
Color Based Object Recognition 

T. Gevers and A.W.M. Smeulders 

Faculty of WINS, University of Amsterdam, The Netherlands 
emaih gevers@wins.uva.nl 

Images and recognition scheme can be experienced on-line at 
http: / /www.wins.uva.nl/research /isis/zomax/ 

a b s t r a c t  

Assuming white illumination and dichromatic reflectance, we propose new color 
models ClC~C3 and lll~13 invariant to the viewing direction, object geometry and 
shading. Further, it is shown that  111213 is also invariant to highlights. Further, a 
change in spectral power distribution of the illumination is considered to propose 
a new photometric color invariant rnlm2rn3 for matte  objects. 

To evaluate photometric color invariant object recognition in practice, ex- 
periments have been carried out on a database consisting of 500 images taken 
from 3-D multicolored man-made objects. 

On the basis of the reported theory and experimental results, it is shown 
that  high object recognition accuracy is achieved by 111213 and hue H followed 
by eic2c3 and normalized colors rgb under the constraint of white illumination. 
Finally, it is shown that  solely rnlm2m3 is invariant to a change in illumination 
color. 

1 I n t r o d u c t i o n  

Color provides powerthl information for object recognition. A simple and effec- 
tive recognition scheme is to represent and match images on the basis of R G B  
histograms as proposed by Swain and Ballard [6]. This color-based recognition 
method has been extended by Funt and Finlayson [2] to become illumination 
independent by indexing on an illumination-invariant set of color descriptors. 
Furthermore, Healey and Slater [4] use illumination invariant moment descrip- 
tors for object recognition. The method fails, however, when objects are occluded 
as the moments are defined as an integral property on the (region) object as one. 

Our aim is to analyze and evaluate various color models to be used for the 
purpose of object recognition by color-metric histogram matching according to 
the following criteria: 1. Robustness to a change in viewpoint; 2. Robustness to 
a change in object orientation; 3. Robustness to a change in the intensity and 
the direction of the illumination; 4. Robustness to a change in the color of the 
illumination; 5. High discriminative power; 6. Robustness to noise; 7. Robustness 
to object occlusion and cluttering. 

The general application is considered of recognition of 3-D multicolored ob- 
jects from 2-D color images. 



320 

This paper is organized as follows. In Section 2, the dichromatic reflectance 
under "white" reflection is introduced and new photometric invariant color fea- 
tures are proposed. The performance of object recognition by histogram match- 
ing differentiated for the various color models is evaluated and compared on an 
image database of 500 reference images in Section 3. 

2 P h o t o m e t r i c  C o l o r  I n v a r i a n c e  

In this paper, we concentrate on the following standard, essentially different, 
color features derived from RGB: intensity I(R, G, B) = R + B + G, RGB, 
normalized colors r(R, G, B) R g(R, G, B) G b(R, G, B) = - -  R + G + B '  - -  R + G + B '  

v f 3  ( G - B ) 
B hue H(R, G, B) = arctan((R_G)+(R_B) J and saturation S(R, G, B) ---- 

R + G + B  ' 

1 - min(n,C,B) 
R + G + B  

2.1 T h e  R e f l e c t i o n  M o d e l  

Consider an image of an infinitesimal surface patch. Using the red, green and blue 
sensors with spectral sensitivities given by fR(A), fa(A) and fB(A) respectively, 
to obtain an image of the surface patch illuminated by a SPD of the incident 
light denoted by e(A), the measured sensor values will be given by Sharer [5]: 

f f 
C = mb(n,s)  ]~ fc(A)e(£)cb(A)dA + m~(n,s ,  v) J~ fc(A)e(A)c~(A)dA (1) 

for C = {R, G, B} giving the Cth sensor response. Further, eb(A) and c~(A) are 
the albedo and Fresnel reflectance respectively. A denotes the wavelength, n is 
the surface patch normal, s is the direction of the illumination source, and v is 
the direction of the viewer. Geometric terms mb and ms denote the geometric 
dependencies on the body and surface reflection respectively. 

Considering the neutral interface reflection (NIR) model (assuming that  e~ (A) 
has a constant value independent of the wavelength) and "white" illumination, 
then e(.k) = e and cs(~) = c8. Then, we propose that  the measured sensor values 
are given by: 

Cw = emb(n, s)kc + em~(n, s, v)c~ ~ fc(A)dA (2) 

for C~ E {R~, Gw, Bw} giving the red, green and blue sensor response under 
the assumption of a white light source, kc = f~ fc(A)Cb(A)dA is a compact 
formulation depending on the sensors and the surface albedo. 

