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Abstract. In this paper, an approach is presented for the reconstruction and 
analysis of synthetic aperture radar (SAR) images that preserves better fine 
structures and borders in the image than classical methods. The method uses 
the discontinuity adaptive MRF model proposed by Li [1] in combination 
which an observation model that exploits a gamma distribution. This resulted 
in a new algorithm that is suited to the analysis of SAR images. 

1. Introduction and problem definition 

Image restoration, segmentation and classification of images can be formulated as 
ill-posed problems. Although the quality of many modern imaging sensors is such 
that these problems are not too ill-posed, this situation changes in cases where one 
wants to extract types of information for which the sensor has not been build in the 
first place. In order to tackle an ill-posed problem in such cases, a-priori 
constraints or other sources of information are important for the regularization of 
the problem. In this article, we focus on the problem of SAR intensity image 
restoration for land-cover mapping applications. This data may contain regions 
that have geometrically difficult shapes, like fine structures and critical borders 
between classes, that are obscured by speckle noise. Existing literature does 
address the incorporation of adequate statistical models in segmentation algorithms 
for this type of data, but fails to pay sufficient attention to the aspect of preserving 
small structures. 

Markov Random Field (MRF) approaches have shown to be useful because of 
the ability to define the spatial interaction between the pixels in the image. In the 
literature, the interactions between pixels are fixed for the entire image, and may 
lead to undesired smoothing. This paper builds on two lines of research reported in 
the literature. One concerns aspects related to the statistics of SAR intensity data, 
and the other relates to recent developments in the use of a more precise MRF 
models. The novelty of this paper is the combination of a discontinuity adaptive 
(DA-) MRF model that accounts for small structures and discontinuities as 
proposed in [1,2] and the Gamma distribution as the image model, which appeared 
to be useful for modeling SAR data [3]. 

This article is organized as follows. Section 2 gives an overview of the 
proposed method. Section 3 elucidates the observation model as presented in [3]. 
Section 4 outlines Li's DA-MRF model. How the observation and the 
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regularization model are merged is explained in section 5. Section 6 shows some 
experimental results, followed by discussion and conclusions (section 7). 

2. Method overview 

In the approach proposed in this paper, an MRF model is utilized in which 
regularization constraints like smoothness are encoded into an energy following a 
probabilistic route. Basically, the model consists of the sum of two energy terms. 
One term is the observation model, which defines the relation between the 
observed intensity data and the image labels (see Fig. 1). The energy returned by 
this term is a measure for the closeness of the observation to an image class model. 
The second term is a regularizer, and penalizes the irregularities according to the 
a-priori smoothness constraint encoded in it (see Fig. 2). 

Both energy terms have been object of study: the observation model since it 
has to cope with images degraded by speckle noise with its typical gamma 
distribution [3], and the regularizer because in many image analysis applications 
the assumption of the uniform smoothness everywhere can lead to undesirable, 
over smoothed, solutions ([2],[4]). 

Obs~'vafion 
ofobject(pixel)---~ Observation ~ "Goodness"o 
Suggested ~ model 
,~j~c-t label 

A-priori knowledge ~ ,~k 
about observations I 

A-lmon 

Previous observations ~ ot*jecut (l~x~t) 

Fig. 1. Data flow diagram of the observation Fig. 2. Data flow diagram of the 
regularizer, model. 

3. Observation model 

In this section, we are concerned with the observation model, i.e., the relation 
between the intensity data I and our image labels L. In the literature agreement 
exists on the gamma distribution being one of the most suitable one for SAR data. 
The distribution for multilook intensities are modeled as [3]: 

NNI; -1 ( NI,'~ 
p(I~/L~) = iI)~ I'(N) exp,- (-i~[ j, (1) 
where s is the index for the location, I is the intensity of the SAR data, L the label, 
N the number of independent one-look samples used to form each multilook 
intensity sample I, and F (N)  = ( N -  1 )!. The energy function U 1 is given by 

N I  , 
- ( N -  1 ) log ( I , )+  N log  ( ( l ) t , ) .  (2) v,(i, / L,)= (1)L, 
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Equation (2) is the class-conditional energy function or image model that will be 
used in section 5. Basically it says that, given a class L it returns a low value 

(good) if the intensity of a pixel under test s is close to the mean intensity of the 
suggested class L ,  and a high value (not so good) if otherwise. 

4. Discontinuity adaptive MRF model 

The MAP labeling with a prior potential is equivalent to the regularization of an 
ill-posed problem. An important assumption of the classical implementation of a 
regularization constraint is the smoothness. It is incorporated into the energy 
function whereby the cost of the solution is defined. A regularized solution 
corresponds to the maximum a-posteriori estimate of an MRF. 

In this article, the smoothness constraint is not blindly applied to an entire 
image, but the introduction of line processes or weak continuity constraints will 
control the application of the strength and shape of the smoothness. The DA-MRF 
model for image analysis has proven to be a valuable alternative to the classical 
MRF model. We follow [2] in the definition of the DA-MRF model, and optimize 
the model for use in SAR image analysis. 

