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Abs t rac t .  We present a novel architecture for region-based segmen- 
tation of stationary and quasi-stationary statistics, which is designed 
to function correctly under the widest range of conditions. It is robust 
to the extremes of region topology and connectivity, and automatically 
maintains region boundaries sampled to the minimum scale at which the 
region configuration can be determined with statistical confidence. The 
algorithm is deterministic, and when operating on images from within 
its domain of validity, contains no adjustable parameters. In contrast to 
most other techniques directed at the same problem, the progress of the 
algorithm cannot be described by the optimisation of a global energy 
criterion. 
We describe a specific implementation using Gaussian stationary statis- 
tics, and present test results which demonstrate superior performance to 
a collection of other systems. 

1 I n t r o d u c t i o n  

Many areas of computer vision could benefit from the replacement of its long- 
standing preference for local edge and corner detectors, based on linear cor- 
relation and convolution operations by more global methods, making use of 
region-based information. However, current region-based schemes suffer from 
drawbacks that make them unattractive for general use. These include: 

I n f l e x i b i l i t y  : these schemes are often tied to a particular region modelling 
framework (MRF, piecewise polynomial, wavelet, etc.), which makes it diffi- 
cult to adapt them for general use, or as new models arise. Schemes are also 
frequently [7, 3, 6] restricted to grayscale images. 

I n e / f i e i e n e y  : either through the performance of unnecessary extensive search 
through small scales of the image, or due to non-deterministic elements of 
the optimisation [1], region-based schemes traditionally take many orders of 
magnitude longer to run than localised feature detectors. 

N o n - r e g u l a r i s a t i o n  : arguably the greatest challenge facing region optimisa- 
tion is the regularisation of parameters,  e.g. the boundaries, size and num- 
ber of regions. Current schemes have difficulty accommodating regions with 
greatly varying size [12, 15], and often include explicit penalties for increas- 
ing the length of boundaries (a 'smoothing'  regularisation) or increasing the 
number of regions. These introduce arbitrary parameters without supplying 
satisfactory algorithms to compute them for different situations. 
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The scheme we present here is flexible, efficient, and intrinsically regularises the 
necessary parameters in a dynamic manner during the course of optimisation; it 
thus requires no manual adjustments. 

1.1 M o t i v a t i o n  

A popular region-based segmentation paradigm (the "snakes/bMloons" frame- 
work put forward in [9, 5], and generalised in [15]) idealises the image as a 
continuous field, and region boundaries as differentiable contours; optimisation 
then proceeds by steepest descent deformation of the contours with respect to 
some global energy criterion. 

Another paradigm (spli t -and-merge/l ink,  presented in [11, 2]) subdivides 
the image into discrete nested (square) cells, which are then recursively con- 
nected/split  apart  according to some homogeneity predicate [14]. 

The current scheme avoids the problems associated with these systems. Con- 
tour frameworks suffer from excessive locality (the image is only examined in a 
curve neighbourhood), troublesome discretisation - image 'forces' often involve 
curvature and gradient terms that  are sensitive to quantisation artifacts - and 
topological difficulties which all restrict the scope of deformations. 

On the other hand, splitting frameworks can overlook important  features, 
since they proceed through a fixed number of recursive passes over the image. 

Our framework may either be viewed as an explicit discretisation of a contour-  
based system, or as an iterative enhancement to region splitting methods - it 
shares in the good properties of both. 

2 T h e o r e t i c a l  F r a m e w o r k  

We adpot a general modelling framework - the image is completely covered by 
a collection of non-intersecting connected regions {Ri}, which contain data  D/ 
with some size measure Ni = Ni (Di). The region contents are drawn from a (Di), 
one of a collection of models indexed by parameter  vector a .  

We assume the existence of an estimator E(Di) which determines, given 
a set of data,  a 'best '  model with vector c~i from the collection. We place a 
commonplace restriction on these models: 

Items of data  from the modelled regions are viewed as independent, identi- 
cally distributed (i.i.d.) random variables; i.e. the regions are those with some 
form of stationary statistics. This assumption is required at a point in the de- 
velopment mentioned in Section 2.3. 

2.1 S t a t i s t i c a l  F r a m e w o r k  

By design, the system proceeds by deterministic, minimal statistically significant 
discrete perturbations of the configuration, which at all times conforms with the 
description given above. 

Which perturbations are, or are not, statistically significant, will vary during 
the course of the algorithm, and different sizes of perturbation will be appropriate 
according to the contents of the regions. 
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We will define this size in terms of a function 5(Di, Dj), the discriminabilitg 
of two sets of region contents. 

The algorithm will be deemed to have converged when 

1. No significant perturbations of a boundary between two regions will improve 
its discriminability. 

2. Each boundary considered as a whole is significant. 

We require that  (i) 5 has the dimensions of a log probability, and (ii) for fixed 
N1, as N2 --+ 0% 3 -+/3, some ,3 ¢ 0, - o c .  This guides us to form 5 using the 
hypothesis of homogeneity of two neighbouring regions; i.e. H~ : (x(D12) = &12, 
against the alternative hypothesis H~ : a(D~)  = &l and a (D2)  = &~, where 
R12 with data  D12 is the region formed by considering R1 and R_~ one region. 
We choose 5 to be the log level of confidence at which the null hypothesis H~, of 
homogeneity would be rejected, if in fact we were required to make the decision. 