If the integrated white condition holds (as we assume throughout  the paper) 
f~ fR(A)dA = f~ fa(A)dA = f~ fB(A)dA = f ,  we have: 

C~ =,: Cb + C8 = emb(n,s)kc + ems(n,s, v)c~f (3) 
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2 .2  R e f l e c t i o n  w i t h  W h i t e  I l l u m i n a t i o n  

P h o t o m e t r i c  I n v a r i a n t  C o l o r  F e a t u r e s  for  M a t t e ,  D u l l  S u r f a c e s  Ac- 
cording to the body reflection term of eq. (3) ,  Cb = Crab(n, s)kc, a uniformly 
painted surface (i.e. with fixed kc) may give rise to a broad variance of RGB 
values due to the varying circumstances induced by the image-forming process. 
The same argument  holds for intensity I .  

In contrast,  normalized color rgb is insensitive to surface orientation, illumi- 
nation direction and intensity as can be seen from: 

emb(n, s)kR kR 
r(Rb, Gb,Bb) = emb(n , s ) ( kn+kGq-kB)  = k R + k G + k B  (4) 

only dependent on the sensors and the surface albedo. Equal arguments  hold 
for g and b. 

Saturation S is an invariant for the set of mat te ,  dull surfaces il luminated by 
white SPD mathemat ical ly  specified by: 

S(Rb,Gb,Bb) = 1 min(emb(n,s)kR,emb(n,s)kG,emb(n,s)kB) 
emb(n, s)(kR + ka + kB) 

Similarly, hue H is an invariant for matte ,  dull surfaces: 

= 1 min(kR, kG, kB) 
(kR d- kG q- kB) 

(5) 

H( Rb, Gb, Bb) \ ~.~.~(n,s)((k. - ~ )  + (k.  - k . ) )  ] \ ( k .  - k~) + ( k .  - k . )  ] 
(6) 

In fact, any expression defining colors on the same linear color cluster formed 
by the body reflection vector in RGB-space are photometr ic  color invariants for 
dichromatic reflectance for mat te  surfaces under white light. To tha t  end, we 
propose the following photometric  color invariant model: 

R G B 
Cl = a r c t a n (  ), c2 = a r c t a n (  ), c3 = a r c t a n (  ) (7) 

m~x{C, B} . . . .  {n, B} . . . .  {n, a} 

denoting the angles of the body reflection vector and consequently being invari- 
ants for matte,  dull objects: 

emb(n, s)kR kR 
cl (Rb, Gb, Bb) = arctan(max{emb (n, s)kc, emb(n, s)kB } ) = arctan(max{ka, k ,  } ) 

(s) 
only dependent on the sensors and the surface Mbedo. Equal arguments  hold 

for c2 and c3. 

P h o t o m e t r i c  I n v a r i a n t  C o l o r  F e a t u r e s  for  B o t h  M a t t e  a n d  S h i n y  S u r -  
f a c e s  Note tha t  under the given conditions (the NIR model), the color of high- 
lights is not related to the color of the surface on which they appear,  but  only on 
the color of the light source. Thus for the white light source, the surface reflection 
color cluster is on the diagonal grey axis of the basic RGB-color space corre- 
sponding to intensity I .  For a given point on a shiny surface, the contribution 
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of the body reflection component and surface reflection component are added 
together. Hence, the observed colors of the surface must be inside the triangular 
color cluster in the RGB-space formed by the two reflection components. 

Because H is a function of the angle between the reference line and color 
point, all possible colors of the same shiny uniformly colored surface have to be 
of the same hue mathematically specified as: 

v (kG - ks) 
H(R~, ,G~,Gw)  = arctan(-(k R = ~ c )  -~-(k-RR -- kB) ) (9) 

Only dependent on the sensors and the surface albedo. Obviously other color 
features depend on the contribution of the surface reflection component and 
hence are sensitive to highlights. 

In fact, any expression defining colors on the same linear triangular color 
cluster, formed by the two reflection components in RGB-space,  are photometric 
color invariants for the dichromatic reflectance under white light. 

To that  end, a new photometric color invariant model 111213 is proposed 
uniquely determining the direction of the linear triangular color cluster: 11 = 

(R-a) 2 (R-B) 2 (C-B) ~ 
(R_G)2..}_(R_B)2q_(G_B)2 ,12 ---- (R.G),~ q_(R_B)2+(G_B)2 ,13 ---- (R_G)2~_(R_B)2.q_(G_B)2 
the set of normalized color differences which is, similar to H,  an invariant for 
the set of mat te  and shiny surfaces. 

2.3 R e f l e c t i o n  w i t h  Co l ored  I l l u m i n a t i o n  

T h e  R e f l e c t i o n  M o d e l  We consider the body reflection term of the dichro- 
matic reflection model: 

C~ = mb(n, s) ~ fc(A)e(A)Cb(A)dA (10) 

for C = {R, G, B} where Cc = {Re, Go, Bc} gives the red, green and blue sensor 
response of a mat te  infinitesimal surface patch under unknown spectral power 
distribution of the illumination. 