In [3], the prior distribution of the region labels is modeled as 

P(Ls/Lr,r~ Ns)= 1 exp[_MU2(Ls/Lr,r E N s) ]  ' where the Gibbs 
Z2 

energy function U 2 is 

~ 2 ~ ( L s - L r ) .  (3) U2(Ls]Lr'rE N~):-"-M , 

fl is a clustering parameter equal to 1.4, Z 2 is a normalizing constant 

independent of L~, and S(.) is the Kronecker delta. U 2 returns a low value 

(good) if all the pixels in the neighborhood N s have the same label, and high (not 

so good) if otherwise. 
As is clear from (3), the region labeling is modeled as an isotropic MRF 

process with local dependencies. In [2] it is argued that in many real-world 
problems this approximation may not be sufficiently accurate, and this holds true 
especially in the application of land-cover mapping, where often a great level of 
detail is needed. 

In [2] solutions to this problem have been reviewed. Li focuses solely on the 
smoothness priors, and his analysis of the different solutions proposed in the 
literature, such as weak string and membrane [5,6], line process [7], resulted in the 
so-called discontinuity adaptive smoothness model, of which the before-mentioned 
models are special instances. 

In what follows, we first explain in detail how Li comes to his DA-MRF prior, 
after which the integration between the DA-MRF prior and the Gamma- 
observation model shall be outlined. In its general 1-D form, the smoothness term 
U(t) is defined as 
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N b 

U(f)= Z Un (f)= Z~=, ~n J" g~(n)(X)~, (4) 
n=l a 

beingfthe signal to be restored, U n ( f )  the nth order regularizer, N is the highest 

order to be considered and ;~ > 0 is a weighting factor. A potential function 

glf('))(x))-- - - "  is the penalty against the irregularity in f (~-l)(x)--- and corresponds to 

prior clique potentials in MRF models. Limiting the model to be of the first order, 
and considering the general string model, from (4) we can derive 

b 
E(:) = u(:/d)= fu(:/d)~, (5) 

a 

where, using for the time being the Gaussian observation model 
b 

U(d / : )= j'Z(xlf(~)-d(x)]~, 
a 

4:/d)- Z(x)[:(x)-d(x)] ~ + ~g(:l (x)), (6> 
Z(X) being an appropriate weight function. 

The solutions minimizing U(f  ]d) must satisfy the associated Euler- 

Lagrange differential equation 

u ~ , f l ) - - d u 1 ( f  , f l )~-O, 

with the boundary conditions f ( a ) =  L and : (b)= L which are prescribed 
constants. Writing out the Euler equation for the Gaussian, one dimensional model 
yields 

2Z(x)[f(xl-d(xl]- A,d g' ( f '  (x)) = O. (7) 

A potential function g is chosento be even ( g ( 0 ) =  g~0 )) and the derivative of 

g can be expressed as g l ( r / )=  2rlh(rl), where h is called an interaction function. 
The interaction h(rl) must be small for large [rll and approaches to 0 as 101 goes 

to oo. In [2] different Adaptive Interaction Functions (AIF) are proposed, that all 
satisfy Definition 1: 

Definition 1 ([2]): An adaptive interaction function (AIF) h r parameterized by y 

(>0) is a function that satisfies: (i) h r e C l (ii) h r (7 / )=  h r ( - r / )  

( i i i ) h r ( / / ) > 0  (iv) h ~ ( r / ) < 0  (v,)>O)(v)lim,.I,Th,(,)l=c< ~.In 
section 5 more details on the AIF are given. 

Extending (7) to 2-D yields 
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The Euler equation can be solved by minimizing the corresponding energy (5). 
Using the first order backward difference as an approximation of the first 
derivative, (5) can be approximated by 

m 

E(f)= ~z i [ f i  -di ]+ ~,~ ~g( f i  - fr ), 
where N i consists of the neighbors of i. From the above, using the gradient-decent 

method, we obtain the following updating equation: 

fi(,+l) ~_ f i(t ) __ 2~.~, z i  [ f  i(t ' - di ] -  ~l" ~ ( f  (t ' - f i(t ) )h(f  (t ) - f i(' ) )} i 

where /z is the update strength, and is chosen constant during the optimization 
process. At each iteration, the label of each pixel is updated based on the 
contextual information in the label image at the previous itaration. The updating 
process, which is a deterministic relaxation, starts with a certain initial label 

configuration f (t=O) A suited stop criteria should be defined. 

5. DA-MRF model with gamma observation statistics 

Since the approach of Rignot and Chellappa deals with classification rather than 
with segmentation, the values of L~ and f(x) in (2) and (7), respectively, are 

class indexes and have a semantic value rather than a quantitative one. To solve 
this problem, and to enable one to convert the non-linear equation into a linear 
one, it is proposed to substitute the class indexes with the mean class-intensity 
values: 

)d(,, = I , .  (8) 

Using (8), and substituting the Gaussian data distribution with the Gamma 
distribution 

U,(dij/ fi4)= Ndij (N_l)log(di4)+ Nlog(fi, i) 
fi,j 

allows us to re-write (7) into 

u(f /d)= NdiJ (N-1)log(dij)+ Nlog(fij)+ ~g(fi:j). 
fi4 

Writing out the Euler equation for the Gamma case yields 

(9) 
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The posterior energy can now be estimated by 
m m 