This choice now constrains our estimators E to be the maximum likelihood 
estimators (m.l.e.s) of the parameters under the required hypothesis. 

We now present the derivation of 5 for a simple case; our parameters will be 
the means #i and standard deviations 0.i of univariate Gaussians G(x;pi ,  o'i), 
and so &i = (mi,si) ,  where mi and si are the standard (biased) maximum 
likelihood estimates of the parameters.  

2.2 U n i v a r i a t e  G a u s s i a n s  

The log likelihood of data  of size N drawn from a population G(p, or) under a 
hypothesis specifying tt = rn, o" = s is 

s2 (~ - rn) 2) 
N log(27r~r2) 0 .2 log (A(tt, cq rn, s)) = - ~ -  ~ff (1) 

Consider two such regions, whose parameters have m.l.e.s mi, Si under the in- 
homogeneous hypothesis H~, and ml = rn2 = m~, sl = s2 = s~ under the 
homogeneity hypothesis Ha; the forms of these standard estimators are not pre- 
sented here. 

The likelihood ratio test (LRT) statistic for testing Ha against Hw is obtained 
by summing three terms of the form of equation (1); it is given by 

- log = N log(s y - N ,  log d - log d -  (2) 

This quantity arises through the testing of a hypothesis allowing 2 degrees 
of freedom (the parameters rn~ and s~) as against a null hypothesis with 4. 
Thus, this statistic has an asymptotic (as both N1 and N2 become large) X 2 
distribution with 2 degrees of freedom. The reader is referred to Silvey [13], p. 
114 for details of the argument,  which is general for all tests of this sort. 

Although formally this result is only applicable asymptotically, empirically 
it is highly reliable in this case for extremely small sample sizes. 
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Thus, the discriminability 5 is defined as 

5(Di, Dj) = log I - J0 ,~2(2, x) dx (3) 

i.e. the log level of confidence under which the data  Di, Dj would give rise 
to the rejection of H~. 

A generalised derivation for multivariate Gaussians is found in [10], p. 140. 

2.3 Optimisation Framework 

A border Bij between regions Ri and Rj is the set of points neighbouring both 
regions. Neighbouring a border Bij are two sets Lij and Lji of border elements; 
these are (not necessarily non-overlapping) subregions of Ri and Rj, which are 
considered suitable candidates for exchange with the opposite region. 

The minimum size of subregion below which the membership of R~ or Rj 
cannot significantly be determined is N*(Di, Dj), the magic number for the 
border Bij; members of Lij must be larger than this. 

To determine N ~, we consider subregions S g of Rj with size N, assumed to 
give rise to the same model vector o~j (not true in general, depending on the 
form of E - this is where we need the uniformity assumption mentioned in 2). 

N*(Dj, Di) is defined to be the largest N such that  5(D~ ~, Di) > tc where tc 
is a level of confidence to be defined later. 

3 P r o g r e s s  o f  O p t i m i s a t i o n  

In overview, the optimisation procedure has a three-phase structure: 

Phase A - S e e d i n g  - the region configuration must be initialised in a suitable 
form, aiding efficiency and accuracy of convergence. 

Phase B - C r e e p i n g  - estimated regions are repeatedly deformed until no 
further significant deformation is possible. 

Phase C - M e r g i n g  - regions with weak (to be defined) boundaries are merged 
with the regions on the other side of the weak boundary. 

Phase A is executed once, and alternating passes of Phases B and C are 
applied until both produce no further change. 

3.1 Phase A 

Phase A determines regions of maximum local discriminability from a selection 
of neighbours, where the maximum is taken through all scales of the image. This 
aims at allocating (a) at least one seed region to each actual image region (b) 
minimising seed regions straddling actual region boundaries. 

The current system is rather generous in seeding regions, as figure l(b), a 
seeding of image l(a),  shows. However, the remaining phases are quite robust; 
speed could be improved by seeding fewer, more well-positioned regions. 

Each seed is converted into a region Ri, and the border configurations Lij 
described in section 2.3 are initialised. 
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(a) (b) (c) (d) 

Fig. 1. (a) Original image; the regions differ in means by 15 units, and have common 
deviation 9. (b) Configuration after seeding; (c) After one phase of creeping; (d) After 
one phase of merging. The white boundaries represent regions R,, black squares are 
border elements L,j. 

3.2 P h a s e  B 

Phase B applies operations analagous to the region deformation procedures of 
region growing/snake/balloon systems - -  in our system this procedure further 
generalises to the spl i t -and-merge/ l ink systems; we can decompose the defor- 
mation step as follows: 

Choose a border element L~ from some border B,j 
Form new regions R~ and R~3 by exchanging it with Rj 
Evaluate the discriminability 3(D:, Dj) 
If it has increased, return L~ to R,; else leave with Rj. 

