been put forward and profitability measures have been 
defined. The calculation of profitabilities is based on the datum of a space cost 
function - -  representing an ideal homogeneous space - -  and consists in drawing 
estimates from a priori knowledge of travel costs. Profitability measures and cost 
functions provide useful and complementary information. The results of two experi- 
ments are given here in order to illustrate this point. The min-cost images Av have 
been computed by means of the well-known Bellman's algorithm [Be158] and the 
distance images dy by means of a very efficient algorithm [Ros66] [Bor84] which 
needs exactly two passes over the data set. High elevations, profitabilities and costs 
are represented in light gray. All images are 256x256. 
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