E(:)= Eu,(d,/ zE -:,), 
i=l i=l t E N  i 

and using the classical, deterministic gradient based minimization method yields 

t~s:t+f::l~in;:::dali].trliN(e~il)O/:ds) i ~ : f  :t) _ f ~,t) )h(f :*) _ f:t) ) } 

The regularizer takes effect when /I. > O. Its strength depends on the qualitative 
and quantitative shape of the AIF, basically determined by h r . For the 

experiments that follow, the AIF was chosen to be h ,  = 0 + l o l / 7 ) - '  in both the 

x and y directions. The main reason is that it allows bounded but non-zero 
smoothing at discontinuities, useful properties when analyzing speckle images. 
Additional advantages are that the resulting energy function is convex and that the 
algorithm becomes computational efficient. 

6. Experimental results 

6.1. Parameter settings 

Table I should give the reader a feeling about the influence of the various 
parameters. 

Table I. Overview of parameters, their effects, and their suggested values for a 4 
look SAR intensity image. The values correspond to those used to produce the 
results. 

Parameter Function 

Relation between observation and 
regularization model 

Choice of regularization strength. 
Update strength (optimization 
procedure) 

Number of iterations 
(optimization procedure) 

Effect 

within order 
of ma[n!tude 
Small 

Strong 
None. 

between o.o.m. 

large: strong 
smoothing. 
Low: none. 
S t r o n g  

Large: 
unstable; 
small: slow 

i convergence 

Suggested 
value 

Filtering 

0.001 

0.1-3 
50 

100 
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6.2 Data description 

In order to assess the usefulness of the proposed method, experiments have been 
done on portions of a 4-Look SAR intensity image (HH polarization) of a 
Flevoland (NL) scene, acquired during the Maestro I campaign in 1989. The 
original test image is shown in Fig. 3a. 

6.3. Comments on results 

Experimental results are reported in Fig. 3. Fig. 3b shows that, applying a low ~, 
value, the final result tends to convert to the original data. With an increasing k, 
clustering of regions gets stronger (Fig. 3c). The strong effect of Y, reported in 
table I, can be seen in Fig. 3c and d. 

a. b. 

C. d. 

Fig. 3. Results. a) 256x256 Portion of a Ftevoland 4 look SAR intensity image 
(HH polarization); b) Light filtering: the small X value (0.0001) practically 
"switches off" the regularizing term; c) And d) show the effect of a small and large 
y value, respectively. All results in the image were obtained after 100 iterations. 
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7. Discussion and conclusions 

In this paper, an approach has been presented for the analysis of synthetic aperture 
radar (SAR) images that preserves better fine structures and borders in the image 
than classical methods. The method uses the discontinuity adaptive MRF model in 
which the Gaussian observation model has been replaced by a gamma distribution. 
This resulted in a new algorithm that is more suited to the segmentation of SAR 
images if one is interested in preserving details. The clustering effect of regions 
with homogeneous back scatter signals is principally determined by mainly two 
parameters whose function is easy and intuitively to understand. 

Results on various real-world data sets have shown that the method proposed in 
this paper is a useful tool for the analysis and interpretation of SAR images. 
However, it is stressed that at the end of the day it remains the end-user to decide 
what level of detail is required. 

The software of the proposed algorithm for Windows 95 will be made 
available via URL h t t p :  / / d i b e .  unige, it/TMR_Smits. Readers are 
encouraged to try the method on their own imagery and to report their findings. 

Acknowledgements 

The authors with to thank Dr. A. Freeman of NASA/JPL for providing the SAR 
data. This work was supported by the European Community program Training and 
Mobility for Researchers (Marie Curie Fellowship) under contract ERBF MBICT 
95257. 

References 

[1] Li, S.Z. (1995b), Markov Random Field modeling in computer vision, 
Springer Verlag, New York. 

[2] Li, S.Z. (1995), Discontinuity-adaptive MRF prior and robust statistics: a 
comparative study, IEEE Trans. on Pattern Analysis and Machine Intelligence 
17(6), 576-586. 

[3] Rignot, E., Chellappa, R. (1993). Maximum a posteriori classification of 
multifrequency, multilook, synthetic aperture radar intensity data, J. Opt. Soc. 
Am. A, Vol. 10, No. 4, pp. 573-582. 

[4] Smits P.C. and S. Dellepiane (1996), "Information fusion in a Markov 
Random Field based image segmentation approach using adaptive 
neighbourhoods," 13th Int. Conf. on Pattern Recognition, Vienna, August 
1996, pp. 570-575. 

[5] Blake (1983), The least disturbance principle and weak constraints, Pattern 
Recognition Letters, Vol. 1, pp. 393-399. 

[6] Blake A. and A. Zisserman (1987), Visual reconstruction. Cambridge, MA: 
MIT Press. 

[7] Geman S. and Geman D. (1984), Stochastic relaxation, Gibbs distributions 
and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine 
Intell., Vol. PAMI-6, nov. 1984, pp. 721-741. 