Suppose that  the sensor sensitivities of the color camera are narrowband with 
spectral response be approximated by delta functions fc(A) = 5(A - he) ,  then 
we have: 

cc = rob(n, s)e( c)eb( c) (11) 

By simply filling in Cc in the color feature equations, we can see that  all color 
feature values change with a change in illumination color. 

Color  C o n s t a n t  F e a t u r e  for  M a t t e ,  D u l l  S u r f a c e s  Funt and Finlayson 
[2] proposes a simple and effective illumination-independent color feature for the 
purpose of object recognition. The method runs short, however, when images are 
contaminated by shading and highlights. To that  end, we propose a color con- 
stant feature not only independent of the illumination color but also discounting 
shading cues: 
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x, x2 . ,  x~ c 7 ' c ;  ~ 
m(Ci ,C1 ,C2 ,C2 ) -- x2 x,,C1 ¢ C2 C~ c~ (12) 

expressing the color ratio between two neighboring image locations, for C1, C2 E 
{R, G, B} where xl  and x2 denote the image locations of the two neighboring 
pixels. 

Having three color components of two locations, color ratios obtained from 
a R G B - c o l o r  image are: 

R×~ G×~ RX~ BX~ G ~, B ~  
rn l  - R x 2 G x ~  , m 2  - R X 2 B x ~  , m 3  - G x 2 B x ~  (13) 

For the ease of exposition, we concentrate on ml  based on the RG-color bands 
in the following discussion. Without  loss of generality, all results derived for rnt 
will also hold for m2 and m3. 

If we assume that  the color of tile illumination is locally constant (at least 
over the two neighboring locations from which ratio is computed),  the color 
ratio is independent of the illumination color, and also a change in viewpoint, 
the surface geometry, and illumination intensity as follows from: 

(m~', (n, ~)~.1 (~R)~['  ( x . ) ) ( ,~ [~  (n, ~)¢.~ (~,~)4 "~ ( ~ . ) )  _ 4 '  (~R)~[ ~ (~ '~ )  

m,  = (m~, 2 (n, s)ey2 (XR)c~ "2 (An) ) (m~"  (n,  s)eYl (Aa)Cb y '  (AG)) -- c "2`A ' c "  b ~ R~b (Xa) 
(14) 

only dependent on the surface albedo, where Yl and Y2 are two neighboring 
locations on the object 's  surface not necessarily of the same orientation. 

Taking logarithms of both sides of equation 12 results for rnl in: 

l n , ~ , ( n " ' , n x ~ , a ' ~ ' , a x ~ ) = l n R  x' + l n a  x~ - i n n  ~ - l n a  xl  (15) 

Tile color ratios can be seen as differences at  two neighboring locations Xl and 
x2 in the image domain: 

dml(x l ,x2)  = l n R  xl + l n G  x2 _ lnRX2 _ lnG×l (16) 

When these differences are taken between neighboring pixels in a particular 
direction, they correspond to finite-difference differentiation. 

The results obtained so far for ml  hold also for m2 and ma,  yielding a 3-tuple 
(Gin1 (x), G-~2 (x),~m3 (x)) denoting the gradient magnitude for every neighbor- 
hood centered at  x in the image. 

For pixels on a uniformly painted region, in theory, all three components  will 
be zero whereas at least one the three components will be non-zero for pixels on 
locations where two regions of distinct color meet.  
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3 C o l o r  B a s e d  O b j e c t  R e c o g n i t i o n :  E x p e r i m e n t s  

The database consists of N1 = 500 reference images of multicolored domestic 
objects, tools, toys, etc.. Objects were recorded in isolation (one per image) 
with the aid of the SONY XC-003P CCD color camera  (3 chips) and the Matrox 
Magic Color frame grabber.  Objects were recorded against a white cardboard 
background. Two light sources of average day-light color are used to illuminate 
the objects in the scene. A second, independent set (the test  set) of recordings 
was made of randomly chosen objects already in the database.  These objects,  
N2 = 70 in number, were recorded again (one per image) with a new, arbi t rary  
position and orientation with respect to the camera (some recorded upside down, 
some rotated,  some at different distances (different scale)). 

Histograms are constructed on the basis of different color features repre- 
senting the distribution of discrete color feature values in a n-dimensional color 
feature space, where n = 3 for RGB, rgb, 111213, cle253 and rnlm2ms, and n = 1 
for I ,  S and H.  During histogram construction, all pixels in a color image are 
discarded with a local saturat ion and intensity smaller then 5 percent of the 
total  range. Consequently, the white cardboard background as well as the grey, 
white, dark or nearly colorless parts  of objects as recorded in the color image will 
not be considered in the matching process. For comparison reasons in the litera- 
ture, in this paper,  the histogram similarity function is expressed by histogram 
intersection [6]. 

