
Unsupervised Texture Segmentation 
Using Feature Distributions 

Timo Ojala and Matti Pietik~iinen 
Machine Vision and Media Processing Group, Infotech Oulu 

University of Oulu, FIN-90570 Oulu, Finland 
ojala@ee.oulu.fi, mkp@ee.oulu.fi 

Abstract 
This paper presents an unsupervised texture segmentation method, which uses distributions of 
local binary patterns and pattern contrasts for measuring the similarity of adjacent image regions 
during the segmentation process. Nonparametric log-likelihood test, the G statistic, is engaged 
as a pseudo-metric for comparing feature distributions. A region-based algorithm is developed 
for coarse image segmentation and a pixelwise classification scheme for improving localization 
of region boundaries. The performance of the method is evaluated with various types of test 
images. The same set of parameter values is used in all the experiments with texture mosaics in 
order to demonstrate the robustness of our approach. 

1 Introduction 
Segmentation of an image into differently textured regions is a difficult problem. 

Usually one does not know a priori  what types of textures exist in an image, how 
many textures there are, and what regions have which textures [1]. In order to distin- 
guish reliably between two textures relatively large samples of them must be exam- 
ined, i.e., relatively large blocks of the image. But a large block is unlikely to be 
entirely contained in a homogeneously textured region and it becomes difficult to cor- 
rectly determine the boundaries between regions. 

Many different approaches to texture segmentation have been proposed. Segmenta- 
tion methods are usually classified as region-based, boundary-based or as a hybrid of 
the two. For surveys of image and texture segmentation techniques, see [2,3]. The seg- 
mentation can be supervised or unsupervised. In unsupervised segmentation no a pri- 

ori information about the textures present in the image is available. This makes it is a 
very challenging research problem in which only limited success has been achieved so 
far. Examples of different approaches to unsupervised segmentation are presented, 
e.g., in [4-10]. 

Our recent studies show that excellent texture discrimination can be obtained with 
local texture operators and nonparametric statistical discrimination of sample and pro- 
totype distributions. Texture classification results obtained by using distributions of 
local binary patterns (LBP) or gray scale differences have been better than those 
obtained with the existing methods [11-14]. Our method can be easily generalized to 
utilize multiple texture features, multiscale information, color features and combina- 
tions of multiple features using the new multichannel approach presented in [14]. 

This paper presents an efficient method for unsupervised texture segmentation 
based on texture description with feature distributions. A region-based algorithm is 
developed for coarse image segmentation and a pixelwise classification scheme for 
improving the localization of region boundaries, 
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2 Texture Description 
The texture contents of an image region are characterized by the joint distribution 

of Local Binary Pattern (LBP) and Contrast (C) features [12]. The original 3x3 neigh- 
borhood (Fig. la) is thresholded by the value of the center pixel. The values of the pix- 
els in the thresholded neighborhood (Fig. lb) are multiplied by the binomial weights 
given to the corresponding pixels (Fig. lc) and obtained values (Fig. ld) are summed 
for the LBP number (169) of this texture unit. By definition LBP is invariant to any 
monotonic gray scale transformation. LBP describes the spatial structure of the local 
texture, but it does not address the contrast of the texture. For this purpose we combine 
LBP with a simple contrast measure C, which is the difference between the average 
gray level of those pixels which have value 1 and those which have value 0 (Fig. lb). 
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LBP = 1+8+32+128 = 169 

C = (6+7+9+7)/4 - (5+2+1+3)/4 = 4.5 

Fig. 1. Computation of Local Binary Pattern (LBP) and contrast measure C. 

The LBP/C distribution is approximated by a discrete two dimensional histogram of 
size 256xb, where b is the number of bins for C. A log-likelihood-ratio, the G statistic 
[ 15], is used as a pseudo-metric for comparing LBP/C distributions. The value of the G 
statistic indicates the probability that the two sample distributions come from the same 
population: the higher the value, the lower the probability that the two samples are 
from the same population. We measured the similarity of two histograms with a two- 
way test of independence: 
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where s, m are the two sample histograms, n is the number of bins and 3~ is the fre- 
quency at bin i. See [15] for a detailed derivation of the formula. 

