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Abs t rac t .  In this article we describe a calibration procedure of a binoc- 
ular camera head with two independent pan and tilt axes. For the calibra- 
tion procedure itself no separate rotations of the respective axes and no 
fixation is required. To get reliable calibration data just a plane surface 
with known 2D coordinates of distinguishable target points is needed. 
This publication describes facts and techniques that axe known to the 
robotic people but mostly unknown to the computer vision society. 

1 Introduct ion 

A binocular camera system usually comprises a pair of cameras mounted on a 
platform or a robot arm. Depending on the design of the system, the degrees of 
freedom (DOF) may be different. Normally, the head (neck) has two DOF: pan 
and tilt. Each eye (camera) may have one or two DOF: pan and tilt. In addition 
eyes may have the freedom of zooming, focusing and aperture control. With 
such a system one can manipulate its visual parameters in a controlled manner  
in order to extract  useful information about the scene in t ime and space. 

We will focus on the problem of calibrating the relative position and orien- 
tation of the two camera coordinate frames which depend on the commanded 
angular values, the geometry of the system and initially unknown errors of this 
description. If these errors are identified they can be included in the geometric 
model and together with the commanded position we obtain an exact kinematic 
description of the system. We can assume for simplicity that  the intrinsic pa- 
rameters of the cameras are known, although they may vary with different zoom 
or focus settings. The interdependence of these parameters can be recorded in 
look-up-tables [7], thus our assumption does not restrict the general case. The 
knowledge of the intrinsic parameters,  gained by camera calibration, and the 
extrinsic parameters,  gained by a kinematic calibration, enables the fast and 
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reliable computation of the essential and fundamental matrix without the need 
of point matching. 

The presented work is related in the same way to the field of robot calibration 
as it is to the field of camera calibration. In both disciplines the visual system or 
the robot is calibrated in a world coordinate system with measurement points 
with accurately known position. Besides a world-base transform (the extrinsic 
parameters in the case of camera calibration) a least squares estimation yields the 
parameters of the object model such that an error function is minimized. From 
robot calibration it is known that the results of this estimation are only reliable if 
a wide range of the working space is covered in the calibration procedure [12]. For 
a camera with known intrinsic parameters the recovery of the pose with respect 
to a world coordinate system requires that at least four distinguishable non- 
collinear points with known 3D coordinates are in the view. The recovery gets 
more reliable if the points cover a larger part of the image. For the calibration 
of a "robot" with two axes and limited link length, like it is the case with a pan- 
tilt camera device, we encounter a trade-off dilemma that is described in the 
following. If the calibration object is very far away, then the axes of the device 
can move considerably and still have the object in view. But in that case we 
can not rely on the camera pose recovery, because the image of the object will 
be small. If, on the other hand, the object is very close the pose recovery gets 
reliable but we can only cover little of the working space of the axes of rotation, 
the object has to be kept in view (see figures 1, 2). A way out of this dilemma 
would be the use of a large calibration device with high accuracy, which is very 
expensive. 

Li, Brady, and Wiles [5] attack the problem of binocular calibration by using 
point matchings at certain camera poses. At those poses the fundamental matrix 
is computed by an eight points algorithm and afterwards corrections are applied. 
Their method is only applicable to mechanisms with common elevation, that 
means with a common tilt axis. 

Young et al. [9] describe a method where the 3D motion between different 
robot positions is recovered by analysing the image contents. This motion is 
compared to a nominal motion of separately moved axes of the robot. For a 
binocular camera head this approach is trapped in the described dilemma. 

Davidson, Reid, and Murray [1] fixate points of known 2D coordinates to 
recover a plane-plane homography and calibrate their binocular head. However 
fixation means closed loop control of the axes of the platform and that means 
avoidable effort. Furthermore their approach requires that the axes of rotation 
are perpendicular to each other and aligned with the camera axes. 

Since Zhuang, Wang, and Roth [16] use minimal models for robot and camera, 
parameter identification can be done simultaneously. No separate motion of axes 
is necessary. Every measured image point simply contributes two equations to a 
large system of nonlinear equations. The use of a calibration board of 0.002mm 
accuracy makes it difficult and expensive to confirm their results. The main 
drawback of their publication is the unnecessarily complicated mathematics. 
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Fig. 1. A calibration object too close. A very small range of action of the cameras 
decreases the reliability of the kinematic calibration. 

Many authors solve the problem of hand-eye calibration by solving homoge- 
neous matrix equations of the form A X  = X B ,  see [3] for a brief overview. These 
approaches need also the 3D recovery and suffer therefore from the mentioned 
dilemma. We think that solving the problem in Euclidean space is generally a 
bad idea, because then we have to cope with the inaccuracies introduced by pose 
estimation. 