For a measure of match quality, let rank r Qi denote the position of the correct 
match for test  image Qi, i = 1, ..., N2, in the ordered list of N1 match values. The  
rank r Q~ ranges from r = 1 from a perfect match to r = N1 for the worst possible 
match. Then, for one experiment,  the average ranking percentile is defined by 

: (~'22 Ei%~l N~r; -rQi )100%. The  cumulative percentile of test  images producing 

a rank smaller or equal to j is defined as X(j)  = (-~ ~ = 1  ~( rc2~ = =  k))10070, 
where r / reads  as the number of test images having rank k. 

For more information see [3]. The image database and the performance of 
the recognition scheme can be experienced within the ZOMAX system on-line 
at  
http: / /www. wins.uva.nl /research /isis / zomax /. 

4 R e s u l t s  

In this subsection, we report  on the recognition accuracy of the matching process 
tbr N2 = 70 test images and N1 = 500 reference images for the various color 
features. As stated, white lighting is used during the recording of the reference 
images in the image database and the independent test  set. However, the objects 
were recorded with a new, arbi t rary  position and orientation with respect to 
camera. In Fig. 1 accumulated ranking percentile is shown for the various color 
features. 

From the results of Fig. 1 we can observe tha t  the discriminative power of 
l ll21a, H followed by ci c2 c3 and rgb is higher then the other color features achier- 
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Accumulated ranking percentile for j < 20 
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Fig. 1. The discriminative power of the histogram matching process differentiated for 
the various color features plotted against the ranking j .  The cumulative percentile 2( 
for H, 111213, clc2c3, rgb, S, mlm2m3 and RGB is given by XH, 2(11~2la, 2dc,~2c3, 
~ r g b ,  X S ,  X m l m 2 t n  3 a n d  W R C B  r e s p e c t i v e l y .  

ing a probabili ty of respectively 99, 98, 94 and 92 perfect matches out of 100. 
Saturation S and color ratio rnlrn2rna provides slightly worse recognition accu- 
racy. As expected, the discrimination power of R G B  has the worst performance 
due to its sensitivity to varying imaging conditions. 

4.1 T h e  Effec t  o f  a C h a n g e  in t h e  I l l u m i n a t i o n  I n t e n s i t y  

The effect of a change in the illumination intensity is approximated by a multipli- 
cation of each RGB-color by a uniform scalar factor a.  To measure the sensitivity 
of different color feature in practice, RGB-images  of the test set are multiplied 
by a constant factor varying over c~ ¢ { 0.5,0.7, 0.8,0.9, 1.0, 1.1, 1.2, 1.3, 1.5}. 
The discrimination power of the histogram matching process differentiated for 
the various color features plotted against illumination intensity is shown in Fig. 
2. As expected, R G B  and / - co lo r  features depend on the illumination intensity. 

4.2 T h e  E f f ec t  o f  a C h a n g e  in t h e  I l l u m i n a t i o n  C o l o r  

Based on the coefficient rule or von Kries model, the change in the illumination 
color is approximated by a 3x3 diagonal matr ix  among the sensor bands and is 
equal to the multiplication of each RGB-color  band by an independent scalar 
factor [1]. Note tha t  the diagonal model of illumination change holds in the case 
of narrowband sensors. To measure the sensitivity of the various color feature 
in practice with respect to a change in the color of the illumination, the R, 
G and B-color bands of each image of the test  set are multiplied by a factor 
/31 = t3, ~2 = 1 and/33 = 2 - / 3  respectively (i.e./31R,/3~G and/33B) by varying 

over {0.5,0.7,0.8,0.9, 1.0, 1.1, 1.2, 1.3, 1.5}. The discrimination power of the 
histogram matching process differentiated for the various color features plot ted 
against the illumination color is shown in Fig. 3. For/3 < 1 the color is reddish 
whereas bluish for/3 > 1. 
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Fig. 2. The discriminative power plotted Fig. 3. The discriminative power plotted 
against the change fl in the color eompo- against the illumination intensity repre- 

sented by variation as expressed by the fac- sition of the illumination spectrum. 

tor c~. 

As expected, only the color rat io mlm2rns  is insensitive to a change in il- 
lumination color. From Fig. 3 we can observe tha t  color features H ,  111213 and 
clc2c3, which achieved best recognition accuracy under white illumination, see 
Figures 1 and 2, are highly sensitive to a change in illumination color. 

5 C o n c l u s i o n  

On the basis of the above reported theory and experiments,  it is concluded that  
the proposed invariant lll213 followed by H are most  appropriate  to be used for 
photometric color invariant object recognition by color-metric his togram match- 
ing under the constraint of a white illumination source. When no constraints 
are imposed on the imaging conditions (i.e. the most  general case), the newly 
proposed color rat io m l m 2 m 3  is most  appropriate .  
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