3 Segmentation Algorithm 

The segmentation method consists of three phases: hierarchical splitting, agglomer- 
ative merging and pixelwise classification. First, hierarchical splitting is used to divide 
the image into regions of roughly uniform texture. Then, agglomerative merging pro- 
cedure merges similar adjacent regions until a stopping criterion is met. At this point 
we have obtained rough estimates of the different textured regions present in the image 
and complete the analysis by a pixelwise classification to improve the localization. 
Fig. 2 illustrates the progress of the segmentation algorithm on a 512x512 mosaic con- 
taining five different Brodatz [16] textures. 
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Fig. 2. Texture mosaic #1; the main sequence of the proposed segmentation algorithm. 
MIRstop=9.5, MIRhi=l.2, ERRa=1.4%, ERRp=l.7 %, sweeps=16. 

3.1 Hierarchical Splitting 

A necessary prerequisite for the agglomerative merging to be successful is that the 
individual image regions are uniform in texture. For this purpose we apply the hierar- 
chical splitting algorithm, which recursively splits the original image into square 
blocks of varying size. The decision whether a block is split to four subblocks is based 
on a uniformity test. We measure the six pairwise G distances between the LBP/C his- 
tograms of the four subblocks. If we denote the largest of the six G values by Gma x and 
the smallest by Gmi n, the block is found to be nonuniform and is thus split further into 
four subblocks, if a measure of relative dissimilarity within region is greater than a 
threshold 

G max 
R = ~ >X (2) 

Regarding the proper choice of X, one should rather choose a too small value for X 
instead of a too large one. It is better to split too much than too little, for the following 
agglomerative merging procedure is able to correct errors, where an uniform block of a 
single texture has been needlessly split. But error recovery is not possible, if segments 
containing several textures are assumed to be uniform. 

To begin with, we divide the image into rectangular blocks of size Sma x. If we 
applied the uniformity test on arbitrarily large image segments, we could fail to detect 
small texture patches and end up treating regions containing several textures as uni- 
form. The next step is to use the uniformity test. If  a block does not satisfy the test, it is 
divided into four subblocks. This procedure is repeated recursively on each subblock 
until a predetermined minimum block size Smin is reached. It is necessary to set a min- 
imum limit for the block size, for the block has to contain a sufficient number of pixels 
for the LBP/C histogram to be reliable. 

Fig. 2b illustrates the result of the hierarchical splitting algorithm with X=l.2, 
Smax=64 and Smin=16. As expected, the splitting goes deepest around the texture 
boundaries. 

Note that the hierarchical splitting phase is not mandatory, but we could skip it by 
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dividing the input image directly to blocks of size Smin and the successive agglomera- 
tive merging phase would still succeed. This is particularly true for easier problems of 
homogeneous and clearly distinct textures. However, our experiments have shown that 
finding larger areas of uniform texture with the hierarchical splitting method improves 
the convergence of the agglomerative merging algorithm. 

3.2 Agglomerative Merging 

Once tt, e image has been split into blocks of roughly uniform texture, we apply an 
agglomerative merging procedure, which merges similar adjacent regions until a stop- 
ping criterion is satisfied. At a particular stage of the merging, we merge that pair of 
adjacent segments, which has the smallest Merger Importance (M/) value. MI is 
defined as 

MI = p x G (3) 

where p is the number of pixels in the smaller of the two regions and G is the distance 
measure defined in Eq. 1. In other words, at each step the procedure chooses that 
merger of all possible mergers, which introduces the smallest change in the segmented 
image. Once the pair of adjacent segments with the smallest 1141 value has been found, 
the regions are merged and the two respective LBP/C histograms are summed to be the 
histogram of the new image region. Before moving to the next merger we compute the 
G distances between the new region and all adjacent regions to it. Merging is allowed 
to proceed until the stopping rule 

Mlcur 
MIR = ~ > Y (4) 

Mlmax 

triggers. Merging is halted if MIR, the ratio of Mlcu r, Merger Importance for the cur- 
rent best merge, and Mlma x, the largest Merger Importance of all preceding mergers, 
exceeds a preset threshold Y. In theory, it is possible that the very first merges have a 
zero MI value (i.e. there are adjacent regions with identical LBP/C histograms), which 
would lead to a premature termination of the agglomerative merging phase. To prevent 
this the stopping rule is not evaluated for the first 10% of all possible merges. 