Thus, although at a high level, the regions appear to be bounded by deformable 
contours, at a low level, the system is proceeding by deterministic spl i t -and 
merge. Some connectivitiy issues arise here, which there is not space to treat; 
for more details, see [4]. 

Figure l(c) shows the configuration after Phase B is applied to figure l(b)  

3.3 P h a s e  C 

Region creeping and region merging proceed from a consistent and unified view- 
point. Creeping is a modification of the boundary configuration variables by 
significant increments (i.e. border elements). Merging occurs when these config- 
uration variables as a whole are not significant, and all possible efforts have been 
made to improve their significance. 

There are thus two criteria by which boundaries may be insignificant vari- 
ables: 

1. The discrirninability 5(Di, Dj) associated with the boundary as a whole is 
below the confidence threshold to. 

OR 

2. Due to the geometry of the region, NO border elements Lnij of the requisite 
size as defined in section 2.3 can be formed. 

Figure l(d) shows the figure l(c) configuration after Phase C. 
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3.4 R e p r e s e n t a t i o n  

The algorithm is not tied to a particular choice of representation. 
Phase A depends on a hierarchical image partition, but the following opera- 

tions may use e.g. the polygons or spline chains of section 1.1. However, in this 
implementation, a quadtree framework is used for all three phases, the best way 
to handle the rapid changes in connectivity and adjacency that occur in phases 
B and C. Cells Ci and border elements Lij are therefore single quadtree cells. 

3.5 C o n f i d e n c e  

The confidence criterion tc remains to be set; we use a base level of-5,  giving 
a confidence level of 99.6%. A quadtree size N contains 2N/k pairs of adjacent 
cells area k; for a uniform error rate we set tc = - 1 2 + m a x ( 7 ,  log(min(Ni, Nj))).  

4 E v a l u a t i o n  

We demonstrate the power of the algorithm to adapt automatically to the ex- 
tremes of scales/topologies present in images. Figure 2 is the final segmentation 
of figure l(d) - the system correctly descends to the appropriate scale, and the 
circle is accurately localised after 3 iterations of phases B and C. 

Fig. 2. Final circle image Fig. 3. Original 4/32 image Fig. 4. 4/32 result 

4.1 Noise  r o b u s t n e s s  

Figure 3 shows a severe test of the algorithm; a dark circle drawn from G(124, 322) 
is successfully segmented (figure 4) from background G(128, 32 ~) (the magic 
number was artificially lowered one scale, leading to the irregular boundary). 
This level of noise is too severe for any contour--based technique, and indeed too 
severe for segmentation by the human visual system. The system continues to 
detect the circle until the difference in means drops below 2. 

A spli t-and-merge system, however, only succeeds on an image where the 
difference in means is 5. The run time on t28x128 images of this sort is around 
t second, a factor of 2-3 slower than split-and-merge, which [8] shows to be the 
fastest of region segmentation schemes. 

Figure 5 shows a systematic evaluation of the algorithm's breakdown under 
noise, using an evaluation criterion and results taken from [8]. The criterion 
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(a) 

is a weighted sum of terms involving region size and boundary length. Our 
system (the dark line) is compared against five competing region- and edge- 
based systems, on varying noise images similar to figure 6. 
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Fig. 5. Performance evaluation Fig. 6. Typical image from [8] 

Our method is considerably superior in high noise, and shows excellent per- 
formance in low noise also; the lack of smoothness regularisation leads to ntis- 
classification of a few pixels in moderate noise. Such a term could be added as 
post-processing; however, the score would degrade on images with corners. 

We also note that  the other systems' results are the result of optimising the 
criterion with respect to their adjustable parameters, over several dozen runs. 
Our system also scores heavily over the others in that  it has no such parameters. 

_  ,, H° i!tl!tllt 
(b) (c) (d) 

Fig. 7. (a) Original degenerate image; (b) Result from Yuille+Zhu system[15]; (c) Split 
and merge result; (d) Proposed system. 

4.2 Scale  a d a p t a t i o n  

In the other direction, we show a successful segmentation of figure 7(a), taken 
from [15]; the algorithm correctly identifies the thin lines and blocks on the r ight-  
hand side and centre of the image; the left hand strip is however still seen to be 
a single, high-variance region. Contrary to the claim made in [15], this success is 
made in a unified framework without the addition of any form of edge term. In 
order to segment the strip with closely-spaced lines, it will be necessary to handle 
pixels on an individual basis, which is inefficient in the current representation. 

Both spl i t -and-merge,  and the system of [15], which claims to generalise and 
improve all contour-based methods, fail to segment this image. 
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5 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

Our choice of criteria and opt imisat ion procedure have been shown to resolve the 
problems of regularisation, boundary  bias, automation,  inflexibility and compu- 
tat ional  inefficiency from which region-based optimisat ion schemes often suffer. 

Work will now turn to application of the mult ivariate version of the algorithm 
to the segmentat ion of coloured and textured images, and the development of 
appropriate  surface models for the segmentation of images of  real scenes. 
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