The subsequently presented approach is similarly to Zhuang's method capa- 
ble of simultaneous calibration of camera and platform, no fixation is needed, no 
separate movements of axes are necessary. The mathematics used is easily un- 
derstandable, the MATLAB-source code is provided [10]. Experimental results 
show that for the recovery of the epipolar geometry satisfactory results can be 
achieved without any sophisticated calibration device. 

2 P r o b l e m  F o r m u l a t i o n  

2.1 A Kinema t i c  Mode l  

Since we are interested in the calibration of the relative transformation of the 
two cameras, the neck does not influence our calibration result and is therefore 
not considered here. For the sake of simplicity we place the base coordinate 
system of the camera head such that its origin lies in the middle of the nominal 
intersections of the respective pan and tilt axes, the z axis is vertical and the y 
axis points towards the scene. Let A~ denote the 6 DOF world-base transform 



441 

Fig. 2. A large distance enables a larger range of action but the pose recovery gets 
unreliable. 

relating the coordinate system of a calibration plane to the base of the binocular 
head of the form 

A'~ = Transl(x, y, z)Rot(x, cORot(y , t3)Rot(z, 0). (1) 

In the two kinematic chains first we rotate about the pan axes (vergenee) then 
about the tilt axes (elevation). Enhancing A~w with (initially unknown) error 
parameters and translations to the respective pan axes yields for the left base 
coordinate system 

Aw,t = A'wTransl(e/2 + Axt, Aye, Azl)not(x, Aat)Rot(y, Afll)Rot(z, AOt). 
(2) 

Where e denotes the eye to eye distance of the camera head. For the right base 
coordinate system replace I by r and e by - e .  Now the z axis of Aw,t is aligned 
with the left pan axis and similarly the z axis of Aw,r is aligned with the right 
pan axis. We follow the two different kinematic chains to the respective cameras. 
Using the Denavit-Hartenberg model [8,14] we obtain 

Apanj = Rot(z, ¢, + ~/2)Transl( Aa,, O, O)Rotx(Acq -- ~/2) (3) 

as the transformation relating the pan and tilt axis. A similar equation is ob- 
tained for the right kinematic chain. Here Ct denotes the variable pan angle. In 
the model we assume that  zero pan angles result in a straight forward look with 
approximately parallel optical axes. This is no restriction to the general case, 
because adding a appropriate constant offsets to the angular values will always 
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lead to such a system. Generally the Denavit-Hartenberg model has four (error) 
parameters, but here only two, the normal distance Aaz of the two axes and the 
twist angle Aoq appear. That is because the unused parameters are redundant 
with Azz and A�t. 

The rotations about the tilt axes and the transformations into the camera 
frames have again 6 DOF. Again left and right transformations are the same. 

A . . , z  = Ro~(~, ¢~ + ~)Rot(v, ~/2)aot(~,  n o , ) ~ t ( v ,  ,~ )  
Rot(a:, Aat)Transl (  Aa:, Ay,  Ay)  (4) 

With ¢I we denoted the left tilt angle. 
All together we have 28 error parameters, which corresponds to the rule that 

a serial manipulator with rotational axes consisting of rigid links has 4N + 6 
parameters [11,16], where N is the number of degrees of freedom and our head 
is considered as two 2 DOF robots. 

2.2 C a m e r a  Model  

The left camera frame is described by the homogeneous transformation 

Ct(¢z, ¢~, param) = Aw,zApa,,,tAt~l~j 

= r32 r33 Z ° /  (5) 

0 0 1 /  
In our case the positive z axis of the camera frame directs away from the 

scene. In this case we derive the left image coordinates (Xrnod,  Ymod) T as the 
projection of a 3D point (X, Y, Z) T by equations 6, 7 [4]. 

ru2 + r219 + rs12 
a:mod = a:o + (a: - a:o)dr - i ,  r13~ + ~237 + ~ 2  (6) 

rl~J; + r229 + r~22 
Ymod  - -  YO "]" (Y  - -  yo)dr - f~ r l sZ  -I- r239 ~- rssZ (7) 

where fx - l/s~:, f~ - f / s y ,  f is the focal length and sz, sy are the pixel lengths 
in a: and y directions. We use the abbreviations 2 - X - X 0 , ?  - Y - Y0, 2 - 
Z - Z0. The coordinates of the principal point are (a:0, Y0) and dr denotes the 
radial distortion of the lens with 

r 2 r 4 
dr = al(~-~o 2 - 1) -F a2(~o4 - 1) (8) 

r = ~/(a:  - a:0) 2 + ( y  - y0 )  ~. ( 9 )  