Fig. 2c shows the result of the agglomerative merging phase after 174 merges. The 
MIR of the 175th merge (MIRstop) is 9.5 and the merging is halted. The highest MIR 
value up to that point (MIRhi) had been 1.2. The relationship between MIRstop, MIRhi 
and threshold Y reflects the reliability of the result of the agglomerative merging 
phase. The very large value of MIRstop and very small value of MIRhi underline the 
easiness with which the rough estimate of the texture regions is obtained for mosaic 
#1. Note that the segmentation error of 1.4% after the agglomerative clustering phase 
(ERRa) is a somewhat biased in this problem, for the horizontal and vertical texture 
boundaries are accidentally aligned with the initial blocks. 

3.3 Pixeiwise Classification 

To improve the localization of the boundaries a simple pixelwise classification 
algorithm is used. If the hierarchical splitting and agglomerative merging phases have 
succeeded, we have obtained quite reliable estimates of the different textured regions 



315 

present in the image. Treating the LBP/C histograms of the image segments as our tex- 
ture models we switch into a texture classification mode. If  an image pixel is on the 
boundary of at least two distinct textures (i.e. the pixel is 4-connected to at least one 
pixel with a different label), we place a discrete disc with radius r on the pixel and 
compute the LBP/C histogram over the disc. We compute the G distances between the 
histogram of the disc and the models of those regions, which are 4-connected to the 
pixel in question. We relabel the pixel, if the label of the nearest model is different 
from the cun'ent label of the pixel and there is at least one 4-connected adjacent pixel 
with the tentative new label. The latter condition improves smooth adaption of texture 
boundaries and decreases the probability of small holes occurring inside the regions. If  
the pixel is relabeled, i.e. it is moved from an image segment to the adjacent segment, 
we update the corresponding texture models accordingly, hence the texture models 
become more accurate during the process, Only those pixels at which the disc is 
entirely inside the image are examined, hence the final segmentation result will con- 
tain a border of r pixels wide. 

In the next scan over the image we only check the neighborhoods of those pixels, 
which were relabeled in the previous sweep. The process of pixelwise classification 
continues until no pixels are relabeled or maximum number of sweeps is reached. This 
is set to be two times Stain, based on the reasoning that the boundary estimate of the 
agglomerative merging phase can be at most this far away from the 'true' texture 
boundary. Setting an upper limit for the number of iterations ensures that the process 
will not wander around endlessly, if the disc is not able to capture enough information 
of the local texture to be stable. According to our experiments the algorithm generally 
converges quickly with homogeneous textures, whereas with locally stochastic natural 
scenes maximum number of sweeps may be consumed. We did not apply any post- 
processing method to improve the final segmentation result, e.g. by smoothing the tex- 
ture boundaries or removing small regions as many existing algorithms do. 

Fig. 2d demonstrates the final segmentation result after the pixelwise classification 
phase. Disc with radius of 11 pixels was used and 16 sweeps were needed. The final 
segmentation error (ERRp), computed over the area processed by the disc which 
excludes the border of r pixels, is 1.7%. 

4 Experimental Results 

Next, we present some quantitative results obtained with the method. The segmen- 
tation results for two additional texture mosaics and a natural scene are presented. The 
same set of parameter values was used for all texture mosaics to demonstrate the 
robustness of the approach: b=8, Smax=64, Smin=16, X=l.2, Y=2.0, and r=-I 1. See [17] 
for results for additional images and for a detailed discussion on parameter selection. 
For each mosaic we provide the original image, the rough segmentation result after the 
agglomerative merging phase and the final segmentation result after the pixelwise 
classification phase. The segmentation results are superpositioned on the original 
image. 