The constant R0 is set to half of the image border length. This computation 
of the distortion exhibits better numerical stability than a conventional model 
[6,15]. The intrinsic parameters f~, f~, a:0, Y0, al, a2 are not accurately known and 
therefore for each camera the number of parameters is now 14+6=20. 
A similar equation holds for the right image coordinates. 
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2.3 Cost  Func t ion  

Every measured target point with known 3D coordinates and viewed with the left 
camera produces an image point (Xmeas,  ymeas) T .  Together with the currently 
commanded angular variables et, ¢~ this point contributes two equations 

xmod = xrn~a, (10) 

Y. od = (11)  

to a system of nonlinear equations. The equations depend on the unknown pa- 
rameters and the known joint variables and image coordinates. We can solve for 
the unknown parameters by a least squares estimation if we have at least 10 
different points recorded with different commanded poses. 

In practice we have to use an overdetermined system to gain reliable results. 
Due to measurement noise and limits of the model, equations 10, 11 will never 
be fullfilled accurately. Thus the cost function for m measurement points can be 
written as 

((Xmod,i -- x m e , , , , )  2 + (Ymod,i -- Yme , , , i )2 )  . (12) 
i----1 

The minimization can be done with the Gauss-Newton method which converges 
very fast in the neighbourhood of a solution. This method is the iterated appli- 
cation of a locally linearised balanced adjustment [4]. The iterations are stopped 
when the amount of adjustment on each of the parameters is below a prescribed 
threshold. The Jacobian can be approximated using finite differences. A start 
estimation for the intrinsic camera parameters can be obtained from the camera 
specifications. The initial error parameters of the pan/tilt  unit can be set to 
zero. 

The world-to-base transformation (eq. 1) has to be measured manually with 
measurement tape to obtain a feasible start value for the parameter estimation. 
Since the accuracy of this measurement is mostly far worse than the initial 
estimation of the other parameters, an estimation procedure for the world-to- 
base parameters (eq. 2) with the other parameters fixed to their default values 
should be done before doing the adjustment with all parameters. After obtaining 
the final parameters the parameters of the world-to-base transform are worthless 
for the epipolar problem. 

Although like [16] the described technique is capable of simultaneous cal- 
ibration of all parameters we recommend in the case of imperfect calibration 
data the splitting into two stages. Stage one being the camera calibration, thus 
the identification of the intrinsic parameters, and stage two being the kinematic 
calibration with fixed intrinsic parameters. 

3 E p i p o l a r  G e o m e t r y  

Let D -- C T 1 C r  with elements dq be the transformation from the left camera 
frame to the right. Then the essen t ia l  m a t r i x  [13] is given by 

E -- T D a × 3  (13) 
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where D3x3 is the upper left 3 x 3 submatrix of D and 

- d24 '~ 
T =  -d~4 0 d14 . (14) 

d~4 -d t4  

If we neglect distortion the transformation of a point (x, y, 1) T given in homoge- 
neous pixel coordinates into a metric representation is given by a multiplication 
with a matrix [2,7] 

p-1 °1 (15) 
= -r,o 

Now the fundamental matrix can be derived as 

F -" ( P ; 1 ) T E p ; 1 .  (16) 

For any point (xt, Yt, 1) T in the left image given in homogeneous pixel coordinates 
F yields the epipolar line Ax q- By  + C = 0 in the right image as follows 

(A, B, C) = (xz, Yz, 1)F. (17) 

Note that x and y are given in pixel coordinates. For the reverse direction we 
have to use F T. Further note that this nice property is only valid for a distortion- 
free lens. That means in practice we have to correct the distortion of a measured 
image point (z,  y)T by an appropriate shift about ( - d r ( z  - xo), - d r ( y  - yo)) :r. 

4 E x p e r i m e n t a l  R e s u l t s  

In all simulations and experiments we first calibrated the cameras with the cal- 
ibration cube shown in figure 1 and fixed the intrinsic parameters for the kine- 
matic calibration. This was done because the accuracy of the used calibration 
object for the camera calibration was several times higher than the accuracy 
of the 3D coordinates of the target points used for kinematic calibration. The 
calibration worked well, despite of the fact that we measured the 2D points of 
measurement targets manually, details can be found in [17] and can be extracted 
from [10]. 

5 S u m m a r y  

We presented a minimal, but complete offset model for the kinematics of a binoc- 
ular head with separated eye pan and tilt and a, for the cMibration procedure, 
fixed neck. We demonstrated that the online calculation of the essential and fun- 
damental matrix can be done to a, for the sake of computer vision, satisfactory 
precision with easy mathematics and without expensive calibration mechanisms. 
The accuracy of the obtained results is in the range of that of competing methods 
but accomplished with very little effort. 
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