Mosaic #2 (Fig. 3a) is a 512x512 image containing four textures made by a GMRF 
process and a circle of painted surface in the middle [18]. The more difficult nature of 
this problem shows in the values of MIRstop (5.2) and MIRhi (1.6), which are clearly 
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closer to threshold Y than what was the case with mosaic #1. Nevertheless, the rough 
segmentation result (Fig. 3b) with segmentation error of 4.2% is quite decent. The 
final segmentation result (Fig. 3c) after 23 sweeps with segmentation error of 1.2% is 
excellent. 

3 t6  

(b) (c) 

Fig. 3. Texture mosaic #2. MIRstop=5.2, MIRhi=l.6, ERRa=4.2 %, ERRp=I.2 %, sweeps=23. 

Mosaic #3 (Fig. 4a) is 384x384 pixels in size and it is composed of textures of out- 
door scenes [10]. In their study Jain and Karu tackled the problem of texture segmenta- 
tion with a neural network generalization of the traditional multichannel filtering 
method, using various filter banks for feature extraction. For this mosaic Jain and Karu 
reported labeling error of 6% with Laws' filters in supervised mode. Our unsupervised 
method gives a clearly better segmentation result of 2.1%. Note that the pixelwise clas- 
sification clearly improves the result of the agglomerative merging phase (7.8%). The 
difference between MIRstop (2.8) and MIRhi (1.2) is still noticeable, but by far the 
smallest in the three cases, reflecting the inherent difficulty of this problem. 

(a) (b) (c) 

Fig. 4. Texture mosaic #3. MIRstop=2.8, MIRhi=1.2, ERRa=7.8 %, ERRp=2.1%, sweeps=24. 

We also applied the texture segmentation method to natural scenes. The scenes 
were originally in RGB format [9], but we converted them to gray level intensity 
images. As an example, scene #I (Fig. 5a) is a 384 x 384 image of rocks in the sea. As 
we can observe from the image, the textures of natural scenes are generally more non- 
uniform than the homogeneous textures of the test mosaics. Also, in natural scenes 
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adjacent textured regions are not necessarily separated by well-defined boundaries, but 
the spatial pattern smoothly changes from one texture to another. Further, we have to 
observe the infinite scale of texture differences present in natural scenes; choosing the 
right scale is a very subjective matter. For these reasons there is often no 'correct' seg- 
mentation for a natural scene, as is the case with texture mosaics. 

(a) (b) (c) 

Fig. 5. Natural scene #1. 

The parameters X and Y primarily control the scale of texture differences that will 
be detected. With values X=I.1 and Y=l.5 the rough segmentation result after the 
agglomerative merging phase is presented in Fig. 5b and the final segmentation result 
is shown in Fig. 5c. If we decreased Y further, the segmentation result would contain 
an increasing number of regions. The invariance of the LBP/C transform to average 
gray level shows in the bottom part of the image, where the sea is interpreted as a sin- 
gle region despite the shadows. The obtained result is very satisfactory, considering 
that important color or gray scale information is not utilized in the segmentation. 

5 C o n c l u s i o n  

We proposed a solution to unsupervised texture segmentation, in which a method 
based on comparison of feature distributions is used to find homogeneously textured 
image regions and to localize boundaries between regions. Texture information is 
measured with a method based on local binary patterns and contrast (LBP/C) that we 
have recently developed. A region-based algorithm is developed for coarse image seg- 
mentation and a pixelwise classification scheme for improving the localization of 
region boundaries. 

The method performed very well in experiments. It is not sensitive to the selection 
of parameter values, does not require any prior knowledge about the number of tex- 
tures or regions in the image, and seems to provide significantly better results than 
existing unsupervised texture segmentation approaches. The method can be easily gen- 
eralized, e.g., to utilize other texture features, multiscale information, color features, 
and combinations of multiple features [ 14]. 
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